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We present a quantum solution to the electron spin decoherence by a nuclear pair-correlation method for the
electron-nuclear spin dynamics under a strong magnetic field and a temperature high for the nuclear spins but
low for the electron. The theory incorporates the hyperfine interaction, the intrinsic �both direct and indirect�
nuclear interactions, and the extrinsic nuclear coupling mediated by the hyperfine interaction with the single
electron in question. The last is shown to be important in free-induction decay �FID� of the single electron spin
coherence. The spin-echo eliminates the hyperfine-mediated decoherence but only reduces the decoherence by
the intrinsic nuclear interactions. Thus, the decoherence times for single spin FID and ensemble spin-echo are
significantly different. The decoherence is explained in terms of quantum entanglement, which involves more
than the spectral diffusion.
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I. INTRODUCTION

Irreversible processes of a microscopic system in contact
with a macroscopic system are central to nanoscience and to
quantum information science. A canonical example is the
spin decoherence and relaxation of an electron localized by
an impurity, an electrical gate, or a quantum dot in a semi-
conductor, which have been extensively studied both in
theory1–12 and in experiments.13–20 Single dot spin relaxation
time T1�0.1 ms has been measured for different quantum
dot systems at low temperature,13–16 in good agreement with
theoretical estimates.9,10 The single spin decoherence time T2
has a lower bound of 10 ns established by the measurements
of the inhomogeneously broadened T2

* for either a spatial
ensemble of many dots17 or a time ensemble of a single
dot.18–20 Spin dephasing by phonon scattering in quantum
dots is suppressed at temperature below a few Kelvins,8,11

leaving the nuclear spins as the dominant mechanism for
electron spin dephasing. References 4 and 5 gave, respec-
tively, a theory and a numerical study of the effects of off-
diagonal electron nuclear hyperfine interaction. References
6, 7, and 21 gave treatments of the effects of nuclear dipolar
interaction and calculated the electron spin decoherence time
with an ensemble spin-echo.

Our pursuit of a quantum theory of decoherence without
the restriction of a stochastic theory1,6 is motivated by the
need to control the electron spin decoherence. The nuclear
spins coupled to the electron by the hyperfine interaction are
taken to be the sole source of decoherence as in Refs. 2 and
4. However, we treat the interaction between nuclear spins
which will be shown to be important in the high magnetic
field regime while the neglect of the nuclear spin interaction
in Refs. 2 and 4 is valid in the low field regime. Our method
of solution of the many-spin problem keys on the evolution
of the two flip-flop states of each pair of nuclear spins and is
thus termed the pseudospin method. We establish conditions
for the validity of our method. The method is simple enough
for many applications, including the more advanced design
of pulse control of the electron spin to eliminate the deco-
herence effects.22 It also produces a simple physical picture,

which greatly aids the applications. We divide the interaction
between two nuclear spins into two types, intrinsic and ex-
trinsic, respectively independent and dependent on the single
electron spin state. The intrinsic interaction consists of the
dipole-dipole coupling and the indirect coupling mediated by
virtual interband spin transitions via the hyperfine
interaction.23–27 The extrinsic nuclear interaction is mediated
by virtual spin flips between each of the two nuclei and the
single electron due to the off-diagonal hyperfine coupling.

The results presented here are �i� a basic solution of the
decoherence dynamics, both for a single electron spin and
for an ensemble of independent electrons; �ii� numerical
evaluations for GaAs dots; and �iii� an analysis of the differ-
ent time dependence of coherence for intrinsic and extrinsic
nuclear-nuclear interaction. We will show that the extrinsic
hyperfine-mediated nuclear interaction plays an important
role in single spin FID. The spin-echo not only refocuses the
dephasing by inhomogeneous broadening in ensemble dy-
namics but also eliminates the decoherence by extrinsic
hyperfine-mediated nuclear interaction. Thus, the decoher-
ence times for single spin FID and spin-echo are significantly
different. The usual practice of inferring the single electron
spin dephasing time from ensemble echo measurement could
be problematic. Note that in NMR literature, the difference
in time scale of FID and echoes, when the inhomogeneous
effect is excluded, was first recognized.28–30

