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We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence
from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through
exact numerical simulation, with emphasis on realistic pulse delays and the long-time limit. Our results show
that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with
control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial
electron spin state, coherence can saturate at long times, signaling the creation of a stable “spin-locked”
decoherence-free subspace. Analytical insight into saturation is obtained for a simple echo protocol, in good
agreement with numerical results.
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Developing and benchmarking strategies for decoherence
suppression in spin nanosystems is crucial for various areas
of quantum physics, from quantum control theory to quan-
tum device technologies. A single central spin 1/2 interact-
ing with a bath of N external spins is a natural test bed for
such studies,1 showing a rich variety of decoherence regimes
and paving the way to understanding more complex sce-
narios, such as decoherence of many-spin central systems. A
prominent example is an electron spin localized in a GaAs
quantum dot �QD�: at experimentally relevant subkelvin tem-
peratures and moderate �subtesla� magnetic fields, the hyper-
fine coupling with a bath of nuclear spins is the dominant
decoherence channel. While electron spins in QDs have
many potential applications in spintronics2 and quantum in-
formation processing,3 their coherence time is very short,
T2

*�10 ns in a typical �N�106� GaAs QD.4 While sugges-
tive proposals exist to increase T2

* by achieving high bath
spin polarization, by bath disentanglement, or by narrowing
the nuclear spin distribution,5 methods viable in a wider pa-
rameter range are still actively sought.

The distinctively non-Markovian behavior of the nuclear
spin reservoir makes the electron spin in a QD an ideal can-
didate for dynamical decoupling �DD� techniques.6,7 In
double-QD systems, spin-singlet refocusing has been experi-
mentally demonstrated.4 For a single QD in a large external
magnetic field �B0�1 T�, where the nuclei simply dephase
the electron spin, Hahn spin echoes and their Carr-Purcell-
Meiboom-Gill extentions may increase T2

* by more than an
order of magnitude.8,9 However, when the bias fields is not
so large, the decoherence dynamics is much more complex,
and since both dephasing and relaxation must be simulta-
neously eliminated, different DD protocols are demanded.
Theoretical investigation of some DD protocols suitable for
GaAs QDs at lower fields has begun very recently,10,11 and
several crucial questions remain unanswered. In particular,
assessing the long-time performance of DD schemes under
realistically large interpulse delays is among the most prac-
tically important, yet least studied, issues to date.

In this paper, we investigate quantitatively DD of electron
spin decoherence in the experimentally relevant but very
challenging situation of zero bias field. Using exact numeri-

cal simulations, we show that the very stringent formal limi-
tations of DD methods may be relaxed and pulse delays up to
a factor �N longer than naively expected from analytical
bounds can still extend the coherence time by 2–3 orders of
magnitude. We study several DD protocols, focusing on the
long-time limit, where error accumulation is crucial and nei-
ther the Magnus expansion �ME� nor the quasistatic approxi-
mation �QSA� is reliable a priori. Provided that the initial
electron spin state is known, we demonstrate how nearly
perfect coherence preservation is possible for indefinitely
long times. Such a saturation is related to the creation of a
stable decoherence free subspace12 �DFS� and may allow one
to stabilize the electron spin polarization in a QD.

Model and DD setting. The dynamics of a single electron
spin S coupled to a bath B of N nuclear spins is described by
a total Hamiltonian of the form H=HS+HSB+HB, where
HS=H0Sz is the electron Zeeman energy, HSB=�k=1

N AkS ·Ik
the hyperfine contact interaction between the electron spin
and the nuclei, and HB=�k�l

N �kl�Ik ·Il−3Ik
zIl

z� the intrabath
dipolar coupling between nuclear spins.9,13–15 S and Ik de-
note the electron and the kth bath spin operators, respec-
tively; the nuclear spin values Ik=1/2 are assumed.16 We
focus on the case B0=0 and assume that, as in a standard
experiment, temperature is much larger than the characteris-
tic energy scales for nuclear spins. Thus, the bath’s initial
state is maximally mixed, �B�0�=2−N1B, 1B being the
2N-dimensional identity matrix.17 The free induction decay
�FID� time is T2

*= �NA2 /8�−1/2, where A= ��kAk
2 /N�1/2

�10−4 �eV for typical GaAs QDs with N=106 nuclear
spins.15 Below, time is measured in units of 1 /A.

