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We present a comprehensive study of excitonic electroabsorption and two-wave mixing in photorefractive
quantum wells. By combining these two measurements, we are able to determine the internal grating writing
efficiency for converting an external spatial light modulation into an internal space-charge field. The internal
writing efficiency at a fringe spacing A = 40 um is found to be a decreasing function of applied field, varying
from ¢ = 0.4 at low fields to 0.2 at 12 kV/cm. The two-wave mixing efficiency in the quantum wells exceeds
40% and is used for adaptive beam combining and laser-based ultrasound detection. The quantum wells bal-
ance the hot-electron-induced photorefractive phase shift with excitonic spectral phase to guarantee quadra-
ture in homodyne detection of ultrasound-induced surface displacements. The ability to tune through mul-
tiple quadratures is demonstrated here for the first time to our knowledge. We derive a noise-equivalent
surface displacement of 1.7 X 1076 A (W/Hz)"2 at a field of 12 kV/em and a fringe spacing of A = 40 um. This
value is within a factor of 7 of the shot-noise limit of an ideal interferometer. © 2001 Optical Society of
America
OCIS codes: 090.2880, 280.3420, 010.1080, 190.5330, 190.5970.
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1. INTRODUCTION

Adaptive interferometers can compensate vibrations,
speckle, or turbulence and have significant advantages
over conventional nonadaptive interferometers. There
has been sustained interest in finding appropriate mate-
rials to perform adaptive beam cleanup or adaptive beam
combining that would provide the adaptive component in
an interferometric system. Two-wave mixing in photore-
fractive crystals was demonstrated as a means to perform
adaptive beam combining,! with initial application to-
ward laser-based ultrasound detection.?* Recent ad-
vances in the development of photorefractive CdTe® and
InP® have led to performance near the ideal interferomet-
ric shot-noise limit. Photorefractive semiconductors
have the advantage of large compensation bandwidths be-
cause of their fast grating refresh rates.

Photorefractive quantum wells” have the highest sensi-
tivity of any photorefractive materials, with a sensitivity
of Sy = 3 X 10 cm?J. These devices also have compen-
sation bandwidths that approach 1 MHz.®2 This combina-
tion of sensitivity with speed makes them ideal candi-
dates for adaptive beam combiners in laser-based
ultrasound detection and other adaptive interferometric
applications. The quantum wells are also compatible
with inexpensive laser diodes. In an earlier study we
demonstrated that adaptive homodyne mixing in photore-
fractive quantum wells approached the ideal interfero-
metric shot-noise limit.® The quantum wells were shown
to have a unique attribute, which we call excitonic spec-
tral phase, not shared with any of the previous two-wave
mixing demonstrations, that guarantees homodyne detec-
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tion in quadrature by simply adjusting the operating
wavelength.

In this paper we present a comprehensive study of two-
wave mixing and adaptive beam combining in photore-
fractive quantum wells. We begin by making an explicit
connection between measured electroabsorption and mea-
sured two-wave mixing. The two-wave mixing perfor-
mance in the quantum wells is complicated by several as-
pects of the device operation that have not previously
been explored in detail. These aspects include the devia-
tion from quadratic dependence of the electroabsorption
at high electric fields, the onset of hot-electron effects as-
sociated with the Gunn effect in GaAs,'® and the role of
the excitonic spectral phase in achieving quadrature. We
provide a complete experimental exploration of these ef-
fects and apply the results to predict the noise-equivalent
surface displacement (NESD) for laser-based ultrasound
detection using photorefractive quantum-well devices.

2. QUADRATIC ELECTRO-OPTICS

Electroabsorption based on quantum-confined excitons in
a transverse field (field applied in the plane of the quan-
tum wells) depends on only even powers of the applied
electric field because of even symmetry with respect to the
sign of the field. At low fields the change in absorption
depends quadratically on the applied field, and at high
fields the change in absorption shows pronounced devia-
tion from pure quadratic dependence. The cross over
from the low-field to high-field regimes depends on the
strength of the quantum confinement.
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A. Field-Dependent Absorption

The field-dependent changes in the optical function of a
semiconductor are expressed in terms of the complex re-
fractive index 77, but the quantity that is most accessible
to experimental measurement is absorption. The
energy- and field-dependent absorption is expressed as

1
a(hv,F) = «O(hv) + 5a<2>(h WF[1 + p(hv, F)],
(1)

where a'© is the zero-field absorption, «'? is the qua-
dratic coefficient, F' is the applied electric field, A v is the
photon energy, and p(hv, F) is an even function that de-
scribes the deviation of the absorption from a quadratic
dependence on field. The deviation is negative, causing
the change in absorption to be smaller at higher fields
than predicted by the quadratic coefficient.