The electron spin decoherence arises out of quantum en-
tanglement between the electron spin states ��� and the
many-nuclear spin states �J�. When a coherent electron spin
state C+�+ �+C−�−� is prepared, the initial state of the whole
electron-nuclear system is the product state, �C+�+ �+C−�−��
� �J�. In time t, the nuclear states associated with the two
electron spin states diverge, yielding an entangled state of the
form, C+�+ � � �J+�t��+C−�−� � �J−�t��. The electron spin co-
herence is measured by ��J−�t� �J+�t��� when the nuclear spin
degrees of freedom are traced out. Our theory consists in a
direct attack of the many nuclear spin dynamics. The as-
sumption of the pure electron spin decoherence time T2 be-
ing much shorter than its longitudinal spin relaxation time T1
will be shown to lead to a simple effective Hamiltonian for

PHYSICAL REVIEW B 74, 195301 �2006�

1098-0121/2006/74�19�/195301�11� ©2006 The American Physical Society195301-1

http://dx.doi.org/10.1103/PhysRevB.74.195301


the whole system of the form �±�± �Ĥ±�±� in terms of the

nuclear spin Hamiltonians Ĥ±. This simplifies the electron
spin coherence to the overlap of the two nuclear spin states,
each following the evolution conditioned on one spin state of

the electron, ��J�eiĤ−te−iĤ+t�J��.
This entanglement approach to decoherence has an inter-

esting relation to the antecedents in the decoherence litera-
ture. The square of the decoherence is formally the same as

the Loschmidt echo if Ĥ−, say, is regarded as Ĥ+ with a
perturbation, which is related to the decoherence of the
nuclear spin system.31,32 A model of a single spin coupled to
a transverse field Ising chain is used to study the effect of
quantum phase transition on the decoherence of the Ising
chain.33 A key change in the model could make it a study of
the decoherence of the single spin in the Ising spin bath.

We will show that the nuclear spin dynamics is dominated
by the nuclear spin pair-flips. The pairs can be treated as
independent of one another and only the two-spin correla-
tions need be taken into account in the interacting nuclear
spin dynamics. On a time scale small compared with the
inverse nuclear couplings but ample for the electron spin
decoherence, the number of pair-flip excitations are small
compared with the number of nuclear spin pairs available for
spin-flip, which come from the randomization of the nuclear
spin directions at a temperature higher than the nuclear spin
temperature, i.e., 10 mK�T�1 K �still low enough to avoid
the effects of the electron-phonon scattering�. The cluster
expansion by Witzel et al.7 yields an equivalent pair-
correlation approximation. We will establish the pseudospin
model in which the elementary excitations by independent
pair-flips are just rotations of noninteracting 1/2 spins.

Numerical evaluations for a GaAs dot then require no
further approximation. The electron spin decoherence is cal-
culated for a range of magnetic field strength �1–40 T� and
various dot sizes. The pseudospin rotation yields the follow-
ing analysis of the results. The e−tn short-time behavior obeys
n=2 or 4 depending on the dominance of, respectively, the
extrinsic and the intrinsic nuclear-nuclear interaction. In the
long time limit, the crossover to the exponential decay �n
=1� indicates the onset of the Markovian kinetics.

The main body of the text gives a succinct account of the
key points of the theory and the results of the computation.
Section II defines the single electron system coupled to a
bath of interacting nuclear spins. Section III defines the elec-
tron spin coherence and formulates the quantum theory of its
evolution. Section IV describes the pseudospin solution. Sec-
tion V gives an evaluation of the decoherence for a GaAs
quantum dot. Section VI serves as a brief summary of the
main results. So as not to interrupt the flow of the essence of
simple exposition of our decoherence theory, further details
of the theory are grouped in the Appendixes.

