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The photorefractive properties of semi-insulating AlGaAs-GaAs multiple quantum wells are described for the
transverse Franz-Keldysh geometry with the electric field in the plane of the quantum wells. Combining the
strong electroabsorption of quantum-confined excitons with the high resistivity of semi-insulating quantum
wells yields large nonlinear optical sensitivities. The photorefractive quantum wells have effective nonlinear
optical sensitivities of n2 103 cm2/W and a2/ao =: 104 cm2/W for applied fields of 10 kV/cm. Photo-
refractive gains approaching 1000 cm-' have been observed in two-wave mixing under dc electric fields and
stationary fringes. The transverse Franz-Keldysh geometry retains the general transport properties and be-
havior of conventional bulk photorefractive materials. The resonant excitation of free electrons and holes in
the quantum wells leads to novel behavior associated with electron-hole competition. We demonstrate that
under resonant excitation of electrons and holes the device resolution is fundamentally limited by diffusion
lengths but is insensitive to long drift lengths.

1. INTRODUCTION

Photorefractive semiconductors have the advantage of
large carrier mobilities and high speed,"2 but they suffer
from small linear electro-optic coefficients. Electro-optic
properties are enhanced by using laser wavelengths close
to band-gap absorption. The quadratic electro-optic ef-
fects associated with the fundamental absorption energy
in semiconductors can be significantly larger than the lin-
ear electro-optic effect. The Franz-Keldysh effect34 is
the change induced in the absorption near the band gap
that is caused by an electric field. The field-induced ab-
sorption change is called electroabsorption.5 9 Electro-
refraction accompanies the electroabsorption' 0 "' and is
related by causality through the Kramers-Kronig rela-
tion.'2'1 3 The Franz-Keldysh effect represents a resonant
enhancement of the material electro-optic properties.
The effect is strong only when the photon energy is close
to the resonant transition energy from the valence band
to the conduction band. However, significant electro-
absorption can still occur for photon energies tuned to
lower energies (within approximately 50 meV). Such
near-resonant effects have been used for waveguide phase
modulators4 and to enhance the photorefractive proper-
ties of bulk semiconductors.15"6

An alternative to using near-resonant frequencies with
bulk excitons is to use the exciton wavelengths themselves
in thin quantum-well structures. The quadratic electro-
optic effects are strongest for photon energies tuned to
sharp absorption features. For a resonant optical non-
linearity, the strength of the effect is proportional to the
oscillator strength and varies inversely with the square of
the transition linewidth. Strong and sharp exciton ab-
sorption features are therefore necessary to provide the

largest possible electro-optic effect. Such sharp ab-
sorption features occur for quantum-confined excitons.'7

Quantum-confined excitons are obtained by confining the
exciton wave function within a thin quantum well. The
quantum well consists of a semiconductor layer with quan-
tum barriers formed from higher-band-gap materials.
The band-edge discontinuity acts as a confinement poten-
tial that restricts the exciton wave function to the thin
quantum well, effectively reducing the exciton to be quasi
two dimensional. The binding energy of excitons in two
dimensions is higher than in three because of the in-
creased overlap of the electron and the hole wave func-
tions with the attractive Coulomb potential. The higher
binding energy for quantum-confined excitons produces
two important effects: (1) It increases the oscillator
strength of the exciton transition, and (2) it decreases
the linewidth by increasing the lifetime of the exciton,
thereby reducing the thermal ionization rate of the exci-
ton into free electron-hole pairs. The larger oscillator
strength and the smaller linewidth both contribute to sig-
nificantly enhanced nonlinear optical and electro-optical
properties, such as transverse quantum-confined exciton
electroabsorption.

In this paper we describe the behavior of photorefractive
quantum wells operating in the transverse Franz-Keldysh
geometry.'8 As for the common bulk photorefractive
materials, high-sensitivity photorefractive performance
depends on (1) large photoconductivity, (2) large dark re-
sistivity, (3) large defect densities, and (4) large electro-
optic effects. The photorefractive quantum wells satisfy
all these requirements. In the transverse Franz-Keldysh
geometry the electric field is applied in the plane of the
quantum wells and is parallel to the grating vector writ-
ten by intersecting laser beams. This geometry is identi-
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cal to the transport geometry commonly used for bulk
photorefractive materials. However, the largest differ-
ence between the operation of a photorefractive quantum-
well structure and nonresonant excitation in the bulk
material is the direct generation of electron-hole pairs.
The photoconductivity of the photorefractive quantum-
well samples is caused not by photoionization of defects
but by direct interband transitions. This difference
raises interesting new behavior for the quantum-well
samples that differ from nonresonant excitation and that
have some features in common with resonant excitation of
bulk materials.' 5

The structure of the quantum-well samples and the
material processing are described in Section 2, including
the electrical and the optical characterizations of the
samples. The details of photorefractive transport under
the conditions of electron-hole-pair production are pre-
sented in Section 3. The specifics of the transverse
Franz-Keldysh geometry are addressed, and the one-
dimensional transport equations are solved. The respec-
tive roles of carrier diffusion and drift are described, with
an emphasis on new behavior related to interband photo-
excitation. Limitations of the one-dimensional transport
model are discussed, with a list of possible consequences
for vertical transport through or over the quantum barri-
ers. Photorefractive four-wave mixing is described in
Section 4, including degenerate and nondegenerate geome-
tries with a description of high-order harmonic gratings
formed by a combination of the quadratic electro-optic ef-
fect with transport nonlinearity. Two-wave mixing is
described in Section 5, demonstrating energy transfer be-
tween two crossed beams in the photorefractive quantum
wells. Photorefractive gains approaching 1000 cm-' are
observed under dc bias and stationary fringes. Specula-
tions on the origins of the phase shift necessary for two-
wave mixing are offered, although the precise origin of
the phase shift remains a mystery requiring further re-
search. Finally, in Section 6 we discuss the ultrahigh
sensitivity of the photorefractive quantum wells. A 10%
transfer of energy and a saturation intensity of 10 IuW/cm2

have been observed in two-wave mixing experiments.

2. SEMI-INSULATING QUANTUM WELLS

A. Sample Structure and Processing
All samples for this study were GaAs-AlGaAs multiple-
quantum-well structures grown by molecular-beam
epitaxy in a Varian Gen-II chamber. We studied three
samples. Two, labeled QW-1 and QW-2, were from the
same growth. The third, RB-1, is from a different
growth. As depicted in Fig. 1, each growth begins with a
GaAs buffer layer grown on an undoped GaAs substrate.
A 500-A AlAs lift-off layer' 9 is grown next, followed by two
stop-etch layers, one a 1000-A Al0.5Ga0.5As layer and the
other a 7000-A Al0.3Ga0.7As layer. The quantum wells are
grown on the stop-etch layer, with 60 periods for each
growth. For the QW-1 and QW-2 samples there are 75-A
GaAs wells and 100-A AlO.3Ga0.7As barriers. The GaAs
wells in the RB-1 sample are also 75 A wide, but the
Al0 3Ga,. 7As barriers are 150 A wide. On the wells is a
500-A layer of Al0.3Ga0.7As and, finally, a 50-A GaAs cap to
inhibit oxidation. After growth each 2-in.- (5-cm-) di-
ameter wafer was cleaved into quarters.

For provision of deep-level traps the sampler were pro-
ton implanted to provide implant damage 0-23 A quarter
wafer from each growth was first proton implanted from
the quantum-well side with a dose of 102 cm-2 at an en-
ergy of 135-160 keV The penetration depth of the im-
plant at these energies is 1.0 to 1.2 ,um.24 The total
depths of the multiple-quantum-well layers in Fig. 1 are
1.1 and 1.4 pum, respectively, for the two growths. To en-
sure that the samples are semi-insulating throughout, we
removed the substrates, and the samples were implanted
again from the etched side. Based on relativistic kine-
matics, approximately 40 atoms are displaced by each pro-
ton.25 However, some of the vacancy-interstice pairs
recombine shortly after they are created. The volume-
defect densities created by the implant are therefore esti-
mated to be ND 1017 cm-3. These defect densities are
more than sufficient to compensate for the residual
shallow-defect concentrations in the range of N- 10"
cm3 and to produce a semi-insulating material.