The electroabsorption spectrum Aa(hv, F\) of a semi-
conductor is given by the change in absorption in re-
sponse to a static applied field F:

0

Aahv,Fy) = a(hv,Fy) — a(hv,0)

1
Ea@)(hv)F%[l + p(hv,Fp)]. (2

Experimentally, the electroabsorption can be obtained
through differential transmission experiments performed
with static fields by taking difference spectra. The elec-
troabsorption is obtained as

1 T(hv,Fy) — T(hv,0)

Aa(hv,Fy) = ——In|1 + 3
a( v, 0) Ln T(hV,O) ’ ()

where the sample thickness is L. Equation (3) neglects
Fabry—Perot effects that occur from Fresnel reflection
from the sample surfaces. If the electroabsorption ex-
periments are performed with ac fields, then Egs. (2) and
(3) must be modified to extract the electroabsorption from
the Fourier coefficient measured in the experiment.

B. Experimental Electroabsorption and
Electrorefraction
Differential transmission data were obtained on growth
structure 101196D grown by molecular beam epitaxy at
600°C on a semi-insulating substrate. The active
electro-optic layers consisted of 100 periods of 70-A GaAs
and 60-A Al);Gag;As. The superlattice was proton im-
planted after growth with two doses of 1 X 102 cm ™2 at
energies of 80 and 160 keV to make it semi-insulating.
The quantum wells were grown on a stop-etch layer of
5000 A of Al, sGa, sAs, which permitted the samples to be
epoxied to glass and the substrate removed to perform op-
tical transmission experiments. Titanium—gold contacts
were evaporated on the top surface before epoxying. The
contacts are used to apply transverse electric fields to op-
erate the quantum wells in the transverse Franz—
Keldysh geometry.”11:12

The differential transmission spectra on device IL338°
from growth 101196D are shown in Fig. 1 for electric
fields from 5 kV/em to 25 kV/em. The change in absorp-
tion Aa owing to the applied electric fields is shown in Fig.

Nolte et al.

2. We observed a large electroabsorption approaching
6000 cm ™!, which, to our knowledge, is the largest absorp-
tion change observed to date in transverse-field photore-
fractive quantum wells.

The departure from quadratic dependence on the ap-
plied electric field is described by the function p(hv, F)
discussed above. This was measured at a wavelength
near the heavy-hole exciton resonance. Figure 3 shows
the dependence of the differential transmission as a func-
tion of the applied electric field at the heavy-hole exciton
energy.'® The deviation from quadratic behavior results
in a smaller differential transmission (and hence a
smaller electroabsorption) than predicted by the qua-
dratic coefficient. The solid curve in Fig. 3 shows the
quadratic behavior, and the deviation from this behavior
is shown as the dashed line. The dashed line can be de-
scribed as a quadratic function,

1
P(th F) ~ _Eple’ (4)
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Fig. 1. Differential transmission AT/T data as a function of
wavelength for increasing dc electric fields. Reprinted from Ref.
9.
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Fig. 2. Electroabsorption A« as a function of wavelength ex-
tracted from the data in Fig. 1.
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Fig. 3. Plot of the maximum differential transmission shown
with the low-field quadratic fit. The deviation from quadratic
behavior is shown as the dashed curve.
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Fig. 4. Electrorefraction An obtained through a Kramers—
Kronig transform of the electroabsorption in Fig. 2.

where p; is the positive coefficient. The departure from
quadratic behavior is small at low electric fields (<7
kV/em in these devices). At high applied electric fields
the deviation from quadratic behavior can be large, reduc-
ing the electroabsorption and electrorefraction in the de-
vice. A value of p; = 2 X 102 em?kV? is obtained from
the data in Fig. 3. This can produce significant effects in
the photorefractive process that transforms the spatially
modulated electric field into the absorption and index
gratings that are the source of two-wave mixing in the
photorefractive quantum wells.

The changes in the absorption spectrum are accompa-
nied by changes in the refractive index in the material
through the Kramers—Kronig transformation:

A2 = Aa(\)
An(\) = 2Pf dn’. (5)

2 o N2 — 22
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The calculated change in the refractive index An is shown
in Fig. 4. The fractional change in index (An/n) ap-
proaches 1%. These large changes in the absorption and
index are necessary ingredients for good signal-to-noise
detection in an adaptive homodyne interferometer.