II. SINGLE ELECTRON IN INTERACTING NUCLEAR
SPIN BATH

The system consists of an electron with spin vector Ŝe and

N nuclear spins, Ĵn, with Zeeman energies �e and �n under

a magnetic field Bext, respectively, where n denotes both po-
sitions and isotope types �e.g., 75As, 69Ga, and 71Ga in
GaAs�. The Hamiltonian of this system is described in Ap-
pendix A. The interaction can be separated as “diagonal”
terms which involve only the spin vector components along
the field �z� direction and “off-diagonal” terms which involve
spin-flips �see Appendix B�. Because the electron Zeeman
energy is much larger than the strength of the hyperfine in-
teraction, the off-diagonal term is eliminated by a standard
canonical transformation, with the second-order correction
left as the hyperfine-mediated nuclear interaction. For the
same reason, the off-diagonal part of the nuclear interaction
contributes only when the terms conserve the Zeeman ener-
gies �so-called secular terms in the NMR terminology�.
Hence, the nonsecular terms are negligible. The total reduced
Hamiltonian is obtained from the transformation in Appendix
B, for the limit of long longitudinal relaxation time
�T1→��,

Ĥred = Ĥe + ĤN + �
±

� ± �Ĥ±�± � , �1�

with Ĥe=�eŜe
z, ĤN=�nĴn

z , and the interaction terms,

Ĥ± = ± ĤA + ĤB + ĤD ± ĤE, �2�

given by

ĤA = �
n�m

�
anam

4�e
Ĵn

+Ĵm
− � �

n�m
�An,mĴn

+Ĵm
− , �3a�

ĤB = �
n�m

�Bn,mĴn
+Ĵm

− , �3b�

ĤD = �
n�m

Dn,mĴn
z Ĵm

z , �3c�

ĤE = �
n

an

2
Ĵn

z � �
n

EnĴn
z , �3d�

where ��� are the eigenstates of Ŝe
z, the summation with a

prime runs over only the homonuclear pairs, the subscript A
denotes the extrinsic hyperfine mediated interaction, B the
off-diagonal part of the intrinsic interaction, D the diagonal
part of the intrinsic interaction, and E the diagonal part of the
contact electron-nuclear hyperfine interaction. The hyperfine
energy,34 determined by the electron wave function, has a
typical energy scale En�an�106 s−1 for a dot with about
106 nuclei. The sum, A��nan, is the hyperfine constant de-
pending only on the material. The intrinsic nuclear spin-spin
interaction has the near-neighbor coupling Bn,m�Dn,m
�102 s−1. The hyperfine mediated interaction, which is un-
restricted in range and associated with opposite signs for
opposite electron spin states, has an energy scale dependent
on the field strength, An,m�1–10 s−1 for field �40–1 T.

III. DECOHERENCE THEORY

The electron-nuclear spin system is assumed to be ini-
tially prepared in a product state with the nuclear spins in a
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thermal state with temperature T, described by the density
matrix

�̂�0� = �̂e�0� � �̂N. �4�

The time evolution of the reduced density matrix of the elec-
tron spin,

�̂e�t� = TrN �̂�t� , �5�

obtained by tracing over the nuclear spins, may be expressed
in the form

�	,

e �t� = �

	�,
�

L	,
;	�,
��t��	�,
�
e �0� , �6�

where �	,

e ��	��e�
�, and �	�, �
�� 	�+ � , �−�
. The superop-

erator or correlation function L	,
;	�,
� can be expressed in
terms of the evolution operator and contains the information
on the electron spin relaxation and decoherence.

The Hamiltonians of Eq. �1� for the T1→� limit con-

serves the electron Ŝe
z quantum number, �Ĥ , Ŝe

z�=0. Hence,
the correlation function has the following properties:

L	,
;	�,
��t� = L	,
�t��	,	��
,
�, �7a�

L	,	�t� = 1, �7b�

L+,−�t� = L−,+
* �t� , �7c�

and the specific expression for the free-induction decay,

L+,−�t� = e−i�etTrN��̂Ne+iĤ−te−iĤ+t� , �8�

which can be straightforwardly extended to dynamics under
pulse control.