The GaAs substrate is opaque to the photon energies of
interest close to the exciton transitions in the quantum
wells. Our experiments are performed in a transmission
geometry, requiring the substrates to be removed (in addi-
tion to requiring that the back sides of the samples be
implanted). To remove the substrates, we cleaved
3 mm x 3 mm samples from the quarter wafers. Differ-
ent etching techniques were used to remove the substrate
for each sample. For QW-1 and QW-2 each sample was
epoxied to a glass slide from the quantum-well side, and
then the substrate was lapped up to a thickness of
150 ttm. For QW-1 the remaining portion of the substrate
was removed by using a selective etching of H20 2/NH 4OH
at pH 7.0.26 For QW2 a different etching, using a volu-
metric 10:1 ratio of citric acid and H202(30%) (Ref. 27)
was used, giving much better selectivity.

For RB-1 the multiple-quantum-well structure was sepa-
rated from the substrate by dissolving the AlAs layer with
a solution of 10% HF, which is referred to as the liftoff
technique. 9 Before being etched, the sample top is
coated with a waxlike material. During etching the wax
coating bends the sample, allowing the etch to reach the
edge of the AlAs layer and allowing the reactants to circu-
late away. The etching takes -24 h to separate a

QW-1 and QW-2

50 A GaAs

500 A Al0 3Ga0 7As

{ 75A GaAs
60 X

100 A Al0 3Ga0 7As

7,000 A Alo0 3GaO.7As

1,000 A Al0 .5Ga0 5As

500 A AlAs

0.75 mrn GaAs

Undoped GaAs Substrate

RB-1

5 A GaAs

500 A Al0 3Ga0 7As

75A GaAs
60X

150 A Al0 3Ga0 7As

7,000 A Al0 3Gao.7As

1,000 A Al0 5Ga0 5As

500 A AlAs

1.0 rn GaAs

Undoped GaAs Substrate

Fig. 1. Multiple-quantum-well structures used in the study.
Sample RB-1 differs only in the thickness of the quantum
barriers.
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the direct band edge to the indirect band edge. The elec-
tron effective mass in the indirect band edge is signifi-
cantly larger than the direct effective mass. Therefore

L=11 m 1[ the electron velocities saturate. This effect is well
0 o * Xknown 29 and is the origin of Gunn oscillations3 0 in doped

materials. The absence of saturated carrier drift veloci-
ties for fields up to 7 kV/cm indicates that the photo-

o conductivity in the quantum wells is dominated by hole
o transport. Although interband transitions generate as

d |0 No applied field many electrons as holes, the defect capture cross sections
co -a ° 1 kV/m aplied| - for electrons can be significantly larger than for holes.
QO AThe short electron lifetime therefore removes electrons

D . . ' from the conduction band and allows holes to dominate
1.44 1.46 1.48 1.50 1.52 1.54 the transport. Based on these arguments, and assuming

a hole mobility of 400 cm2/Vs, the hole lifetime from the
Photon Energy (eV) measured ,ur product is approximately Th 1 ns. These

Fig. 2. Room-temperature absorption versus photon energy for
sample QW-2 after sample processing. The quantum-confined
heavy- and light-hole excitons are the dominant absorption fea-
tures at 1.478 and 1.495 eV Under an applied field of 10 kV/cm
in the plane of the wells, the exciton line shapes broaden.

3-mm-square sample from the substrate. After liftoff the
wax supports the fragile, 2-pum-thick sample. The
sample is bonded to a glass slide by van der Waals bond-
ing.28 After the bonding the wax coating is removed with
a solvent, leaving a good optical surface. After the sub-
strates were removed, gold electrodes were evaporated
onto the samples 1 mm apart, and the samples were
placed in optical mounts.

B. Electrical and Optical Properties
The resistivities of the samples after processing are typi-
cal of semi-insulating GaAs in the range of 5 X 107 fQ cm.
The high resistivity ensures that the proton implant has
generated semi-insulating multiple quantum wells. The
transmissions of the samples were measured as functions
of photon energy, shown in Fig. 2 for sample QW-2. The
quantum confinement of the excitons breaks the symme-
try at the top of the valence band. Therefore the light
hole and the heavy hole each have an absorption peak, as
plotted in the figure. An estimate of a 9 X 103 cmi1
for the peak absorption of the heavy-hole exciton can be
made based on the thickness L = 1.04 Aum of the sample.
There are weak Fabry-Perot fringes noticeable at energies
above and below the excitons, which are caused by the
sample thickness.

The photoconductivity was measured as a function of
both applied voltage and incident intensity. As a function
of applied voltage, the photoconductivity was linear
(7 kV/cm was the highest applied field) for intensities of
0.3-300 mW/cm2 at A = 633 nm and 0.8-80 mW/cm2 at
A = 843 nm. The photoconductivity as a function of in-
tensity was also measured at A = 633 nm and A = 843 nm,
with an applied field of 1 kV/cm. The bipolar AT products
extracted from the curves are 3 x 10- cm2/V.

The linearity of the current-voltage plots of fields up to
7-kV/cm provides important evidence concerning the
dominant photocarrier. In GaAs, for fields above
4 kV/cm, electrons gain sufficient energy to transfer from

arguments are plausible and lead to a reasonable value for
the hole lifetime.

C. Transverse-Field Exciton Electroabsorption
In bulk GaAs the binding energy of excitons is only 4 meV
at room temperature. The weakly bound exciton is easily
ionized by thermal phonons, reducing the lifetime too much
for detection of exciton peaks in the absorption. By con-
finement in a quantum well with a width smaller than the
exciton's radius in the bulk, the binding energy of an exci-
ton is increased to 10 meV"3 The higher binding energy
results in clear excitonic absorption peaks, as shown in
Fig. 2. The sharp peaks are caused by reduced thermal
ionization and by an increase in the oscillator strength of
the transition. As was mentioned above, confinement
also breaks the symmetry between the light and the heavy
holes, yielding both a heavy-hole and a light-hole exciton
with different binding energies.

A field applied parallel to the plane of the quantum
wells ionizes the excitons, resulting in lifetime broadening
of the transition line shape. This broadening is the
transverse quantum confined exciton electroabsorption,3 2

which is a special case of quantum-confined exciton elec-
troabsorption.3 33 4 It does not depend on the sign of the
applied field. Therefore, to lowest order, the broadening
depends quadratically on the applied field. The broaden-
ing results in large changes in the absorption near the ex-
citon peaks. The transmission for zero applied field and
for an applied field of 10 kV/cm is shown in Fig. 2. The
change in transmission was measured for each sample.
The change in absorption was calculated with

Aa(E) = -1 In(1 + &T

AT T(E) - T(0)

T T(O)

Reflection is assumed to be constant for the wavelengths
of interest. Equation (2.1) is derived from the approxima-
tion T cc exp(-aL), which results in a less than 10% error
in calculating the change in absorption, Aa. A complete
treatment involves modeling the sample as an asymmetric
Fabry-Perot cavity with absorption. The transmission of
such a cavity is described by

T = (1 - R) (1 - R2)exp(-aL)
no [1 - (RjR2)312 exp(-aL)] 2 + 4(RlR2 )112 exp(-aL) (sin 8)2 (.
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Fig. 3. Electroabsorption data plotted versus photon energy for
an applied dc field of 10 kV/cm. The solid curve is a fit of the
data to Gaussian line shapes. The total oscillator strength is
conserved in the Franz-Keldysh effect (HH, heavy hole; LH,
light hole).