3. TWO-WAVE MIXING

A. Associating Photorefractive Gratings with
Electroabsorption

Photorefractive two-wave mixing in semiconductor quan-
tum wells and thin films provides a versatile spectroscopy
of both the electro-optic properties of the materials as well
as the electronic transport and space-charge properties of
the transverse-field devices. In two-wave mixing be-
tween a signal beam (I;) and a pump beam () the two
beams produce an intensity pattern in the sample given
by

I(x) = (I; + I,)[1 + m cos(Kx)], (6)

where K is the grating vector, given by K = 27/A, where
A is the interference fringe spacing. When the beams are
incident symmetrically relative to the normal of the
quantum-well surface, the grating lies in the plane of the
thin film. The modulation index m is

oVI,I, 2B

m = = , (7)
I,+I, 1+p

where the beam ratio 8 = 1,(0)/1,(0).

In the photorefractive process'® the intensity pattern is
imprinted into the photorefractive material as a spatial
modulation of internal space charge. Under an applied
electric field F, the internal space charge (to first order)
is expressed by

F(x) = Fo[1 — mécos(Kx + ¢p)], (8

where ¢p is the photorefractive phase shift. Photorefrac-
tive phase shifts are common in many photorefractive
materials and have different physical origins. Photore-
fractive phase shifts were discovered in transverse-field
photorefractive quantum wells'® and have been shown to
arise from hot-electron effects and transport
nonlinearity.!%1® In Eq. (8) the modulation amplitude is
given by the index m multiplied by a parameter & which
expresses the contrast ratio of the field within the device
relative to the modulation expressed by Eq. (7). Most of
the electron-transport physics of the photorefractive ef-
fect is contained within the two parameters ¢p and &
These dynamics will not be considered in the development
here because some of these effects have been addressed in
previous references.®''6  However, the writing effi-
ciency ¢ has not previously been measured to our knowl-
edge.

In the following derivations we assume a harmonic re-
sponse of the internal space-charge field to the intensity
pattern. This assumption is valid under many operating
conditions and will lead to results that are relevant for
usual circumstances. The sinusoidal space-charge field
produces a corrugated absorption grating given by

alhv,x) = ag(hv) + ag(hv)cos(Kx + ¢p). 9)



198 J. Opt. Soc. Am. B/Vol. 18, No. 2/February 2001

One of the goals of this paper is to compare the experi-
mentally measured electroabsorption Aa with the two-
wave mixing response. Therefore we can express the ab-
sorption grating in terms of the electroabsorption
measured for the same field F, by

Aa(hv, Fy) 1
ag(hv) = aO(hv) + 15 otho FO oo Fo) 1+ Emzfz)
Aa(hv,Fy) (A
TL F(x)*p[hv,F(x)]dx, (10)
Aa(hv, F)
ag(hv) = 1+ oho Fo (v Fo) 2mé

2Aa(hv, Fy) (A
—f F(x)%p[hv,F(x)]cos(Kx

F2A 0

+ ¢p)dx, (11)

where the deviation from quadratic field dependence is
given by p(hv, F).

When the approximation for p(hv, F) from Eq. (4) is
used, Egs. (10) and (11) can be evaluated explicitly to be

1
ag(hv) = aOhv) + Aa(hv, F)| 1 + 5m2§2)

1 5 3
—Aa(hv, Fy) §P1F%(§m2§2 + §m4§4) ;
(12)

1
ag(hv) = Aa(hv, FO)[—ng + 5,olF(%(zmg + 3m3§3)}.

(13)
The associated Fourier coefficient for the refractive index
is

1
ng(hv) = An(hv, FO)[zmg + 5pllf’g(zmg + 3m3§3)},

(14)
where An(hv, Fy) is derived from Aa(hv, Fj) by use of
the Kramers—Kronig relation. These expressions [Eqs.
(12)—(14)] are valid to all orders of m and ¢ and to first
order in p;. Note that the deviation from quadratic elec-
troabsorption acts to reduce the Fourier coefficients of the
photorefractive gratings [p; is a positive quantity, defined
in Eq. (4)].

In the low-field limit these expressions simplify to

1
ag(hv, Fo) = aO(hv) + Aa(hv, Fy)| 1 + §m2§2),
aK(hV7 FO) = _Aa(hv7 FO)2m§?
ng(hv,Fo) = —An(hv, F)2mé. (15)

It is important to keep in mind that the Fourier coeffi-
cients of the photorefractive gratings in Eq. (15) must be
related to the electroabsorption Aa and electrorefraction
An measured under identical applied field strength F.
In addition, the zero-order Fourier coefficient in Eq. (15)
contains a contribution from the modulated field. The
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average transmission during two-wave mixing is there-
fore a function of both the applied electric field and the
modulation depth of the interference between the two
mixing beams.