The ensemble of nuclear spins, at temperature T��n
�An,m ,Bn,m ,Dn,m ,En, may be approximated by the density
matrix,

�̂N 
 e−ĤN/T = �
J

PJ�J��J� , �9�

where �J�� �n�jn�, jn being the quantum number of nuclear
spin n in the magnetic field direction. PJ is the thermal dis-
tribution factor. The correlation function L+,−�t� can then be
generally expressed as

L+,−�t� = �
J

PJe−i
J�t���J−�t��J+�t��� . �10�

In FID, �J±�t��=e−iĤ±t�J� and 
J�t�= ��e+EJ�t where EJ
=�njnan is the contribution to the electron Zeeman splitting
from the Overhauser field in the nuclear configuration �J�.
With a � pulse to flip the electron spin at time �, we have

�J±�t����=e−iĤ��t−��e−iĤ±��J� and 
J�t���= ��e+EJ��2�
− t�.

An important finding is that the coherence for the en-
semble dynamics takes the factored form

L+,−�t� = L+,−
s �t� � L+,−

�0� �t� , �11�

where

L+,−
s �t� = ��J−�t��J+�t��� , �12a�

L+,−
�0� �t� = �

J
PJe−i
J�t�. �12b�

L+,−
s �t� characterize the electron coherence evolution in the

single-system dynamics with the nuclear bath begins on a
typical pure initial state �J�� �n�jn�. The single-system dy-
namics is solely determined by the spectrum of the elemen-
tary excitations from the initial state �J�, i.e., the nuclear spin

pair-flips driven by ĤA and ĤB in Eqs. �3a� and �3b�. For a
sufficiently large number N of the nuclear spins, the spec-
trum is independent of the initial state with an error of the
order of 1 /�N. Therefore the coherence factor L+,−

s �t� can be
pulled out of the sum over J which results in the factorized
form as in Eq. �11�. The independence of the nuclear pair
excitation spectrum on the initial state has been numerically
verified with a number of different initial states in a GaAs
quantum dot with N=106. The independence of L+,−

s �t� on
the initial nuclear state �J� makes the measurement of single-
system coherence possible in principle, e.g., in single spin
measurement with predetermination or post-selection of lo-
cal Overhauser field through projective measurement.4

The ensemble effect resides entirely in the factor L+,−
�0� �t�,

which may be read as the inhomogeneous broadening of the
local field EJ with distribution function PJ. The inhomoge-
neous factor �i.e., the distribution of the hyperfine energy EJ�
dominates the free induction decay in the ensemble dynam-

ics in the form of L+,−
�0� �t�=e−i�et−�t / T2

*�2
, with the dephasing

time T2
*��NA−1�10 ns as measured.17–20 To single out the

dynamical decoherence time from the T2
*, spin-echo pulses

can be applied to eliminate the effects of the static fluctua-
tions of the local field. After a � pulse applied at �, the
inhomogeneous broadening part of the correlation function
L+,−

�0� �t�=1 for t=2�. The ensemble coherence peak at 2� is
known as spin-echo.35 The spin-echo profile, i.e., the echo
magnitude L+,−�2��=L+,−

s �2�� plotted as a function of the
echo delay time 2�, reveals the dynamical processes that
leads to decoherence.

IV. THE PSEUDOSPIN SOLUTION

The solution to the single-system evolution �J±�t�� relies
on the pair-correlation approximation explained here with
more details in Appendix C and justified in Appendix D.
Within a time t much smaller than the inverse nuclear inter-
action strength, the total number of pair-flip excitations Nflip
is much smaller than the number of nuclei N. The probability
of having pair-flips correlated is estimated in Appendix C 3