Where

8 = (27r/A)nL,

R - (no - n) 2 + k1
2

1 (no + n1)2 + k 2

(n, - n2)2 + k1
2

2 (n, + n2 )2 + k1
2

ki aA/(41r), -

no = 1.5 for glass, n 3.5 for the semiconductor struc-
ture, and n 2 = 1 for air, yielding R1 = 0.16 and R2 = 0.31.
We find that 9000 cm-' 2 a 2 5000 cm-' for wavelengths
of interest. The maximum change in indices (An)m =
0.01 and (Aa)max = 2000 cm-' implies that (Ak)max =
A(Aa)m./4 = 0.01.

The reflectivities R1 and R2 change by less than 0.2%
with the maximum changes in absorption and refractive
index. Therefore the reflectivities are essentially con-
stant for a given wavelength. The Fabry-Perot fringes
measured below the band gap have a finesse F = 2, Which
is consistent with the value calculated from

F= 1r(R 1 R2 ) 1
'
4

1 -(RR2)1'2

The low value of finesse makes AT insensitive to changes
in the refractive index; AT varies by less than 1% with the
change in index through the sin 8 term. Therefore the
changes in transmission depend only on absorption within
a 1%o error for calculating AT. The dependence of AT on
Aca is still governed by absorption and refractive index
through the terms in the denominator of Eq. (2.2). To
avoid the complex problem of accurately determining the
absorption and refractive index, we drop the variation of

the denominator, leading to at most a 10%o error in calcu-
lating the change in absorption. The dominant change in
transmission is through the exponential in the numerator,
and the large value of absorption makes most terms in the
denominator small compared with unity. The change in
absorption is plotted in Fig. 3 for QW-2. The solid curve
is the fit of the electroabsorption to Gaussian line shapes 8

with a continuum contribution from absorption to free
electron-hole pairs. The parameters of the fit are given
in Table 1.

The change in absorption is accompanied by a change
in the index of refraction, which may be calculated
from the change in absorption with the Kramers-Kronig
transformation:

An(A) = 2P Aa (X2)d'21T2 J 0
2 - x2

In Fig. 4, the calculated change in refractive index is
shown with the absorption change. The quadratic depen-
dence of the change in absorption and refractive index
may be summarized with the coefficients s, and S2, de-
fined by

A = (-/2)n3£E2 , g = S1 + iS2 , (2.3)

giving

An(E) = (-/2)n 3 s1E2, Aa(E) = (-2 r/A)n3s2E2.
(2.4)

Coefficients s, and S2 are plotted in Fig. 5 (here n = 3.5).

3. PHOTOREFRACTIVE TRANSPORT

Photorefractive quantum wells operating in the trans-
verse Franz-Keldysh geometry retain most of the basic
features of photorefractive transport in bulk photorefrac-
tive materials. Diffusion and drift drive charge carriers
from regions of high intensity to regions of low intensity.
The carriers trap at defects, building up space-charge
fields. These processes are described by one-dimensional
transport equations, in which the photocarriers are as-
sumed to remain in the quantum wells. Photorefractive
quantum-well systems are typically operated at large ap-
plied electric fields and with interband transitions gener-
ating electrons and holes. These conditions can also be
satisfied in bulk photorefractive materials. Therefore
many of the conclusions of the transverse Franz-Keldysh
geometry will be relevant for resonant and near-resonant 1 5

operation of bulk photorefractive materials. However,
transport in photorefractive quantum wells can also in-
clude transport perpendicular to the quantum wells, such
as tunneling into or thermal emission over the quantum
barriers. A full description of the variety of effects that
occur in photorefractive quantum wells will have to in-
clude this vertical transport in three-dimensional trans-
port equations.

Table 1. Parameters for Fig. 3
Contribution a (cm-') f (eV) 1 (meV) Aa (cm-') AI (eV) Al (meV)

Heavy hole 7000 1.479 3.5 -2000 0 +1.4
Light hole 4000 1.496 3.9 -720 0 +0.9
Continuum 3000 1.490 6 0 0 0
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Fig. 4. Electroabsorption and electrorefraction
field of 10 kV/cm versus photon energy.
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Fig. 5. Quadratic electro-optic coefficients s, and s2 versus pho-
ton energy for quantum-confined excitons at room temperature.

A. Transverse Franz-Keldysh Photorefractive Geometry
The transverse Franz-Keldysh photorefractive geometry
is shown in Fig. 6. The electric field is applied in the
plane of the sample. Two coherent laser beams are inci-
dent upon the sample from the same side with external
angles of incidences 01 and 02. The coherent interference
between the two beams produces an interference fringe
with a grating vector given by Kg = k2 - kj. When
01 = 02, the grating vector Kg is in the plane of the
sample. In the case of a thin grating only the component
Kgx = Kg cos(02 - 01) = K, which lies in the plane, is
important in defining transport properties and electro-
optical gratings. However, for two-wave mixing, the
grating vector Kg is important. Therefore, for two-wave
mixing and related experiments, care must be exercized
to maintain Kg in the plane of the layer. The parallel
component of the grating vector is defined as K = 2/A,
where the fringe spacing A is given by

A = A/(sin 0 + sin 02). (3.1)

The light intensity caused by the coherent interference
between the two laser beams is

I(x) = Io(l + m sin Kx), (3.2)

where m is the modulation index.

B. One-Dimensional Transport Equations
In semi-insulating multiple quantum wells operating in
the transverse Franz-Keldysh geometry, the transport is

predominantly in the direction of the grating vector.
Therefore the equations that describe the photorefractive
effect in semi-insulating multiple quantum wells are
similar to the rate equations that describe the photore-
fractive process in bulk materials.3 5 If the photogener-
ated carriers are confined to the quantum wells, then
one-dimensional transport equations should be a good ap-
proximation of the general photorefractive properties of
the quantum wells. The transport equations include pho-
tocarrier generation, transport, trapping, and relaxation.
These equations are

an - V-= I + feND0 - oT e nvND - YehnP,
at e

1P+ V- Ia + 3hND+ - _hP VhNDO - YehflP,
at e

(3.3)

(3.4)

je = eenE + kBT11eVn,

Ah e/h pE + kTLthVP, (3.6)

a (n + NA- - p- ND') = - (Je + Ah),
at e

VE =- -(n + NA- - p -ND+),
EO

(3.8)

where Ve and Vh are the electron and the hole thermal
velocities. Equations (3.3) and (3.4) are the generation-
recombination equations. Equations (3.5) and (3.6) define
the current densities. Equation (3.7) is the expression of
charge conservation, and Eq. (3.8) is Gauss's law. In these
equations e and h refer to electron properties and hole
properties, respectively, where a is the absorption coeffi-
cient for electron-hole pair production, I is the laser inten-
sity, j is the current density, 3 is the carrier thermal
emission rate, C, is the defect capture cross section, and Yeh

is the electron-hole recombination cross section. The
free-carrier concentrations are n and p. The photocarrier
generation rate Ia is common to both the electron and
the hole populations, as is the electron-hole recombination

\ 4 ~~~~~~ 9 Be=am 2

l ~~~~Beam 1

Fig. 6. Transverse Franz-Keldysh photorefractive geometry.
For two-wave mixing in a thin grating, 01 = 02, forcing Kg to lie
in the plane of the sample. All measurements are performed un-
der an applied electric field.
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rate ehnp. The recombination cross section Yeh includes
radiative recombination as well as nonradiative recom-
bination through recombination defects. In the one-
dimensional approximation Eqs. (3.3)-(3.8) are identical
to the photorefractive transport equations for resonant ex-
citation of bulk materials.