We can define an effective &4 that can be measured ex-
perimentally through combined two-wave mixing experi-
ments and electroabsorption experiments as

ag(hv) 1
eff =

B 1 - —pyF
omaathy ST g2hfo

1+ Em2§2) }
p .
(16)

The expression in brackets is a decreasing function of ap-
plied field, even in the case of small modulation. This de-
crease in & will partially cancel the advantages for two-
wave mixing of increased electroabsorption at high fields.

B. Two-Wave Mixing

In two-wave mixing the two writing beams I; and I, self-
diffract, with the first diffraction order of each copropa-
gating with the transmitted order of the other beam.
The diffracted amplitudes are calculated in the Raman—
Nath regime by assuming that the hologram in the thin
film modifies the transmitted intensity as

E(x,L) = Eq(x, 0)exp{i[ 6y + 01 cos(Kx + ¢p)]},
(17)

where the complex phase with Fourier index K is given by

2mng(hv, Fy)L

ag(hv, Fo)L
S = i
N\ cos 6’

2 cos 6’

) (18)

where nx and ag are obtained from Egs. (13) and (14).

The amplitude of the signal beam after passing
through the dielectric film and mixing with the diffracted
amplitude of the pump beam is

E{(Ey, L) = Jy(61)E1(0)exp(idy)
+ J1(61)E4(0)exp[i(Sy + ¢p + 7/2)],
(19)

where the Bessel functions describe the Raman—Nath
diffraction.!” The diffracted component of the pump
beam acquires a phase equal to the photorefractive phase
shift ¢p and also is shifted by #/2 relative to the signal
beam. It is important to note that §; is complex, and an
additional phase is acquired by the diffracted pump rela-
tive to the signal beam. This additional phase is called
the excitonic spectral phase and is described in Section 5.
The corresponding intensity for 1,(L) is given by

I,(I, L) = 5ol1(0)exp(—a,L)
+ 7115(0)exp(—aoL)
+ 2V1,(0)I5(0) exp(—a,L)
X {Re[J1(81)Jo(57)]sin ¢p
— Im[J(8})Jo(81)]cos dp},  (20)

and a similar expression for intensity I,(L) is
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Iy(Iy, L) = nol2(0)exp(—aol) + 7111(0)exp(—aoL)
+ 2\11(0)I5(0) exp(—aoL)
X{Re[J _1(81)Jo(87)]sin ¢p
+ Im[J_1(85)Jo( 1) Jcos b}, @1)
where the diffraction efficiencies of order M are
= Iu(81)I u(87). (22)

These diffraction efficiencies are defined as output diffrac-
tion efficiencies that are given by the ratio of the dif-
fracted intensity to the transmitted intensity.

By expanding the Bessel functions to lowest order, the
intensities of the two emerging beams at z = L relative to
the intensities of the incident beams at z = 0 can be ex-
pressed as!!

I1(Iy, L) = exp[ —ao(Fo)L]

X [11(0) — VI11(0)I5(0)

2mng(hv, Fy)L
+ —————sin ¢p
N\ cos 6’

ag(hv, Fy)L
2 cos 6’ cos dp

Iy(I;,L) = exp[—ay(Fy)L]

agx(hv, Fy)L
X (12<0> ~ L(0)15(0)| =5~ cos ¢
27TnK(hV,F0)L }
- sindp|}. (23)
N\ cos 6’

The contribution to the transmitted intensity from the ab-
sorption grating is symmetric with respect to the photo-
refractive phase shift ¢p, whereas the contribution from
the index grating is asymmetric. By reversing the direc-
tion of the applied electric field, it is possible to determine
both contributions.

The two-wave mixing efficiency is defined in terms of
the difference in the transmitted signal intensity in the
presence of mixing minus the signal intensity in the ab-
sence of mixing (no pump beam, but still under applied
field Fy), divided by the zero-mixing transmission:

AT LIy, Fo, L) — I1(0,F,, L)

— = . (24)
I I1,(0,F, L)

By use of the small-signal expressions in Eqs. (15) and
(23) this becomes

AT 1
T = exp —Aa(FO)L Engz
1 0 23 Aa(Fy)L
X | —= Aa(Fy)L +
2m§ a(Fy) 1+/3§ o cos ¢p
47An(F,)L
+ ————sin¢p| . (25)
\ cos 6’

This equation directly relates the measured electroab-
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sorption Aa (and electrorefraction An through Kramers—
Kronig) to the measured two-wave mixing efficiency AI/I.
The equation includes the modulation index m, which is
defined by the beam ratio B, which can be measured.
Therefore Eq. (25) can be used to extract £ and ¢p from a
pair of electroabsorption and two-wave mixing experi-
ments performed at a given field.