to be Pcorr�1−e−qNflip
2 /N �q being the number of homonuclear

nearest neighbors�, which, as also shown by a posteriori nu-
merical check, is well bounded by �1% in the worst sce-
nario studied in this paper. Thus, the pair-flips as elementary
excitations from the initial state can be treated as indepen-
dent of each other, with a relative error �� Pcorr. Then the
single-system dynamics �J±�t�� can be described by the ex-
citation of pair correlations as noninteracting quasiparticles
from the “vacuum” state �J�, driven by the “low-energy”
effective Hamiltonian,
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ĤJ
± = �

k

Ĥk
± � �

k

hk
± · �̂k/2, �13�

which has been written in such a way that the pair correla-
tions are interpreted as 1/2-pseudospins, represented by the
Pauli matrix �̂k, with k labelling all possible pair-flips, de-
fined in more details in Appendix C 4. The time evolution
from the initial state �J� can be viewed as the rotation of the
pseudospins, initially all polarized along the +z pseudoaxis:
�k �↑k�, under the effective pseudomagnetic field,

hk
± � �±2Ak + 2Bk,0,Dk ± Ek� , �14�

where, for the electron spin state ���, ±Ak and Bk are the
pair-flip transition amplitudes, defined in Eqs. �C2�, contrib-

uted by the hyperfine mediated coupling ĤA and the intrinsic

coupling ĤB, respectively, and Dk and ±Ek are the energy
cost of the pair-flip contributed by the diagonal nuclear cou-

pling ĤD and the hyperfine interaction ĤE, respectively. The
decoherence then can be analytically derived as

L+,−
s �t� = �

k

���k
−��k

+�� 
 �
k

e−�k
2/2, �15�

where ��k
±� are the conjugate pseudospin states. In FID,

��k
±�t���e−iĤk

±t�↑k�; while with a � pulse to flip the electron

at t=�, ��k
±�t�����e−iĤk

��t−��e−iĤk
±

��↑k�. �k
2�1− ���k

− ��k
+��2

possesses a simple geometrical interpretation: the squared
distance between the two conjugate pseudospins on the
Bloch sphere, which quantifies the entanglement between the
electron spin and the pseudospins.

V. RESULTS OF DECOHERENCE AND SPIN-ECHO FOR A
QUANTUM DOT

In this section, we analyze the results of decoherence un-
der free induction and spin-echo conditions for a GaAs quan-
tum dot. In numerical evaluations, the GaAs dot is assumed
to have a hard-wall confinement in the growth direction
�001� with thickness L�001� and a parabolic confinement with
Fock-Darwin radius r0 in the lateral directions. The external
magnetic field is applied along the �110� direction. For the
indirect intrinsic nuclear interaction, we consider only the
exchange part.27 The g factor of the electron17 is taken as
−0.13. The initial state �J� is generated by randomly setting
each nuclear spin according to a “high-temperature” Boltz-
mann distribution �PJ=constant�.

Figure 1 shows the FID in single-system dynamics for a
typical dot under various field strengths Bext. The inset of
Fig. 1 shows the field dependence of decoherence time T2
which is defined as the time when the FID signal is 1 /e of its
initial value. The strong field dependence of T2 demonstrate
the significance of the extrinsic hyperfine mediated nuclear
coupling until it is suppressed by a very strong field
��20 T�. As shown in Fig. 1, the FID signals have signifi-
cantly different decoherence times from the spin-echo sig-
nals �see also Fig. 4�. In Fig. 2, we separate artificially the
contributions from the extrinsic hyperfine-mediated and the
intrinsic nuclear interactions and show their different depen-

dence on time and dot size. The spin-echo profile is also
plotted for comparison.