Under ideal control assumptions, DD is implemented by
subjecting the electron spin to sequences of instantaneous �n̂
rotations along appropriate control axes n̂, equally separated
by the interval �. A variety of DD protocols exist, based on
both deterministic7,10 and randomized18,19 designs. In cyclic
DD, the control propagator is steered through a DD group of
unitary operations G= �gj�, j=0,1 , . . ., 	G	−1, in a predeter-
mined order, as opposed to randomized DD where the future
control path is not known in advance. Changing gi to gj
requires the application of a DD pulse Pi,j =gjgi

†. Thanks to
the existence of a periodicity time scale Tc= 	G	�, the analysis
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of cyclic DD has been mostly carried out within average
Hamiltonian theory,6 upper performance bounds being deter-
mined by the dominant nonzero corrections in the ME for the
time evolution operator. Average Hamiltonian theory no
longer applies to randomized DD, where the evolution is
most directly studied in a logical frame that follows the ap-
plied control.18

Periodic DD �PDD� is the simplest nonselective cyclic
protocol, ensuring that the unwanted evolution is removed to
first order in the ME at every Tn=nTc, n�N, in the short Tc
limit. For a single spin, PDD is based on the irreducible Pauli
group GP= �I ,X ,Y ,Z�, X=�x, and so on�7 which requires
two-axis control sequences of the form C1
=C0XC0ZC0XC0Z, C0 denoting a free evolution period. Im-
provement over PDD may be gained by symmetrized and/or
concatenated design. Symmetric DD �SDD� guarantees that
all odd terms in the ME are canceled, with Tc twice as long
as PDD. Concatenated DD10 relies on a temporal recursive
structure, so that at level �+1 the protocol is C�+1
=C�XC�ZC�XC�Z. Here, we truncate the concatenation pro-
cedure at a certain level and repeat a periodic sequence, re-
ferred to as PCDD, after every 4�� �e.g., �=2 leads to
PCDD2�. As representatives among stochastic protocols, we
consider naive random DD �NRD�, which corresponds to
uniformly random pulses over G, and symmetric random
path DD �SRPD�, where a path to traverse G is chosen at
random and then symmetrized as in SDD.19

The use of control pulses may suit two purposes: �i� com-
plete decoupling of the system from the bath, so that electron
spin coherence is enhanced for an arbitrary initial state; �ii�
preservation of a specific initial state, in which case the DD
sequence may be tailored accordingly. Two performance
metrics are then appropriate. For a fixed initial state 		
, we
use the input-output fidelity F�T�=Tr��S�T��S�0��, where
�S�T� is the reduced density operator of S at time T starting
from 		
 and tracing out the bath. For an unknown initial
state, we invoke minimum pure-state fidelity Fm�T�
=min		
F�T�. Analytical bounds on the expected fidelity de-
cay for various DD protocols have been obtained for short
evolution times,10,18,19 which calls for numerical analysis in
the long-time regime. Simulations also make it possible to
explore DD performance for values of Tc beyond the strict
convergence domain of the ME, 
cTc�1, where the highest-
frequency component 
c��k	Ak	 /4�NA /4. Let � denote
the power spectrum width of the environmental coupling,
2����kAk

2�1/2=�NA.20 We shall consider ��1/2�, and thus
Tc�4���N
c

−1. To solve the time-dependent Schrödinger
equation of the entire S plus B system, we apply the Cheby-
shev polynomial expansion method to the evolution
operator14,17 and choose Ak�0 as uniformly random num-
bers.