For simplicity it is assumed that deep donors ND com-
pensate for shallow acceptors NA. The number of defects
states is therefore

ND = ND + ND+. (3.9)

The first-order terms are assumed to vary as exp(iKx),
assuming steady state. The solution is expressed in
terms of the following rates:

Dielectric relation rate,
Transition rate,
Ion recombination rate,
Drift rate,
Diffusion rate,
Direct recombination rate,

Fdie= e/Leno/eeo;
Vle = SeJO + 3e + yeno;
"Re = Ye(NA + no - po);

FEe = KtLeEo;
rDe = K 2kBT/.Le/e;
Feeh = YehPOO

In proton-implanted GaAs the exact mechanisms and the
with corresponding equations for holes. The rate equa-
tions are

-irEe + De + ile
+ Irle + eeh -re + Fehh
-r1h + h jirEh + Dh + rlh

+ rRh + rehb

Fle + rRe + rlh -Fle - rlh - rRh

- die + Vle n
ni

Fdih - Flh Pl

Fle + Flh A1

a + se(ND - NA + po - no)
a + Sh(NA - o + no ) (3.12)

- se(ND - NA + Po - no) - Sh(NA - o + no)

defects that make the material semi-insulating are
unknown. The as-grown quantum-well materials are
conducting and become semi-insulating after proton im-
plantation. The radiation damage introduces deep defects
that compensate for shallow dopants. For illustration
purposes it is not important whether deep acceptors or
deep donors are produced. The important features of
photorefractive transport are contained within the as-
sumption of a compensating defect that pins the Fermi
level and traps photocarriers.

The zero-order solutions for no and po in Eqs. (3.3)-(3.9)
are solved by assuming homogeneous illumination Io.
These solutions are

Ioca + Iose(ND - NA - no + po) + be

Ye(NA + no po) + YehPO

Po =
Ioa + IOSh(NA + no - p) + Ph

yh(ND - NA - no + po) + ehnO

(3.10)

(3.11)

where a is the absorption coefficient for the generation of
electron-hole pairs. The values for a are in the range of
104 cm'1, compared with typical absorption coefficients of
-1 cm-' for deep defects. The electron-hole pair produc-
tion rate is much larger than photoionization rates from
the deep-level defects. Photogeneration across the band
gap will therefore dominate the transport properties.
The values of no and po on the right-hand sides of
Eqs. (3.10) and (3.11) can be neglected under weak illumi-
nation. Laser intensities of 1 mW/cm2 will generate free-
carrier concentrations in the range 101-1012 cm-3, which
are typically much smaller than NA or ND.

The first-order solutions of Eqs. (3.3)-(3.9) are obtained
in the small-modulation-amplitude approximation.3 5 The
parameters can be expressed as n = no + ni, p = po +
Pl, and E = Eo + El, where Eo is the applied electric field.

where Al = eeiKEl/e is the space-charge density. These
equations are similar to those for nonresonant bulk pho-
torefractive materials. In the case of resonant excitation
the extra terms that arise represent direct excitation of
electron-hole pairs and recombination of the pairs.

The solutions of E1 from Eq. (3.12) are shown in Fig. 7
as functions of fringe spacing for different applied fields
EO. The defect density is ND 1 X 10'7 cm 3 , with a
compensation ratio r = NA/ND 0.9 and other parame-
ters as given in Table 2. These parameters are chosen to
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Fig. 7. Space-charge field amplitude versus fringe spacing for
varying applied fields from numerical simulations of the quan-
tum wells.

Table 2. Parameters for Fig. 7

Se = 1 X 1011 cm2
Yeh = 1 X 10-10 cm

3
S-1

Sh = 1 X 10-16 cm2 , = 6000 cm2/V s
me = 1 X 10-14 cm2 11h = 400 cm2/V s
ah = 1 x 10-4 cm2
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space-charge field drops quickli
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On the other hand, the characteristic length is strongly
. dependent on defect concentration. The space-charge

fields, for an applied field of 5 kV/cm, are shown in Fig. 8
- 2x07 cm- as functions of fringe spacing for different defect densi-

-XI017CM-3 ties. Defect densities have a direct effect on transport
------ 5xo16 cm3 lengths because of the dependence of carrier lifetime on

lx101icm3 defect density. Lower defect densities lead to larger char-
acteristic lengths A, because the carrier lifetime is in-

- creased. This characteristic length defines the resolution
of a photorefractive device and is therefore an important

- .- feature of photorefractive quantum wells.
k/cm The origin of the characteristic length can be under-

stood by considering the transition rates in Eq. (3.12).
. . . . . These rates are shown in Fig. 9 for the material parame-

ng 20) 25 30 ters given in Table 2. The curves are functions of fringe
cing (ems spacing for an electric field of 5 kV/cm. Several of the

lnumerical simulations of the rates, such as the transition rates Fle, Fnh, the dielectric
i ratio is r = 0.9, with an ap- relaxation rates die, dih, and the direct recombination
ion length determines the de- rates reeh, Fehh, are negligibly small. The transition rates

are small because of the large absorption across the band
gap. The dielectric relaxation rates are also small under

supposed to represent the conditions of weak illumination but in addition require
tive quantum wells. The that there be sufficient trap density to support the space
y for fringe spacings below charge (i.e., the system is not trap limited). By keeping
ct density of (1 - r)rND = only the largest terms in the solution to Eq. (3.12), we find
of 5 kV/cm, the material that the solution for the space-charge density is

Al = -Ioa r Rh(&iFEe + ]PD,) + 'Rpe(iFEh + Fnh)
dihrRh(&iFEe + D. + FRe) + di~erPe(FEh + Dh + Rh]

becomes trap limited only for fringe spacings smaller than
0.2 gm. Therefore this dropoff is not caused by trap limi-
tation. Furthermore, the characteristic length in Fig. 7
is approximately A, = 5 m for each of the curves, inde-
pendent of applied field. The characteristic length A,
is therefore not dependent on the drift length in the
material.
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(3.13)

This solution is expressed in terms of the space-charge
field as

rKLEe + iK 2 LN2 + KLEh + iK2 LDh21
E _= -E LEh(K2LDe2 + 1) + LEe(K2 LDh2 + 1)1' (3.14)

where the drift and the diffusion lengths are given by

0 5 10 15 20 25 30

Fringe Spacing (Qrm) 
Fig. 9. Electron transition rates versus fringe spacing from numerical simulations. T
pared with the drift, diffusion, and recombination rates. Similar results apply for holes.

'he rates Fle, rdie, and reeh are all negligible com-
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LE = I/TE, LD2
= utkB Tie. (3.15)

The expression for the space-charge field can be written
directly in terms of the applied field E0 and the diffusion
field ED as

1 r /eTe(EO + iED) + /LhTh(Eo - ED)

IhThI.eTeK 2ED + [/(ILeTeK)] + [/(iLhThK)]J
(3.16)

where ED = kB TK/e. In Eq. (3.16) the role of the pTL prod-
uct for electrons and holes can be seen explicitly. The
most important feature of Eq. (3.16) is the diffusion field
ED in the denominator. In spite of the fact that
E0 >> ED, diffusion plays a crucial role in limiting space-
charge fields under resonant excitation.

The characteristic length observed in Figs. 7 and 8 is
given by

KC2 (LD)2 = 1, (3.17)

where the bipolar diffusion length is given by

(LD)2 = (kB Tle) (a1r), (3.18)

with the bipolar T product defined by

1
1/2 [(1/-LeTe) + (I~hTh)] (.9

are characteristic of fields of this strength. At these tem-
peratures thermionic emission over the quantum barriers
becomes the dominant vertical transport mechanism. It
should also be noted that the hot carriers will also influ-
ence diffusion lengths, which were shown to be particu-
larly important through Eq. (3.14).

It is beyond the scope of this paper to include three-
dimensional transport explicitly. Many of the features
that we observe in the photorefractive quantum wells can
be described well by the one-dimensional transport equa-
tions. However, there are other features that defy expla-
nation through Eq. (3.12). Examples include differences
between degenerate and nondegenerate four-wave mixing
and the origin of the phase shift observed in two-wave
mixing. In order to explain these more complicated ef-
fects, it is probable that a complete three-dimensional
transport solution will be necessary.