C. Experimental Studies of Two-Wave Mixing

Two multiple-quantum-well structures were used in the
two-wave mixing study. The growths 020197B and
101196D each contained 100 periods of 7-nm GaAs wells
and 6-nm Alj;Gag ;As barriers. The multiple-quantum-
well regions were sandwiched between buffer epilayers of
AlyoGaygAs. Growth 020197C had a p-doped contact
layer that was 40 nm thick with a doping density of 1
X 10¥cem™3 grown after the stop-etch layers, whereas
growth 101196D had no extra contacting layer. Both de-
vices were fabricated by removing the substrates for
transmission studies. Coplanar electrical contacts of
Ti—Au were used for both growths with a gap of 1 mm.
These were applied to the doped layer for growth 020197C
after a window was etched into the AlGaAs epilayer
buffer to prevent shorting of the device. For devices fab-
ricated from 101196D the contacts were either applied on
the free surface after removing the substrate or were ap-
plied on the top surface before removing the substrate.
The top contacts were buried in epoxy, which acts to pas-
sivate the surface of the devices. These buried contact
devices could sustain electric fields up to 25 kV/em. The
free-surface contact devices could support fields only up to
17 kV/cm before surface breakdown would occur. The de-
vices were proton implanted at total doses of 2
X 102cem™2 or 3 X 10 em 2 with two energies of 80
keV and 160 keV. The proton implantation renders the
undoped material semi-insulating.

The two-wave mixing data for device JAC44 from
growth 020197C are shown in Fig. 5 as a function of elec-
tric field and grating spacing for a fixed wavelength of 838
nm and B8 = 1. The grating period was varied between
4.4 mm and 97 mm, and the field was varied between —10
kV/em and +10 kV/ecm. It has been well documented

0.050 —
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A/

-0.10 -

-0.15 P R T P
-12 -8.0 -4.0 0.0 4.0 8.0 12

Electric Field (kV/cm)

Fig. 5. Two-wave mixing at a fixed wavelength as a function of
electric field for a family of different fringe spacings.
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that the phase shift in Eq. (23) is field dependent.!® This
field dependence of the phase shift makes the fixed-
wavelength field-dependent data extremely complex.
The data are asymmetric in the electric field, reflecting
the asymmetry of the An term in Eq. (25) as the phase
changes sign with the electric field sign. Phase shifts are
small at small field,'® which is reflected in the approxi-
mately symmetric quadratic low-field behavior.

Because of the complicated interdependences of the
phase shift on fringe spacing, wavelength, and electric
field, it is not possible to extract either & or ¢p from the
single-wavelength data of Fig. 5. We therefore obtained
fixed-field two-wave mixing spectra by tuning the laser
with computer control and acquisition. Two-wave mix-
ing experiments were performed with an EOSI 2000 tun-
able diode laser with a maximum power of 20 mW, tun-
able from 825 nm to 845 nm. The experiment was
computer controlled to scan the laser and acquire data
from a lock-in amplifier or an oscilloscope. The beam ra-
tio B was set to 1 and 16. Spectra in a series are shown
in Figs. 6 and 7 as a function of wavelength for increasing
electric field on device 11341 for growth 101196D for our
two values of B with a fringe spacing of 40 um. Indi-
vidual spectra at =1200 kV/cm are shown in Fig. 8 for 8
= 16. The asymmetry in the sign of the applied field is
evident in the shifts in the zero crossings (where the sig-
nal changes sign) in the data.
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Fig. 6. Differential transmission AT/T and two-wave mixing
signal AI/I spectra for 8 = 1 and A = 40 um with increasing
field strength, showing results for both positive and negative
fields.
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fields. The two-wave mixing efficiency is greater than 40% for a
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Fig. 8. Two-wave mixing spectrum for positive and negative
fields at 12 kV/em, showing the asymmetry caused by the photo-
refractive phase shift.