Unknown initial state. In Fig. 1 we compare Fm�T� for the
above-mentioned DD protocols. Because the characteristic
time scale �D for nuclear dipolar dynamics due to HB is �at
least� two orders of magnitude slower than the one due to
HSB in typical QDs, setting HB=0 is justified for practically
relevant time regimes. All schemes lead to substantial en-
hancement of the electron spin coherence, PCDD2 showing
the most dramatic improvement. Although for this system

both SDD and PCDD2 remove HSB to second order in the
ME, the higher performance of PCDD2 reflects its superior-
ity in reducing coherent error accumulation. The poor perfor-
mance of NRD is expected, since its advantages over deter-
ministic DD emerge only when G is large. Contrary to the
case of closed systems,19 SRPD does not match PCDD2 in
the relevant parameter range, confirming the fact that irre-
ducible DD groups and slow baths are predicted to be espe-
cially favorable for concatenated control.10

Motivated by the above results, we proceed with a more
in-depth analysis of the PCDD protocol. Figure 2�a� com-
pares the performance of two levels of concatenation,
�=2,4, for different values of �. As expected, the results
deteriorate as � increases but, interestingly, PCDD4 may be-
come worse than PCDD2. Figure 2�b� illustrates, for each
value of 2�� and different N, the instant of time T90% where

FIG. 1. �Color online� Minimum fidelity vs time in the logical
frame with �=0.1. Hamiltonian parameters are H0=0, �0=0, and
N=15. For deterministic DD, data points are acquired at the
completion of each cycle, while for NRD and FID this is done after
every � and for SRPD after every 8�. Random protocols are aver-
aged over 102 control realizations.

FIG. 2. �Color online� �a� PCDD2 �solid lines� and PCDD4

�crosses� for �=0.3,0.4,0.5, top to bottom. �b� and �c� T90% vs � for
PCDD2; different bath sizes �b� and intrabath interactions �c�.
H0=0 in all panels, N=15 in �a� and �c�.
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Fm�T� for PCDD2 reaches 90%. The results are reasonably
close to each other, particularly for larger N, supporting their
applicability up to realistic situations with N�106. Last, we
analyze the effect of HB, which becomes important once the
coherence time is longer than �D. Let �kl be uniformly ran-
dom numbers in �−�0 ,�0�. To avoid demanding long-time
simulations, we increase �0 manually up to values compa-
rable to Ak. The results are shown in Fig. 2�c�, where a two-
dimensional 3
5 QD with nearest-neighbor intrabath cou-
pling is considered. PCDD2 performance is significantly
affected by a bath with fast dynamics. Although such a re-
gime is not directly relevant to standard GaAs QDs, further
investigation of randomized DD is necessary whenever HB
and HSB compete.

Known initial state. If the electron spin is initially point-
ing along a known direction, cyclic DD protocols able to
stabilize the input-output fidelity value for extremely long
times may be used. This is shown in Fig. 3 �inset�, where the
curves F�T� plateau after the application of a sufficient num-
ber np of pulses. While asymptotic saturation behavior has
been reported for purely dephasing spin-boson models with
arbitrary initial spin states,7,21 the directional dependence
observed here reflects the lack of a preferred direction in the
error process generated by HSB: a preferred direction only
emerges through the “effective field” created by the control
sequence, and long-time stability depends on proper align-
ment between such effective field and the initial state. In
magnetic resonance language, the resulting saturation effect
is closely related to the “pedestals” of the long-time magne-
tization signal in pulsed spin-locking experiments.22 From a
control standpoint, it indicates the dynamical generation of a
stable one-dimensional DFS via DD.12 Consider first a selec-
tive echo protocol—say, a single-axis PDD along the z direc-
tion, GZ= �I ,Z�, with a corresponding �asymmetric� pulse se-
quence CZ=C0ZC0Z—which we refer to as CPMG. For
sufficiently small �, symmetrization is enforced along the z
axis, as described by a lowest-order Hamiltonian commuting
with GZ in the ME, and a corresponding effective field along
z �Refs. 7 and 22�: initial Sz eigenstates are �approximate�

eigenstates of the decoupled evolution, whereas components
perpendicular to the DFS are lost in the long-time regime.
For nonselective DD protocols based on the irreducible
group GP, all directions are approximately preserved for
short times due to maximal averaging, yet long-time stability
again occurs along the direction of the dominant term in the
ME. Notice that the latter also coincides with the half cycle
direction of the sequence: e.g., PDD may be obtained from
concatenation of two CPMGs, C1=CXYCXY =CY �CX, identi-
fying the outer y direction as the stable one. Similarly, for
SDD and PCDD2, the saturated components are z and y,
respectively.