4. FOUR-WAVE MIXING

A. Diffraction from Thin Gratings

1. Raman-Nath Diffraction
For a three-dimensional periodic elastic scatterer, in
which the light wave does not change its frequency through
the interaction, the direction of the diffraction beam is
given by the Bragg condition. The wave-vector difference
Ak between the incident and the diffracted waves must
equal the grating vector. Consider a slab with a complex
refractive-index distribution

The resolution of the photorefractive quantum wells oper-
ating in the transverse Franz-Keldysh geometry is there-
fore limited by the bipolar diffusion length. This
limitation is easily addressed by using higher proton-
implant doses to reduce the diffusion length and to
achieve better device resolution.

C. Three-Dimensional Transport
Equation (3.12) and the following equations are all based
on one-dimensional transport. For the one-dimensional
equations to be relevant, the material must be homoge-
neous. While this assumption is valid for thin bulk mate-
rials, it represents an approximation for the quantum-well
samples, in which the carriers are assumed to be perfectly
confined within the quantum wells. In fact the carrier
wave functions penetrate the quantum barriers, allowing
free carriers in the wells to tunnel into defects in the bar-
riers. Phonon-assisted tunneling allows the carriers to
tunnel even further, because phonons can promote the
carriers into excited states of the quantum wells that are
more weakly confined. Finally, thermionic emission of
carriers out of the wells and over the barriers occurs.
Each of these processes represents vertical transport,
transport of charge along the growth direction of the mul-
tilayer structure. These processes are illustrated in
Fig. 10.

The situation becomes even more complicated when car-
rier heating is included. The electric fields applied in the
transverse Franz-Keldysh geometry range to 104 V/cm
and above. At these field strengths the carrier gas in the
wells can attain a significantly higher temperature than
the lattice temperature. Electron temperatures of 500 K

= {n - An' cos(Kx + )no= l ~1
for 0 < y < L
otherwise , (4.1)

where n and An' = An + iAa/2k are complex numbers.
For large L the wave-vector change Ak must equal a mul-
tiple of the grating vector K. However, the situation
changes in the thin-grating limit because of the finite
linewidth of the spatial frequency spectrum of n' in the y
direction. As a result, a small y component of Ak can be
tolerated, i.e., Raman-Nath diffraction. If we denote the
y component of Ak to be 8k, the intensity of the diffrac-

.-* 75 ho 100A 
AJGaAs GaAs
Barrier QW c

Emission

-_ Phonon-Assisted
Tunneling

I

_j_
Tunneling

Trapping

* Defect Level

Fig. 10. Vertical transport processes. Carriers can escape the
quantum wells by tunneling, phonon-assisted tunneling, and
thermionic emission. The space-charge trapped at defects in the
barriers is expected to play a role in photorefractive properties.
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Ar-lon laser

'A2 ,B3 IA3

Fig. 11. First-order diffraction from high spatial harmonic grat-
ings in the semi-insulating multiple quantum wells (SIMQW):
M's, mirrors; BS, beam splitter; ND, neutral-density filter.

tion beam is proportional to

|L| dy exp(i kL) - 1 2
dy xp~~k - 8kxpM ) (4.2)

When the incident beam is almost perpendicular to the
slab and the imaginary part of n is negligibly small,
Eq. (4.2) can be estimated as

the transmitted wave for An' = 0 is represented by E =
Et exp[i(klx + k 2y)], which is taken as the zero-order ap-
proximation in our calculation. The spatial modulation
of the complex refraction index will modify the wave front
of the transmission wave by a complex phase shift 8, which
is given by Eq. (4.8) in the first-order approximation:

8 = (kAnL/cos 0' + iAaL/2 cos 0'), (4.8)

where 0' = tan-'(k,/kx) and kx and ky are the x and y com-
ponents of the wave vector in the slab. The modified
transmitted wave becomes

E = Et exp[i(klx + k 2y - 8)]- (4.9)

With the Bessel-function identity

exp[i8 cos(x + 0)] = EJm(8)exp[-im(x + - /2)],

(4.10)

the transmitted field can be written as

E= E2Jm(-8)exp{i[(kl - mK), + k2y

- m(o - r/2)]}. (4.11)

The diffraction efficiency for mth-order diffraction is
given by

8k = K2 /(2nk), (4.3)

where k is the wave number of the incident wave.
The Raman-Nath and Bragg regimes are distinguished

by a dimensionless parameter Q, where Q < 1 for the
Raman-Nath regime and Q > 1 for the Bragg regime.36 37

The parameter Q is defined by

Q = 48kL= 2LA/(nA2), (4.4)

where A is the periodicity of the grating. In our measure-
ments L= 1 m, A = 840 nm, and n = 3.6. For GaAs
multiple quantum wells, the parameter is

Q = 2.93 (m 2)/A2 , (4.5)

which places the experimental conditions in the strong
Raman-Nath regime for A > 3 m. According to Eq. (4.2)
the intensity of the diffraction beam depends on Q as

sin(Q/8) 2 (4.6)
(Q/8)2

In the Raman-Nath regime various orders of diffraction
can be observed simultaneously. For an incident beam
with an incident angle in, shown in Fig. 11, the direction
of the diffraction beam for the mth order is given by

sin 0 out = sin Oin + mKA/21r. (4.7)

,q. = Ij 2(()1 = j 2 7 (iAnL AaL~~m~m~~ A osO, 2 os '/ (4.12)

When the spatial modulation of the refractive index is
small, the above expression can be simplified by using

Jm(x) xm/(2mm!)

for small x, where m is any nonnegative integer. This
yields

1 [(2'7TAnL 2

im 2 m!2 [ A cos 0,)
(2AaL \2 ]

+2 os O'/
(4.13)

3. Absorption and Index Gratings
In photorefractive multiwave mixing a spatial modulation
of the absorption coefficient and refractive index is estab-
lished in semi-insulating multiple quantum wells through
transverse quantum-confined exciton electroabsorption.
This grating is composed of high-order harmonic compo-
nents because of two different nonlinearities: (1) the
quadratic electro-optic effect and (2) the nonlinearities in
the transport equations (3.3)-(3.6). The internal field is
represented by37

E = E0 + Es
= E- [El cos(Kx + Xl) + E2 cos(2Kx + 4,2)

2. Diffraction Efficiency
In the Raman-Nath regime high-order diffraction is pos-
sible. A simple method for calculating the diffraction
efficiency is based on the concept of wave-front modula-
tion. Consider a thin grating in which the refractive
index is given by Eq. (4.1). For an incident plane wave

+ E3 cos(3Kx + 03)], (4.14)

where Eo is the applied field and El, E2, and E3 are the
first-, the second-, and the third-harmonic components,
respectively, of the screening field. We neglect harmonics
higher than the third, because the amplitudes decrease
rapidly with increasing order. The Fourier analysis of the
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photorefractive grating is made by considering E2 :

E2= [E 0
2

+ '/2 ( E 2
+ E2

2 + E 3
2)]

+ [-2EoEl cos(Kx + 01)+ EE 2 cos(Kx + 02 -4)1)

+ E2E3 cos(Kx + 03 - 02)]

+ [/2 El2 cos(2Kx + 241)

- 2EoE2 cos(2Kx + 02)

+ ElE3 cos(2Kx + 03 - 01)]

+ [-2EoE3 cos(3Kx + 04)

+ ElE2 cos(3Kx + 01 + 02)].

The term in the first set of square brackets represents the
average squared field. The term in the second set of
square brackets represents the first-harmonic grating
that is generated by mixing the first harmonic with the dc
field, by mixing the second-harmonic electric field with
the first harmonic, and by mixing the third harmonic
with the second. The term in the third set of brackets
represents the second-harmonic grating that is generated
by the square of the first-harmonic field with itself, by
mixing the second-harmonic electric field with the dc
field, and by mixing the third harmonic with the first.
Finally, the term in the last set of brackets represents the
third-harmonic grating, which cannot exist without the
transport nonlinearity.