By simultaneously measuring electroabsorption and
two-wave mixing, it is possible to use Eq. (25) to fit values
for £ and ¢p. The field-dependent values of & or ¢p are
shown in Fig. 9 for a fringe spacing of 40 um. The value
of ¢ varies between 40% at low field and 20% at high field.
The phase shift is asymmetric in the applied field and ap-
proaches +0.77/2 at fields of +12 kV/em, which is consis-
tent with earlier measurements.'?
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4. PHASE MODULATION AND ADAPTIVE
HOMODYNE DETECTION

Self-diffraction from the hologram in the photorefractive
quantum well acts as a means to combine the signal beam
with the reference beam. The hologram adapts to slowly
varying phases but cannot adapt to rapidly varying
phases (at frequencies above the adaptive bandwidth of
the photorefractive quantum well). Two-wave mixing
therefore performs adaptive beam combining for adaptive
interferometry applications in which low frequencies are
compensated, but high frequencies are passed down-
stream on a signal beam that copropagates with the ref-
erence beam. One application is the homodyne detection
of ultrasound. An oscillating surface that has a displace-
ment given by d(¢) produces a phase modulation in a re-
flected beam of

4
o(t) = _Td(t)' (26)

The combined signal and reference fields are then given
by

E{(Ey, L) = Jo(61)E1(0)exp(idy) + J1(51)E4(0)

4
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Fig. 9. Plot of (a) the internal writing efficiency ¢ versus field
strength for 8 = 1 and 16 and (b) the photorefractive phase shift.
These graphs are obtained by fitting the data of Figs. 6 and 7 to
the theoretical differential intensity derived from Eq. (25).
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where §; is given in Eq. (18). Expanding the Bessel func-
tions, this becomes

1
E(E5,L) = E{(0)exp(idy) + 551E2(0)

4

S + 8p — —d(t) + m/2

(28)

It is important to remember that §; in the last expres-
sion is an analytic function of \. It can therefore be ex-
pressed as a wavelength-dependent amplitude and a
phase,

X exp[

81 = | d1]exp(ih), (29)
where
mn1(\)L a;(N)L?
_|51|_ \/7](_)\ \/ )\cosa’} 4C089}
(30)
and the phase
$(\) = tan”! X et , (31)
4 ni(N)
which we call the excitonic spectral phase. With this

definition, Eq. (28) becomes

E,(E,,L) = eXP(i50)(E1(0) + V7(N)E5(0)

4
¢p + () — —d(t) + 72

I

(32)

The optimal homodyne detection occurs when the time-
independent relative phase of the signal beam relative to
the diffracted reference beam is equal to #/2. From Eq.
(32) this condition is satisfied when

ép = =¥ (N). (33)

This condition satisfies the requirements for linear detec-
tion of the surface displacement d(¢).

The photorefractive phase shift ¢p of the photorefrac-
tive quantum wells is a function of the applied electric
field, the fringe spacing, and the defect density. The
unique feature of the photorefractive quantum wells is
that the condition in Eq. (33) can always be satisfied for
any photorefractive phase shift ¢p by tuning the wave-
length N\ through the wavelength range of the excitonic
absorption.

X exp[

5. EXCITONIC SPECTRAL PHASE

The feature that makes photorefractive quantum wells
unique for adaptive homodyne detection is the excitonic
spectral phase ¢ (\). The remarkable aspect of this
phase is that it appears on equal terms with the photore-
fractive phase shift in Eq. (33), and yet it has an entirely
different origin. The photorefractive phase shift repre-
sents a physical shift of the hologram relative to the opti-
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cal fringe pattern. It contributes to the relative optical
phase of the combined beams because it adjusts the opti-
cal path length of the diffracted beam relative to the
transmitted beam. Although the photorefractive phase
shift has its origins in the dynamics of photorefractive
grating formation, it contributes to the optical phase in a
purely kinematic sense; it alters optical path lengths but
is unrelated to the physical (dynamical) processes that
give rise to the refractive index in the material. The ex-
citonic spectral phase also contributes to the relative op-
tical phase between the signal and reference beams, but it
has a purely dynamical origin in the dielectric response of
the material to electromagnetic fields. Therefore the
condition in Eq. (33) for optimum linear detection of ho-
modyne signals equates a kinematic phase with a dy-
namical phase. This situation is unique to the photore-
fractive quantum wells.

The dynamical origin of the excitonic spectral phase
rests in the excitonic resonances. The exciton is a
quantum-mechanical oscillator that is driven by incident
electromagnetic fields. As in any mechanical oscillation,
the frequency of excitation can be tuned through the reso-
nance. The linear response to the drive frequency has a
resonant line shape with an associated phase that
changes as the frequency varies from below resonance to
above resonance. In the case of excitonic absorption the
linear response leads to a resonance-enhanced refractive
index (dispersion), whereas damping leads to absorption.
The shift in the phase is obtained by taking the inverse
tangent of the ratio between the absorption and the dis-
persion, as given in Eq. (31).