A couple of justified simplifications can provide an under-
standing of the effects of various mechanisms on the spin
decoherence. First, the energy cost by the diagonal nuclear
coupling �Dk� can be neglected as it is by three orders of
magnitude smaller than that by hyperfine interaction �Ek�.
Second, for near-neighbor pair-flips, the intrinsic nuclear in-
teraction is much stronger than the hyperfine mediated one
for the field strength under consideration. Third, for nonlocal
pair-flips, the intrinsic interaction is negligible due to its
finite-range characteristic. Thus we can separate the flip-pairs
into one subset, k�KA, which contains O�N2� nonlocal flip-
pairs, driven by the effective pseudomagnetic field hk

±


�±2Ak ,0 , ±Ek� and a second subset, k�KB, which con-
tains O�N� near-neighbor flip-pairs, driven by hk

±


�2Bk ,0 , ±Ek�. The conjugate pseudospins will precess
along opposite directions in the nonlocal subset KA, and sym-
metrically with respect to the y-z plane in the near-neighbor
subset KB. The decoherence can be readily grouped by the
two different mechanisms as

FIG. 1. �Color online� Single-system FID for a dot with L�001�
=2.8 nm and r0=15 nm under various field strengths. The spin-
echo profile as a function of t=2� for Bext=10 T is also plotted for
comparison. The insets show the field dependence of the FID deco-
herence time.

FIG. 2. �Color online� Separated contributions to the single-
system FID by the extrinsic hyperfine-mediated nuclear coupling,
the intrinsic nuclear interaction, and both, for a dot with L�001�
=6.2 nm and r0=25 nm at Bext=12 T. The spin-echo profile with
both mechanisms is shown in comparison. The inset shows the FID
decoherence times resulting from only the hyperfine-mediated in-
teraction �square symbol� or only the intrinsic interaction �triangle
symbol� as functions of r0.
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L+,−
s � �

k�KB

e−�t4/2�Ek
2Bk

2 sinc4�hkt/2� �
k�KA

e−2t2Ak
2 sinc2�hkt�,

�16�

where hk= �hk
±� and sinc�x��sin�x� /x. We can see that the

extrinsic hyperfine-mediated and the intrinsic couplings lead
to the e−�t / T2,A�2

and the e−�t / T2,B�4
behavior in time shorter

than the inverse pair-flip energy cost �which corresponds to
the width of the excitation spectrum�,

T2,B 
 b−1/2A−1/2N1/4, T2,A 
 �eA−2N , �17�

where b is the typical value of near-neighbor intrinsic
nuclear coupling strength Bk and A��nan is the hyperfine
constant. Equation �17� explains the dot-size dependence of
the two mechanisms in the inset of Fig. 2. When the two
mechanisms are comparable, the single-system FID begins
with e−t2 behavior and may cross over towards e−t4 decay as
time increases, and this is actually observed in Fig. 2. As the
time grows beyond the inverse excitation spectrum width,
the quantum kinetics becomes a stochastic Markovian pro-
cess by building up the energy-conserving Fermi-Golden
rule as indicated by the sinc function in Eq. �16�.

Figure 3 shows the onset of the Markovian process by the
crossover from the e−t4 short-time behavior to the long-time
exponential decay e−t.

In ensemble or repeated dynamics,17,18,20 FID will be
dominated by the inhomogeneous broadening. In ESR
experiments,36,37 electron spin-flip pulses can be applied to
eliminate the effects of the static fluctuations of the local
field and spin-echo profiles are measured. The echo decay
time TH �defined as the echo delay time at which the spin-
echo magnitude drops to 1/e of the zero delay value� is
generally believed to give a quantitative measure of the
single-system FID time T2, as the direct measurement of the
latter is of considerable difficulty with current experimental
capability. We now show that the echo pulse will also modify
the electron spin decoherence induced by the quantum pair-
flip dynamics, and as a consequence, TH and T2 can be sig-
nificantly different. As the electron spin is reversed by the �
pulse, the hyperfine-mediated transition amplitude Ak and the
hyperfine energy cost Ek for each pair-flip will change the
sign after the pulse. Thus, the pseudospins driven by the
extrinsic hyperfine-mediated nuclear coupling �in subset KA�

will reverse their precession after the pulse and return to the
origin at t=2�, disentangling the electron spin and the pseu-
dospins. So the decoherence driven by the extrinsic
hyperfine-mediated coupling is largely eliminated in the
spin-echo configuration �see Fig. 2�. This phenomenon was
first noted in the numerical simulation of a small system of
�10 nuclear spins in Ref. 5. For the pseudospin driven by
the intrinsic coupling �subset KB�, the conjugate pseudospins
will switch their precession axis which also reverse the en-
tanglement to some extent but no full recovery can be ob-
tained at the echo time. Finally, the electron spin coherence
at the echo time can be derived as