Several kinds of wave-mixing experiments are dicussed
in Subsection 4.B, each of them exploring a different
aspect of the photorefractive semi-insulating multiple
quantum wells. Two-wave mixing arises from the first-
harmonic term of Eq. (4.15), including a phase shift to al-
low for photorefractive gain. Four-wave mixing is also
related to the amplitude of the first-harmonic grating.
Diffraction from the higher harmonics, corresponding to
the third and fourth sets of brackets of Eq. (4.15), is also
observable.

B. Degenerate Four-Wave Mixing
Details of degenerate four-wave mixing have been given
elsewhere'" and are similar to the behavior of nonde-
generate four-wave mixing, which is described in
Subsection 4.C. Therefore we highlight principally the
features of high-order spatial harmonic gratings in this
section.

High-order spatial harmonic gratings can be generated
in semi-insulating multiple quantum wells by two pro-
cesses: (1) the nonlinearity of photorefractive transport
and (2) the quadratic electro-optic effect. Photorefractive
transport in semi-insulating multiple quantum wells is de-
scribed by a set of nonlinear equations. Generally, the
solution is composed of various harmonic components for
a pump-light intensity (x) = Io(l + m cos Kx). First-
order diffraction from the first-, the second-, and the third-
harmonic gratings is observed in the semi-insulating
quantum wells when the modulation index m approaches 1.
The possibility of observing second- or higher-order dif-
fractions can be ruled out, because a maximum diffrac-
tion efficiency of 10-8 for the second-order diffraction is
expected, which is below our detectability.

Before describing the experimental details, we consider
the relationship between the modulation index m and the
second-harmonic component of the screening field. For
the sake of simplicity, consider the origin of E2 by as-
suming that there is only one kind of dominant photocar-
rier responsible for the photorefractive transport. In the
steady state the current continuity equation is given by

,uV(nE) = Io[l + m cos(Kx)] - (n -nd)/, (4.16)

where t is the mobility, n is the carrier density, nd is the
dark carrier density, y is the carrier-generation rate, and T
is the lifetime of a free carrier. We make a Fourier analy-
sis of n, giving solutions n = no + 2Re[n, exp(ikx)] and
E = Eo + 2Re[El exp(ikx) + E2 exp(i2kx)]. Substitut-

(4.15) ing these solutions into Eq. (4.16) yields

E2/E = -n,/no. (4.17)

For m << 1, both ni and El are proportional3 8 to m, which
yields E2 proportional to M2 . Considering Eqs. (4.13) and
(4.15) for the first-order diffraction, a diffraction effi-
ciency proportional to m4 for a double spatial frequency
grating and to M2 for a fundamental spatial frequency
grating is expected. Therefore, in order to observe the
effect of the high-harmonic gratings, one must violate the
conditions for the small-modulation-amplitude
approximation.

The experimental setup for multiwave mixing is shown
in Fig. 11. A modulated dc field is applied across the
semi-insulating multiple quantum wells. The photon en-
ergy dependence of the diffraction efficiencies for sample
QW-1 was measured for a fringe spacing of 8.8 ,um. The
result is shown in Fig. 12. Taking the largest terms in
Eq. (4.15), we can estimate El/E 2. As a result we have

77l(2K) _E2 El .2 1

,q1(K) - E, 4EoJ 4
(4.18)

which yields E2 /E, = 75%. This value is consistent with
numerical results from Ref. 39 for a large modulation
depth and an applied field close to the trap-limited value.

The dependence of the diffraction signal from the first
and the second spatial harmonic gratings on the modula-
tion index m was measured at the zero crossings of elec-
troabsorption for A = 4.6 ,um. The results are shown in
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Fig. 12. Diffraction efficiencies for the first, second, and third
spatial harmonic gratings as functions of photon energy for
m = 1.
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nondegenerate geometry. However, the effect is much
weaker than in the degenerate case.

C. Nondegenerate Four-Wave Mixing
The mixing geometry for nondegenerate four-wave mix-
ing is shown in Fig. 15. The gratings are written by a
He-Ne laser beam that is split by a beam splitter into two
coherent beams that intersect at the semi-insulating
multiple-quantum-well sample. We are able to use an
above-band-gap laser because of the thin sample size. In
spite of the large absorption of the He-Ne wavelength
A = 633 nm, there is an appreciable intensity of the pump
beams throughout the multiple-quantum-well region.
This feature of the photorefractive quantum wells intro-
duces the possibility of above-band-gap holography.4 0 The
gratings are probed by an infrared laser that is tuned to
the exciton wavelengths. The probe beam strikes the
sample at normal incidence. The diffraction angle OD for
first-order diffraction is given by

sin OD = 2 Asin HeNe,
A HeNe

(4.19)

where HeNe is the half-angle of the He-Ne pump beam and
AP is the wavelength of the infrared probe. The dif-
fracted signal is detected by a Si photodiode locked into
the frequency of the electric-field modulation.

The diffracted signal as a function of the infrared probe
wavelength is shown in Fig. 16 for a fringe spacing of
2.2 Am, with an electric field of 4 kV/cm. The positions of
the heavy- and light-hole excitons are included in the fig-
ure. The data represent the experimentally measured

0.00 0.20 0.40 0.60 0.80 1.00 diffraction efficiency. The solid curve is the fit of
m4 Eq. (4.13) based on the electroabsorption and electrore-

Diffraction signal from the second-harmonic grating fraction data in Fig. 5. The only adjustable parameter in
e fourth power of the modulation index. The depen- the predicted curve is the magnitude of the diffraction

pproximately linear even for m close to 1. efficiency.

The electric-field dependence of nondegenerate four-
wave mixing is shown in Fig. 17 for a fringe spacing of

I T:Sapphlre Laser A = 15 Am. The diffraction efficiency increases as the
TI:Sapphlre Laser fourth power of the applied field up to 4 kV/cm, as is ex-

leNe Laser ND Filters % pected from Eq. (4.13). However, for higher fields there is
a significant deviation from the ideal behavior. There is
no corresponding change in the current-voltage curves or
in the electroabsorption curves for these fields. There-

o''_ SIMW \ fore this qualitative change in the diffraction at high

SI Photodlode

8 105

Modulated ND Filters
DC

Supply

Fig. 15. Experimental geometry of nondegenerate four-wave
mixing. The gratings are generated by a He-Ne laser and are
probed by an infrared beam that is tuned through the exciton
absorption. SIMQW, semi-insulating multiple quantum well;
ND, neutral-density.

Figs. 13 and 14. The diffraction efficiencies exhibit an
approximately m2 and m4 dependence at both wavelengths,
which is consistent with expectation and also in agree-
ment with earlier experimental and numerical results.38 39

The second-harmonic grating can also be observed in a
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Fig. 16. Diffraction efficiency verus wavelength of the probe for
an applied field of 4 kV/cm and A = 2.2 Am. The solid curve is
fitted based on Fig. 5.
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Degenerate efficiencies are consistently smaller than nondegen-
erate efficiencies. At a low field, the diffraction efficiencies vary
approximately with the fourth power of the applied field. Above
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Fig. 18. Fringe-spacing dependence of the diffraction efficiency.
The roll-off at small fringe spacings matches the behavior pre-
dicted in Fig. 7 based on diffusion lengths.

fields must be related to the processes that generate the
photorefractive gratings within the quantum wells. One
possibility is space-charge limitation. However, the re-
sults of computer simulations based on Eq. (3.12) make
this possibility unlikely. It is also unlikely because of the
estimated defect density of 1017 cm 3 produced by the pro-
ton implantation. An alternative possibility is hot carri-
ers. Fields near 5 kV/cm are sufficient to heat carriers
several hundred degrees above the lattice temperature.
At these temperatures vertical transport out of the wells
becomes strong. Carrier diffusion within the wells also
becomes strong, which can have a large effect on the
space-charge field, as shown in Eq. (3.16). Understanding
this deviation will require more study. It is intriguing to
note that this deviation occurs at the same electric field
strengths for which the phase shift in two-wave mixing
approaches 900.

