Purdue University
The Adaptive Optics and Biophotonics group, directed by Professor Nolte

 

Review Articles

David D. Nolte, The Tangled Tale of Phase Space, Physics Today, 63,33 (2010) pdf

David D. Nolte, Review of Centrifugal Microfluidic and Bio-optical Disks, Rev. Sci. Instr. 80, 101101 (2009) pdf

D. D. Nolte and F. E. Regnier, Spinning-Disk Interferometry: The BioCD. Optics and Photonics News v. 15, p. 48 (Oct. 2004) pdf

D. D. Nolte, Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications (Review Article), Applied Physics Review, in J. Appl. Phys. 85, 6259-6289 (1999) pdf

Selected Publications at BEPress www.works.bepress/ddnolte

 

Google Scholar Citations: (link)

 

Citation Report (Web of Science, Dec 2015)

CitationRep

 

Selected Publications

The BioCD

X. F. Wang, M. Zhao, D. D. Nolte, and T. L. Ratliff, Prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array, Biosensors & Bioelectronics, vol. 26, pp. 1871-1875 (2011).

X. F. Wang, M. Zhao, and D. D. Nolte, Ambient molecular water accumulation on silica surfaces detected by a reflectance interference optical balance, Applied Physics Letters, vol. 97 (2010)

X. F. Wang, M. Zhao, and D. D. Nolte, "Prostate-specific antigen immunoassays on the BioCD," Analytical And Bioanalytical Chemistry, vol. 393, pp. 1151-1156, (2009)

X. F. Wang, M. Zhao, and D. D. Nolte, "Land-contrast self-referencing interferometric protein microarray," Applied Physics Letters, vol. 93, 223904 (2008)

Ming Zhao, Xuefeng Wang and David D. Nolte, Molecular Interferometric Imaging, Opt. Express 16, 7102-7118 (2008) (ZhaoOE08.pdf)

Xuefeng Wang, Ming Zhao and David D. Nolte, Combined Fluorescent and Interferometric Detection of Protein on a BioCD, Appl. Opt. 47, 2779-2789 (2008) (WangAO08.pdf)

Ming Zhao, Wonryeon Cho, F. Regnier and David Nolte, Differential Phase-Contrast BioCD Biosensor, Appl. Opt. 46, 6196-6209 (2007) (ZhaoAO07.pdf)

Leilei Peng, Manoj M. Varma, Wonryeon Cho, Fred E. Regnier and David D. Nolte, Adaptive Interferometry of Protein on a BioCD, Appl. Opt. 46, 5384-5395 (2007) (PengAO07.pdf)

Xuefeng Wang, Ming Zhao and David D. Nolte, Common-path interferometric detection of protein monolayer on the BioCD, Appl. Opt. 46 (32), 7836-7849 (2007) (WangAO07.pdf)

M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence and J. Pasqua, High-speed interferometric detection of label-free immunoassays on the biological compact disc, J. Clin. Chem. 52 (11), 2135-2140 (2006) (ZhaoCC06.pdf)

BioCD

D. D. Nolte and F. E. Regnier, Spinning-Disk Interferometry: The BioCD. Optics and Photonics News v. 15, p. 48 (Oct. 2004) (NolteOPN04.pdf)

Manoj M. Varma, Halina D. Inerowicz, Fred E Regnier, David D. Nolte, High-Speed Label-Free Detection by Spinning-Disk Micro-Interferometry, Biosens. and Bioelectron. 19 (11) pg. 1371-1376 (2004) (VarmaBB04.pdf)

M. M. Varma, H. D. Inerowicz, F. E. Regnier and D. D. Nolte , Spinning-Disk Self-Referencing Interferometry of Antigen-Antibody Recognition, Opt. Lett. 29(1) pp. 68-70 (2004) (VarmaBioCDOL.pdf)

 

Holographic Optical Coherence Imaging

K. Jeong, J. J. Turek and D. D. Nolte, Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography, J. Biomed. Opt. 15, 030514 (2010) (JeongJBO10.pdf)

Kwan Jeong, John J. Turek & David D. Nolte, Imaging Motility Contrast in Digital Holography of Tissue Response to Cytoskeletal Anti-cancer Drugs, Optics Express 15, 14057 (2007) (JeongOE07.pdf)

K. Jeong, J. J. Turek and D. D. Nolte, Fourier-Domain Digital Holographic Optical Coherence Imaging of Living Tissue, Appl. Opt. 46 , 4999-5008 (2007) (JeongAO07.pdf)

K. Jeong, L. Peng, J. J. Turek, M. R. Melloch and D. D. Nolte, Fourier-domain Holographic Optical Coherence Imaging of Tumor Spheroids and Mouse Eye, Appl. Opt. 44, 1798-1805 (2005) (JeongAO1798.pdf)