The wavelength-dependent excitonic spectral phase
¢ (N\) is shown in Fig. 10 for the multiple field conditions
from Fig. 1. The phase varies nearly linearly with wave-
length through the excitonic resonances of the heavy and
the light holes and is relatively insensitive to the value of
the electric field. The phase change through the entire
spectrum is approximately equal to 67r. Each lobe of ei-
ther the electroabsorption spectrum (Fig. 2) or the elec-
trorefraction spectrum (Fig. 4) contributes one 7. The
spectra each contain approximately six lobes (within the
wavelength range of the spectra), adding to a total phase
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YO = tan” o A
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Fig. 10. Excitonic spectral phase W(\) as a function of wave-
length for the field-dependent data in Figs. 2 and 4.
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change of 677. It is important to note that additional con-
tributions to the phase should occur at higher energies
owing to Franz—Keldysh oscillations. However, these
are below our detection sensitivity in these experiments.

The linear dependence of the excitonic spectral phase
on wavelength is important for the use of photorefractive
quantum wells for femtosecond pulse-processing
applications'®!® in which the pulses remain transform
limited. Designing photorefractive quantum-well de-
vices to have linear excitonic spectral phase is a key as-
pect of the design of these devices for the femtosecond
applications.?’ The excitonic spectral phase also contrib-
utes a group time delay to diffracted ultrafast pulses.
The pulses are delayed by an amount equal to gy
= d¢/dw, which is approximately 200 fs for the
transverse-field photorefractive quantum wells. In the
case of homodyne detection of laser-based ultrasound, the
linearity of s (\) with wavelength is not essential, as long
as the function is monotonic and can be tuned by adjust-
ing the wavelength of the laser beams to achieve quadra-
ture.

6. LASER-BASED DETECTION OF
ULTRASOUND

A. Homodyne Detection
The change in signal I; caused by a surface displacement
d(¢) is obtained from Eq. (32) as

oIy = 2NI1(0)I5(0) exp(—aL)V75(\)

T 4

X cos| dp + (M) + 5 + Td(t) ,  (34)

which becomes, when d(#) is small,
oI, = —2~I1(0)I5(0) exp(—aL)Vn(\)

41
X cos| ¢p + tﬂ()\)]Td(t), (35)

taking only lowest order in the surface displacement d(¢).

Measured ultrasound signals are shown in Fig. 11 that
are received from a gold-plated microscope cover slip that
was excited with a conventional 2-MHz damped Panamet-
rics piezoelectric transducer driven by a Panametrics
model PR500 pulse generator. The arriving compres-
sional (P) and shear (S) waves can be distinguished in the
received waveforms, as well as later arriving energy that
is probably due to reflections in the thin cover slip. The
signals were amplified by 60 db with an amplifier band-
width of 2 MHz and 100 averages on the digital oscillo-
scope. The physical surface displacements of the mirror
are in a range around 100 pm. The device was operated
at a field of 7.5 kV/em with a fringe spacing of 30 um.
The traces show the mixing signal for several wave-
lengths between 836 nm and 831 nm, showing the tuning
from a maximum in one quadrature to the maximum in
an opposite quadrature. The exciton peak in this sample
is near 836 nm. By tuning the wavelength of the laser,
we demonstrate the role of the excitonic spectral phase, as
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well as the change in sign of the ultrasound signal as the
wavelength is tuned out of one quadrant and into an-
other.

Several new features are demonstrated in Fig. 11 that
were not present in our earlier waveforms in Ref. 9.
First, we demonstrate the change in sign of the ultra-
sound signal as we tune from one quadrant to another.
Second, the data in Fig. 11 are raw data captured directly
on the digital oscilloscope without subtracting back-
ground nonadaptive traces that arose in our earlier re-
search from slight intensity changes in the signal beam.
The ability to remove nonadaptive intensity changes is an
important step forward toward applications. Third, the
data in Fig. 11 were acquired with a fringe spacing of 30
pum, rather than the 200-um fringe spacing of Ref. 9.
This smaller fringe spacing is also an important step for
applications because it allows for reasonable field-of-view
for the ultrasound applications.

B. Noise-Equivalent Surface Displacement

The most important aspect of homodyne detection is the
signal-to-noise ratio. If the detection is limited only by
shot noise, the signal-to-noise ratio is given by

— = , (36)
N Af - hy
P(0)exp(—aoL) ———

T Sdet

where P(0) is the incident power on the photorefractive
quantum well in the signal beam, Af is the detection
bandwidth, A v is the photon energy, and {4 is the quan-
tum efficiency of the detector. The signal-to-noise ratio
becomes

S P3(0)Lqet
N 2 Y, exp(—aoL/2)\ n(\)