L+,−�2�� � �
k�KB

e−2�4Ek
2Bk

2 sinc4�hk
B�/2�. �18�

Similar to the analysis for single system FID, the spin-echo

signal begins with e−�2� / TH
sh�4

short-time behavior. The Fermi-
Golden rule will build up as the time grows beyond the in-
verse pair-excitation spectrum width, which renders the
quantum kinetics a Markovian process. The crossover to-
wards the Markovian behavior becomes observable when the
width of the pair-excitation spectrum is greater than or com-
parable to the inverse of the initial dephasing time TH

sh. For
small quantum dots, the hyperfine coupling and its gradient
is larger, resulting in a broader excitation spectrum, and
therefore the crossover behavior is observable, as shown in
Fig. 3. For large quantum dots, where the pair-excitation
spectrum is relatively narrower, the initial stage decay could
already eliminate the spin coherence and thus the whole

dephasing process could be described by the e−�2� / TH
sh�4

pro-
file.

The decoherence due to the intrinsic nuclear interaction is
suppressed by the echo pulse as evidenced by the enhance-
ment of the short-time decoherence time, TH

sh=�2T2,B �see
Figs. 2 and 4�. The onset of the Markovian crossover also
manifests itself in the difference between the initial echo
time TH

sh and the overall echo decay time TH for small dots, as
shown in Fig. 4.

VI. SUMMARY

In conclusion, we have presented the quantum theory for
the electron spin decoherence by a bath of interacting nuclear

FIG. 3. �Color online� Spin-echo signal for dots of L�001�
=2.8 nm and various r0 at Bext=10 T.

FIG. 4. �Color online� Dot-size dependence of the decoherence
times �see text�, TH

sh as circles, TH squares, T2 triangles, T2,B in-
verted triangles. TH

sh/�2 is plotted �dashed blue line� for compare
with T2,B. The dot thickness L�001�=2.8 nm and Bext=10 T.
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spins under strong magnetic field and at finite temperature.
Entanglement between electron and nuclear spins, estab-
lished by their coupled evolution, leads to the loss of electron
spin coherence. The solution to the electron spin coherence
amounts to solving the many-body dynamics of the interact-
ing nuclear spin bath, which are conditioned on different
electron spin states. In the time scale of interest, the nuclear
bath dynamics is dominated by pair correlations among
nuclear spins, which can be mapped into independent pseu-
dospin excitations. Within the pair-correlation approxima-
tion, the electron-nuclear spin dynamics reduces to the
coupled evolution of the electron spin with the noninteract-
ing pseudospin excitations, for which exact solutions are
found.

Decoherence behaviors in GaAs quantum dots are calcu-
lated as examples. We have demonstrated the significance of
the extrinsic nuclear coupling mediated by the virtual elec-
tron spin flips, which manifests itself in the strong field de-
pendence of the FID in single-system dynamics. The calcu-
lated electron spin decoherence time in single-system FID
varies from �0.1 	s to �10 	s for field strength from
1 T to 20 T, and saturates as the hyperfine mediated cou-
pling is suppressed by stronger field. The spin-echo pulse not
only recovers the coherence lost by inhomogeneous broad-
ening but also eliminates the decoherence due to the
hyperfine-mediated nuclear pair-flips and reduces the deco-
herence by the intrinsic nuclear interaction, leading to a spin-
echo decay time �10 	s independent of field strength in
ensemble dynamics.