K. Jeong, L. Peng, and D. D. Nolte and M. R. Melloch, Fourier-Domain Holography in Photorefractive Quantum Well Films, Applied Optics, v 43, n 19, p 3802-11 (2004) (JeongAO04.pdf)

Leilei Peng, Ping Yu, Michael R. Melloch and David D. Nolte, Adaptive Optical Coherence-Domain Reflectometry, Journal of the Optical Society of America B: Optical Physics, v 21, n 11, p 1953-1963 (2004) (PengJOSAB.OCDR.pdf)

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French and D. D. Nolte, Holographic Optical Coherence Imaging of Rat Osteogenic Sarcoma Tumor Spheroids, Applied Optics, v 43, n 25, p 4862-4873 (2004) (YuAO04.pdf)

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch and D. D. Nolte, Holographic Optical Coherence Imaging of Tumor Spheroids, Appl. Phys. Lett. 83, 575 (2003) (YuAPL03.pdf)

 

Nano and Solid State Physics

X. F. Wang, K. P. Chen, M. Zhao, and D. D. Nolte, Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films, Optics Express, vol. 18, pp. 24859-24867 (2010)

X. F. Wang, M. Zhao, and D. D. Nolte, Ambient molecular water accumulation on silica surfaces detected by a reflectance interference optical balance, Applied Physics Letters, vol. 97 (2010)

X. F. Wang, M. Zhao and D. D. Nolte, Optical Contrast and Clarity of Graphene on an Arbitrary Substrate, Appl. Phys. Lett. 95, 081102 (2009)

X. F. Wang, Y. P. Chen, and D. D. Nolte, "Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology," Optics Express, vol. 16, pp. 22105-22112, (2008)

S. Balasubramanian, S. W. Mansour, M. R. Melloch and D. D. Nolte, Vacancy diffusion in arsenic-rich nonstoichiometric AlAs/GaAs heterostructures, Phys. Rev. B 63, 033305 (2000) (BalaVacDiff.PRB.pdf)

D. D. Nolte, Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications (Review Article), Applied Physics Review, in J. Appl. Phys. 85, 6259-6289 (1999) (NolteReview.JAP.pdf)

D. D. Nolte, Mesoscopic pointlike defects in semiconductors: Deep-level energies, Physical Review B, vo. 58, no. 12, 7994-8001 (1998) (NolteMeso.PRB.pdf)

M. Dinu, D. D. Nolte, M. R. Melloch, Electroabsorption spectroscopy of effective-mass AlxGa1-xAs/GaAs Fibonacci superlattices, Physical Review B (Condensed Matter), Volume 56, Issue 4, pp.1987-1995 (1997) (DinuFibo.PRB.pdf)

D. D. Nolte, Metastable optical gratings in compound semiconductors, J. Appl. Phys., vol. 79, no. 10, 7514-7522 (1996) (NolteMetastable.JAP.pdf)

D. D. Nolte, Optical Scattering and Absorption by Metal Nanoclusters in GaAs, J. Appl. Phys. 76, 3740-3745 (1994) (NolteJAP94.pdf)

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka and C. L. Chang, Carrier Lifetime vs. Anneal in Low Growth Temperature GaAs, Appl. Phys. Lett. 63, 2248-2250 (1993) (HarmonAPL.pdf)

D. D. Nolte, W. Walukiewicz and E. E. Haller, Band-Edge Hydrostatic Deformation Potentials in III-V Semiconductors, Phys. Rev. Lett. 59,  501 (1987) (NoltePRL87.pdf)

 

Adaptive Interferometry and Photorefractives

L. Peng, P. Yu, M. R. Melloch and D. D. Nolte , Adaptive Interferometer for Optical Coherence-Domain Reflectometry, Opt. Lett. 28, Issue 6, 396-398 (2003)

P. Yu, L. Peng, M. R. Melloch and D. D. Nolte, Ultrasound Detection through Turbid Media, Opt. Lett. 28, 819 (2003)

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, M. R. Melloch, Adaptive Beam Combining and Interferometry using Photorefractive Quantum Wells, J. Opt. Soc. Am. B vol.18, no.2, pp.195-205 (2001) (NolteAdaptiveJOSA01.pdf)

D. D. Nolte, K. M. Kwolek, C. Lenox, B. Streetman, Dynamic Holography in a Broad- Area Vertical GaAs microcavity, J. Opt. Soc. Am. B, vol.18, no.3, pp.257-63 (2001) (NolteHVCSELJOSAB.pdf)

Y. Ding, A. M. Weiner, M. R. Melloch and D. D. Nolte, Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography, Appl. Phys. Lett. 75, 3255-3257(1999) (DingAPL99.pdf)