The fringe-spacing dependence of the diffracted signal
is shown in Fig. 18 for a field of 5 kV/cm. Included in the
figure is a fit from the solution of Eq. (3.16). From the
figure, the characteristic length A, is 5 Axm, corresponding
to a diffusion length of LD = 0.8 ,m obtained from
Eq. (3.17). The /T product for this diffusion length, given
in Eq. (3.18), is AT = 2 X 10-7 cm 2/Vs. This value is con-

sistent with the value jT = 3 X 10-7 cm2 /Vs obtained
from photoconductivity measurements in Section 2.

The photorefractive quantum-well structures represent
a unique situation for photorefractive materials. In non-
degenerate mixing the pump and the probe beams are ab-
sorbed in different portions of the structure. Therefore
the space charge stored in the AlGaAs. barriers does not
erase with increasing probe intensity until sufficient car-
rier density is developed in the GaAs wells to overcome
the barriers. This feature should lead to novel effects
that have no analog in bulk materials. One of these pos-
sible effects is robust gratings.4 0 If the space charge in
the barriers is isolated from the photoconductivity of the
probe laser, then the gratings should persist up to high
probe intensities. In spite of this effect, the space charge
generated in the wells should be able to screen the space-
charge fields of the barriers.

To test these possibilities, we have studied the intensity
dependence of the diffracted signal in nondegenerate four-
wave mixing. The specific point being tested is the possi-
bility of space-charge limitation, too few traps in the wells
to screen the space-charge trapped in the barriers. If
there are insufficient traps in the wells, than at smaller
fringe spacings the gratings should persist up to higher
probe intensities. The dependence of the diffraction sig-
nal on the probe intensity is shown in Fig. 19 for four
fringe spacings, varying from 3.2 to 14.1 Am. No shift
of the diffraction peak was observed. Further to test the
possibility of explicitly observing the effects of space-
charge trapped in the barriers, we compared sample
QW-2 with RB-1. In sample RB-1 the barriers are 150 A
wide, compared with 100 A for W-1. With the wider bar-
riers, a greater space charge can be trapped, which re-
quires higher screening densities within the wells. The
data are shown in Fig. 20. No significant difference is
observed between the two samples.

Based on these experiments, we conclude that no ex-
plicit evidence exists for effects caused by the presence of
space charge trapped in the barriers. However, this con-
clusion cannot explain significant differences between the
diffraction efficiencies of degenerate, compared with non-
degenerate, four-wave mixing. Nor have we been able to
establish precise laser intensities for which the probe laser
erases the He-Ne gratings. Therefore no conclusions can
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Fig. 19. Diffracted signal versus probe intensity for varying
fringe spacings for sample RB-1 for an applied field of 5 kV/cm.
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Fig. 20. Diffracted signal versus probe intensity for varying
fringe spacings for samples QW-2 and RB-1 for 5 kV/cm and
A = 9.5 /.m.

be made at this time concerning the possible influence of
the space charge trapped in the barriers on photorefrac-
tive properties. More study is needed to resolve this issue.

5. TWO-WAVE MIXING

A. Two-Wave Coupling in a Thin Grating
In two-wave mixing two coherent beams, I, and I2, ex-
change energy. The intensity in the direction of I, is
given by4 '

I,+ = I,(1 - aEL)

+ (I1I2)112(+ AaL cos, + 2inL sin 4),12 2cos ' A cos f (5.1)

where aE represents the effect of the average square-field
change on the absorption coefficient of the thin layer. In
the direction of propagation of 12, we have similarly

I2+ = I2(1 - aEL)

12( AaL cos ) _ 2iAnL sin )\
+ ( 2)1 +~

2 cos ' A os 0 (5.2)

According to Eqs. (5.1) and (5.2), both the electroabsorp-
tion and the refractive-index grating contribute to the
beam-coupling effect. However, the refractive-index
grating causes an asymmetric effect with respect to the
phase shift (controlled by the direction of the applied
field), while the electroabsorption causes a symmetric
effect.

B. Two-Wave Mixing
Two-wave mixing measurements were performed on the
semi-insulating multiple quantum wells. The intensity
modulation of a signal beam was measured while a pump
beam was mechanically chopped at a frequency of 290 Hz.
A dc field was applied across the sample. The observed
intensity modulation is composed of the effects from
both electroabsorption and electrorefraction. By taking
advantage of the quadratic quantum-confined exciton
electroabsorption, the contributions of the symmetric and
asymmetric parts of Eqs. (5.1) and (5.2) can be separated.
The phase shift 4 changes sign when the direction of the
applied field is reversed. An effective electroabsorption
coefficient Aaeff, which combines the effect of the terms in

the first and second sets of square brackets in Eq. (4.15),
is defined by

1 I(E) + I(-E) L
- 1- Aaeff 0 , '

The effect of the energy exchange is given by

1 I1+(E) - I(-E) 1 2\1/2 2,rAnL sin Y- =- = A
2 II A os '

(5.3)

(5.4)

Because the transport in semi-insulating multiple quan-
tum wells is similar to that in bulk materials, it is reason-
able to assume that E8C is proportional to the modulation

)O index of light intensity m. Then An is also proportional
to m. Therefore the above equation can be expressed as

P = 18(1 + I)]FL, (5.5)

where

=4'7TAfl sin 4 (5.6)
A cos '

and Anm is the amplitude of the refractive-index grating
for m = 1 and f3 = I2/11 is the beam intensity ratio.

The effective electroabsorption coefficient Aaeff that is
due to the mixing is plotted in Fig. 21, compared with the
incoherent differential transmission measured with a
single beam for an external 0-5-kV/cm ac field. Notice
that the differential transmission and the effective elec-
troabsorption have the same sign, which may apppear to
be counterintuitive. This is because the Aa term in
parentheses in Eq. (5.1), which represents diffraction by
the absorption grating, wins out over the increase in ab-
sorption from the average electroabsorption aE. There-
fore there is a net decrease in the overall absorption
because of the coherent interference between the two
beams.

The gain F is shown in Fig. 22 compared with the elec-
trorefraction data derived from the Kramers-Kronig
analysis of the incoherent differential transmission data in
Fig. 4. The result is in good agreement with the predic-
tion of Eqs. (5.1) and (5.2), giving unambiguous evidence
for photorefractive gratings in this coupling process. No
gain was observed when the writing beams were cross po-
larized with respect to each other. The electric-field de-
pendence of the gain is shown in Fig. 23 for a fringe
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Fig. 21. Effective electroabsorption compared with differential
transmission as functions of probe wavelength for an applied field
of 7 kV/cm and a fringe spacing of A = 7.3 m.
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Fig. 22. Photorefractive gain compared with electrorefraction of
sample QW-2 for E = 7 kY/cm, A = 7.3 Am, and m = 1.
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Fig. 23. Photorefractive gain as a function of al
gain approaches 1000 cm- for a field of 104 V/C!

spacing of 14.5 Am and a laser intensity
The maximum gain obtained in our me
proached 1000 cm-' for E = 104 V/cm. To
this represents the largest photorefractive
in any material. In our case, however
losses still exceed the gain.