Quantitative results on the dependence of the saturation
value upon control parameters are given in Fig. 3. Interest-
ingly, a crossing between SDD and PCDD2 occurs at �
�0.8. In particular, the CPMG sequence, which is not a
maximal DD scheme for the Hamiltonian in question, leads
to saturation values comparable to the other protocols; thus,
it may be useful in settings where accurate control along two
axes may not be available. Moreover, its simplicity
allows for a direct analytical study of the saturation
effect. Within the QSA,9,15 let Ak=A, I=�kIk, and M = Iz.
After n CPMG cycles, the survival probability of the
initial state 	��0�
= 	↑ 
 � 	I ,M
 is given by
	
��0� 	��2n��
	2=1− �C2 /B2�tan2 �cos2 2n�, where C
=A��I−M��I+M +1�, B=A�M +1/2�, tan �=d /�1−d2,
d=−�B /��sin��� /2�, and �2=B2+C2. For the maximally
mixed bath state, �B�0�=2−N1B, and for large n and
N, F→Fsat=1− �1/2��dIdMP�I ,M� �C2 /B2�tan2 �, where

P�I ,M���I /D�2�D�e−I2/2D and D=N /4.20 In the limit of
small �, we obtain Fsat=1− �1/16��2A2N=1−�2 /2T2

*2. For
randomly distributed Ak, A2N��kAk

2.
Figure 4 compares the above analytical result with the

saturation value predicted by a semiclassical approximation,
which treats the nuclear Overhauser field as an effective ran-
dom magnetic field with zero average, but finite variance.23

The two curves superimpose, consistent with the fact that for
large N the Overhauser field induced by I indeed approaches
a classical field. Also shown are data from exact numerical
simulations of a quantum spin bath with randomly distrib-
uted Ak. Remarkably, for short pulse delays the exact and

FIG. 3. �Color online� Fidelity saturation for CPMG, PDD,
SDD, and PCDD2 starting from an initial state along the half-cycle
direction. Hamiltonian parameters as in Fig. 1. The inset shows how
the asymptotic value Fsat is reached. In the main panel, a number of
pulses sufficient to reach saturation and close the cycle of each
protocol is chosen, np�50.

FIG. 4. Fidelity saturation vs pulse delay for CPMG from a
known initial state. H as in Fig. 1. Circles, QSA results; solid line,
classical random field model; dashed line with plus signs, exact
numerical simulations.
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QSA results are in good agreement, in spite of the QSA
being well known to be only valid for times comparable to
T2

*. Thus, �i� DD effectively extends the region of validity of
QSA and �ii� saturation is entered before the QSA becomes
invalid, allowing the QSA to accurately predict Fsat for short
�.

In summary, we have quantitatively characterized DD of
an electron spin coupled to a nuclear spin bath, with empha-
sis on long-time behavior. We find that DD can significantly
enhance the coherence time for an arbitrary initial state, ac-
tual performance depending on both control and physical
parameters. For a known initial state, the possibility of long-
time saturation has been established numerically and analyti-
cally, which may provide a way for preserving the electron
spin polarization without the need of a strong permanent
magnetic field. While from a practical standpoint the esti-
mated control time scales ��1 ns� are roughly an order of
magnitude away from current pulsing capabilities in GaAs
QDs, experimental progress is steady. In particular, single-

electron spin rotations have been demonstrated both in gate-
defined GaAs and self-assembled QDs.24 In addition, multi-
pulse CPMG-DD has also been realized, not only in standard
nuclear magnetic and electron spin resonance experiments,
but also in single solid-state centers,25 which share many
relevant features with electron spins in QDs. These advances
support the hope that the experimental implementation of
more complex protocols will be achievable in the near fu-
ture.
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