4
X cos[ ¢p + ll/()\)]Td(t)- (37
Another parameter used to characterize a laser ultra-

sonic receiver is the minimum-detectable surface-
displacement amplitude, called the noise-equivalent sur-
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Fig. 11. Laser-based ultrasound time traces as the laser wave-
length is tuned from one quadrature to the opposite quadrature.
The arrival of the compressional (P) and shear (S) waves are
clearly observed.
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Fig. 12. Noise-equivalent surface-displacement NESD as a
function of wavelength for (a) positive field and (b) negative field.
The theoretical curve is from Eq. (38) with the parameters from
Fig. 9. Also shown in the figure is the ideal shot-noise limit of a
perfect interferometer.

face displacement (NESD). This parameter corresponds
to the minimum-detectable displacement for which S/N
= 1 for 1-W incident power and 1-Hz detection band-
width. With this definition the NESD can be written as

1

A
dmin()\) = —
47 2\ n(\) cos[ ¢p + ¥ (N)]

hv
X exp(ayL/2) ‘\/g—, (38)

det

where the minimum-detectable displacement is a func-
tion of wavelength and is a minimum near the center
wavelength of the excitonic transitions because 7(\) is
maximum near the heavy-hole exciton transition. As the
argument of the cosine changes, the NESD has poles cor-
responding to in-phase conditions and minima corre-
sponding to quadrature conditions. The wavelengths
where these conditions occur change when the photore-
fractive phase shift ¢p is altered by adjusting the electric
field.

The NESD for photorefractive quantum-well sample
11341 is shown in Fig. 12 for both field directions. The
data are compared against the theory from Eq. (38), with
the values of ¢p and ¢ from Fig. 9. The smallest value
for the NESD is approximately d, = 1.7
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X 1079 A (W/Hz)"2. By comparison, the detection limit
for an ideal interferometer is 2.6 X 1077 A (W/Hz)2,
which is approximately a factor of 7 smaller. We have
therefore achieved adaptive beam combining using ex-
perimental conditions that are compatible with laser-
based ultrasound applications, while losing only a factor
of 7 in the detection sensitivity. Our previous paper® re-
ported values for NESD that were a factor of 2 better than
those reported here but were obtained with large fringe
spacings that are not compatible with applications. The
theoretical NESD curves for both positive and negative
field directions are shown in Fig. 13, showing the shift in
the quadrature conditions between these two field orien-
tations. Between the ability to tune wavelength and the
ability to control the field direction, the photorefractive
quantum wells have ample versatility for achieving and
maintaining quadrature in practical applications.

6. DISCUSSION

The simultaneous measurements of electroabsorption and
two-wave mixing presented in this paper have made it
possible to determine the internal writing conversion effi-
ciency, for the first time to our knowledge, in photorefrac-
tive quantum wells. The value is approximately 40% at
low fields and decreases with increasing field. The inter-
nal efficiency decreases nonlinearly with field in the re-
gime of electron velocity saturation in GaAs (which gives
rise to the Gunn effect in conducting material). The
phase shift measured in the same manner agrees well
with previous experimental measurements'® and theoret-
ical analysis.!® However, the linearized theory was only
valid for small modulation amplitude (large B), and the
theory was only stable for asymptotic velocity saturation.
The linearized theory was unable to treat either large
modulation amplitude (B near unity) or negative differen-
tial resistance, which is certain to be a condition in the
actual experiment. Furthermore, the theory did not pre-
dict values for the internal efficiency. Therefore our
measurements of & cannot currently be compared with
any predicted theoretical value. This comparison awaits
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Fig. 13. Noise-equivalent surface-displacement NESD theoreti-
cal curves from Fig. 12 to show the change in the quadrature con-
ditions upon reversal of the electric field on the photorefractive
quantum-well device.
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future theoretical analysis that can effectively treat the
photorefractive effect in the negative differential resis-
tance regime.

The results of laser-based ultrasound detection have
demonstrated the viability of two-wave mixing in photo-
refractive quantum wells for performing as an adaptive
beam combiner. Our previous demonstration was per-
formed at unworkably long fringe spacings that severely
limited the field-of-view. Furthermore, the previous re-
sults suffered from large nonadaptive intensity modula-
tion. The ultrasound results presented here for 30-um
fringe spacing, and without any detectable nonadaptive
signal, represent an important step forward in the use of
this material system for compensated interferometry ap-
plications. All of these critical performance parameters
have now been demonstrated for the quantum-well struc-
tures. These aspects, together with the high compensa-
tion bandwidth of the quantum wells that can approach 1
MHz,? and with the unique ability to tune to quadrature
by use of the excitonic spectral phase, make the photore-
fractive quantum-well devices suitable for many adaptive
interferometry applications.
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