C. Phase Shift
The phase shift was determined by measi
mixing and degenerate four-wave mixing
zero in the electroabsorption. For two-w
relative intensity modulation is given by I
includes dependence on the phase shift d
grating but not the absorption grating.
wavelength and fringe spacing the square
fraction efficiency is

A = 7iAnL/(A cos 0'),

In bulk photorefractive materials, for there to be a sig-
nificant phase shift the applied field should be either
much lower than the diffusion field ED or comparable with
the maximum internal field modulation. The internal
field modulation is limited by the space-charge density N,
and the defect occupancyf in the expression Emax = ef(1 -
f)Nt/(Keeo). For a conservative estimate of the defect
density of f(l - f)Nt = 1 x 1016 cm- 3 and a 5-,um fringe
spacing, Emax= 1 x 105 V/cm, compared with our maxi-
mum field E0 = 1 X 104 V/cm. We have performed com-
puter simulations for bulk photorefractive properties,
using parameters identical to the experimental conditions,
and find no significant phase shift. Therefore the phase
shift is expected to arise from vertical transport of carri-
ers out of the quantum wells and into or over the barriers.
More research is needed to resolve the issue of the phase
shift.

6. ULTRAHIGH-SENSITIVITY OPTICAL
NONLINEARITY
Photorefractive quantum-well materials are ideally suited
for operation under extremely low light powers. The high
resistivity of the semi-insulating samples, coupled with
the large absorption coefficient for electron-hole genera-
tion, leads to low saturation intensities. In addition, the
large electro-optic effects of quantum-confined excitons
yield large interaction strengths. Combining the large in-
teraction strengths with the low saturation intensities
leads to one of the highest-sensitivity optical nonlineari-

800 1000 ties measured in any material system. In this section

two-wave mixing is used to demonstrate the low-intensity
)plied field. The operation of the quantum wells. Two-wave mixing has an

advantage over four-wave mixing in that for two-wave
mixing relatively small changes in the refractive index An

of 1.6 mW/cm2. can be measured with good sensitivity. This is because
asurement ap- the energy transfer between the mixing beams is linearly
our knowledge, proportional to An, as opposed to the square of this value
gain measured for four-wave mixing.
the absorption

A. Saturation Intensity
Saturation is perhaps one of the simplest optical nonlin-
earities. In the photorefractive effect, saturation occurs

.iring two-wave when the photoconductivity exceeds the dark conductivity.
I together at a The generation of the refractive index and the absorption
ave mixing the
Eq. (5.4). This

and the index
At the same

root of the dif-

which depends only on the index grating, not on the phase
shift. Therefore the phase shift can be isolated by using

sin ( = A -

The dependence on the E field for several different fringe
spacings is shown in Fig. 24. The phase shift increases
with the applied field, coming close to a/2 for high fields.
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Fig. 24. Sine of the phase shift as a function of electric field for
varying fringe spacings. Above 4 kV/cm the phase shift is close
to /2, with which P = 25 is ideal for maximum photorefractive
gain.
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Fig. 25. Simulation of space-charge field amplitude as a fun
of laser intensity for various defect densities.

gratings created by the spatially modulated intensity
is balanced against erasure of the space-charge gral
by dielectric relaxation from the background conducti
The condition for intensity saturation is

'sat nd/ar,

where nd is the dark carrier density and the lifetimE
the larger of Te and Th. The dark density nd is set b,
position of the Fermi level in the band gap. In s
insulating materials the Fermi level is near midgap,
ducing small values of dark carrier densities. Small
ues of nd and the large value of a produce a low saturi
intensity. A larger lifetime will also favor a lower sat
tion intensity. The lifetime is inversely proportion
the defect density, so lower defect densities will give 1
saturation intensities. However, if the defect densi
too low, then the Fermi level will no longer be ph
midgap, so that higher saturation densities will be
duced. A longer lifetime will also yield a longer difft
length and a degradation of device resolution. TherE
clearly trade-offs among the properties of satura
intensity, device speed, and device resolution, base,
the choice of the appropriate defect density for a g
application.

The solution of Eq. (3.12) for three different defect
sities is shown in Fig. 25 for low intensities and the
rameters in Table 2. The magnitude of the space-ch
field increases linearly with increasing intensity belov
saturation intensity and saturates for higher intensi
In the simulations the Fermi level is taken to be th
trinsic Fermi level of GaAs. The saturation intensiti,
this case are shown in Fig. 25 and vary between 1
20 jiW/cm2 for the defect densities chosen. The s
charge can be expressed as

E.= m'EoI/(I!t + I),

were isolated from each other. Absorption gratings are
associated with beam modulation that is symmetric with
respect to both beams. Index gratings are associated
with beam modulation that is asymmetric with respect to
both beams. The asymmetric signal is photorefractive
beam coupling in which energy is transferred from one
beam to the other. The beam modulations caused by an
index grating and by an absorption grating are shown in
Fig. 26 for A = 836 nm and A = 839 nm, respectively, as
functions of laser intensity for m = 0.67. The first wave-
length corresponds to a zero crossing in the electroabsorp-
tion, and the second corresponds to a zero crossing in the
electrorefraction of Fig. 4. The differences in the ampli-
tudes depend on differences between s1 and S2 in Fig. 5 for

tction the two different wavelengths. Both modulation signals
vary linearly with laser intensity below the saturation
intensity and saturate to constant values above the satura-
tion intensity. The best fits to Eq. (6.2) are shown, yield-

1X) ing saturation intensities of 10 and 22 /,LW/cm2 for the in-
bings dex and absorption gratings, respectively. The smaller
vity. saturation value for the index grating is caused by a larger

absorption coefficient at A = 836 nm. The saturation in-
(6.1) tensities observed in Fig. 26 are consisitent with the in-tensities predicted by the simulations in Fig. 25. The
T is simulations assumed that the Fermi level was positioned

y the at the intrinsic level in the band gap. These saturation
emi- measurements therefore demonstrate that the Fermi level
pro- in proton-implanted quantum wells lies close to the intrin-
1 val- sic value.
ition
tura- B. Nonlinear Optical Sensitivity
al to The refractive-index and absorption grating magnitudes
ower increase linearly with laser intensity for I < Isat. For this
ty is range of intensities the photorefractive effect can be re-
ined garded as an n2 or an a 2 process, defined by
pro-
ision
e are
tion
d on
riven

den-
e pa-

arge
v the
ties.
e in-

es in
and

pace

n = no + n2I, a = a + a2L. (6.3)

Experimental values of n2 and a2 are obtained by dividing
the measured index and absorption grating magnitudes
An and A/a by Isat:

n2 = An/Isat, a2 = Aa/ 82 t.

10.'

- o

(6.2)

where contains the features of carrier dynamics and
electron-hole competition and the shift of Ec relative to
the intensity grating. The diffusion field has been ne-
glected in the expression, although diffusion continues to
be important for the transport processes contained in .

The intensity dependence of the two-wave mixing was
measured for sample QW-2. By tuning the pump-laser
wavelengths, the effects of index or absorption gratings

(6.4)

104 I-
10 1o

Intensity (mW/cm2)

Fig. 26. Experimental values of modulated intensity in two-
wave mixing as a function of laser intensity for E = 5 kV/cm.
The absorption grating data were obtained for A = 839 nm, and
the refractive-index grating data were obtained for A = 836 nm.
Saturation intensities in the range of 10 ,uW/cm2 are observed.
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In our experiments we applied electric fields as large as
10 kV/cm. With these fields the observed grating ampli-
tudes were

An = 0.007, Aa = 1400 cm-'

at 836 and 839 nm, respectively. The corresponding non-
linear coefficients are

n2 = 7 X 102 cm 2 /W, a2/aO = 9 X 103 cm 2/W.

This third-order optical nonlinearity is one of the largest
optical nonlinearities generated to date. The physical
processes of photorefractive quantum wells are similar to
those of self-electro-optic devices,42 and our value of n2

compares favorably with values of n2 5 X 102 cm 2/W

obtained from incoherent optical nonlinearities in self-
electro-optic devices. However, in our case the nonlinear
optical mixing is based on the mutual coherence of the
exciting lasers and therefore provides the basis for diffrac-
tion-limited holographic applications.
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