Y.Ding, D. D. Nolte, M. R. Melloch and A. M. Weiner, Time-Domain Image Processing Using Dynamic Holography, IEEE J. Select. Top. Quant. Electron. 4, 332 (1998) (DingJSTQE98.pdf)

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher and M. B. Klein, Laser-based ultrasound detection using photorefractive quantum wells, Applied Physics Letters, Vol. 73, no. 8, 1041-1043 (1998) (LahiriAPL98.pdf)

M. Dinu, I. Miotkowski, D. D. Nolte, Magnetic quenching of time-reversed light in photorefractive diluted magnetic semiconductors, Physical Review B (Condensed Matter and Materials Physics), Volume 58, Issue 16, 10435-10442, (1998) (DinuMagneto.PRB.pdf)

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch and A. M. Weiner, Femtosecond Pulse Shaping by Dynamic Holograms in Photorefractive Multiple Quantum Wells, Opt. Lett. 22, 718 (1997) (DingOL97.pdf)

R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon and M. R. Melloch, Nonlocal photorefractive from hot electron velocity saturation in semiconductors, Phys. Rev. Lett. 77, 4249 (1996) (BrubakerPRL.pdf)

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, Photorefractive quantum wells: transverse Franz - Keldysh geometry, Journal of the Optical Society of America B, Vol. 9, Issue 9, pp. 1626-1641 (1992) (WangJOSA92.pdf)

D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox and A. M. Glass, The Resonant Photodiffractive Effect in Semi-insulating Multiple Quantum Wells, J. Opt. Soc. of America B7, 2217 (1990) (NolteJOSAB90.pdf)

D. D. Nolte, D. H. Olson and A. M. Glass, Nonequilibrium Screening of the Photorefractive Effect, Phys. Rev. Lett. 63, 891 (1989) (NoltePRL89.pdf)

 

 

Books

Introduction to Modern Dynamics, David D. Nolte (Oxford, 2015)

The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many of our high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton’s laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications are given for this situation: first, that the mathematical tools needed to understand these topics are beyond the skill set of undergraduate students, and second, that these are specialty topics with no common theme and little overlap.

Introduction to Modern Dynamics: Chaos, Networks, Space and Time dispels these myths. The structure of this book combines the three main topics of modern dynamics—chaos theory, dynamics on complex networks and the geometry of dynamical spaces—into a coherent framework. By taking a geometric view of physics, concentrating on the time evolution of physical systems as trajectories through abstract spaces, these topics share a common and simple mathematical language with which any student can gain a unified physical intuition. Given the growing importance of complex dynamical systems in many areas of science and technology, this text provides students with an up-to-date foundation for their future careers.

While pursuing this aim, Introduction to Modern Dynamics embeds the topics of modern dynamics—chaos, synchronization, network theory, neural networks, evolutionary change, econophysics and relativity—within the context of traditional approaches to physics founded on the stationarity principles of variational calculus and Lagrangian and Hamiltonian physics. As the physics student explores the wide range of modern dynamics in this text, the fundamental tools that are needed for a physicist’s career in quantitative science are provided as well, including topics the student needs to know for the graduate record examination (GRE). The goal of this textbook is to modernize the teaching of junior-level dynamics, responsive to a changing employment landscape, while retaining the core traditions and common language of dynamics texts.

Table of Contents

1. Physics and Geometry

2. Hamiltonian Dynamics and Phase Space

3. Nonlinear Dynamics and Chaos

4. Coupled Oscillations and Synchronization

5. Network Dynamics

6. Neural Dynamics and Neural Networks

7. Evolutionary Dynamics

8. Economic Dynamics

9. Metric Spaces and Geodesic Motion

10. Relativistic Dynamics

11. The General Theory of Relativity and Gravitation

 

 

Principles of Interferometry for Biology and Medicine, David D. Nolte (Springer, 2011)

This textbook provides the fundamental physics underlying the uses of interferometry for biological and medical applications.

Table of Contents

1. Interferometry

2. Diffraction and Light Scattering

3. Speckle and Partial Coherence

4. Molecular Optics

5. Surface Optics

6. Interferometric Thin Film Biosensors

7. Diffractive Biosensors

8. Waveguide Sensors

9. Resonant Interferometric Biosensors

10. Cell Structure and Dynamics

11. Interference Microscopy

12. Light Propagation in Tissue

13. Optical Coherence Tomography

14. Tissue Holography

 

 

Mind at Light Speed: A New Kind of Intelligence, David D. Nolte (Simon&Schuster, Free Press, 2001)

This is a general-interest trade nonfiction account of the optical revolution around the turn of the Millenium.

Buy the Book at Amazon

Nature Review

Excerpts

Preface

The Age of Entanglement