The theory presented here can be applied to other
electron-nuclear spin systems, e.g., donor impurities in sili-
con, and may also be extended to even more general cases of
a quantum object in contact with an interacting bath.
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APPENDIX A: THE HAMILTONIAN

The total Hamiltonian of the system of an electron and
many nuclear spins is given by

Ĥ = Ĥe + ĤN + ĤeN + ĤNN, �A1�

composed of the single spin Zeeman energies Ĥe=�eŜe
z and

ĤN=�n�nĴn
z in the applied magnetic field along the z axis,

the hyperfine interaction ĤeN and the intrinsic nuclear-

nuclear interaction ĤNN.
The hyperfine interaction between the electron and the

nuclear spins consists of the isotropic Fermi contact interac-
tion and the anisotropic dipole-dipole interaction. The latter
is negligible since the electron wave function in a quantum
dot is dominated by the s-orbit states. The contact hyperfine
interaction is given by38

ĤeN = �
n

anŜe · Ĵn, �A2a�

an =
	0

4�
�e�n

8�

3
���Rn��2, �A2b�

where 	0 is the vacuum magnetic permeability, Rn denotes
the coordinates of the nth nucleus, �n is the nuclear gyro-
magnetic ratio, and �e is the electron gyromagnetic ratio. It
should be noted that while the effective g factor in the quan-
tum dot determines the Zeeman energy �e, the free electron
g factor +2.0023 should be used for the hyperfine coupling.39

The intrinsic interaction between nuclear spins includes
the direct dipole-dipole interaction, the indirect interactions
mediated by virtual excitation of electron-hole pairs, and the
intranuclear quadrupole interaction. The direct dipole term is
given by38

ĤNN
d = �

n�m

	0

4�

�n�m

Rn;m
3 �Ĵn · Ĵm −

3Ĵn · Rn;mRn;m · Ĵm

Rn;m
2 � ,

�A3�

with Rn;m�Rn−Rm. The indirect nuclear interaction is me-
diated via the virtual excitation of electron-hole pairs by the
hyperfine interaction between nuclei and valence
electrons.23–27 When the virtual excitation is caused by the
Fermi-contact hyperfine interaction, the indirect interaction
has the isotropic exchange form

ĤNN
ex = − �

n�m

Bn;m
ex Ĵn · Ĵm, �A4�

named the pseudoexchange interaction in the literature. The
leading contribution of the pseudoexchange interaction for
nearest neighbors in the host crystal can be expressed as24,25

Bn;m
ex =

	0

4�

�n
ex�m

ex

Rn;m
3

a0

Rn;m
, �A5�

where �n
ex is the effective gyromagnetic ratio determined by

the renormalized charge density of the s-orbit electron. The
indirect exchange interaction has been experimentally stud-
ied by many researchers.25–27

When the virtual excitation of electron-hole pairs involves
both the Fermi contact and the dipolar hyperfine interactions,
group theoretical analysis shows that the indirect nuclear
spin interaction has the dipolar form and is denoted as indi-
rect pseudodipolar interaction in the literature.23 Lattice dis-
tortion can result in local electric field gradients, inducing
the intranuclear quadrupole interaction for nuclear spins with
moment greater than 1/2. The indirect pseudodipolar inter-
action and the quadrupole interaction are not included in the
numerical calculation in this paper due to the lack of experi-
mental characterizations in the literature. Nonetheless, they
can be well incorporated in our theory as contributions to
energy cost and transition amplitude for nuclear pair-flips
�see Eqs. �C2b� and �C2c�� when reliable data is available.
Furthermore, available studies25–27 show that the direct dipo-
lar interaction together with indirect exchange interaction
can mainly account for the broadening and line shapes of
NMR and NAR signals in the semiconductor matrix of our
interest and thus shall be the main ingredients of the intrinsic
nuclear interactions.
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APPENDIX B: THE EXTRINSIC HYPERFINE-MEDIATED
NUCLEAR SPIN-SPIN INTERACTION

The contact hyperfine interaction can be separated into the
longitudinal �or diagonal� part

ĤeN,l � �
n

anŜe
zĴn

z , �B1�

and the transverse �or off-diagonal� part

ĤeN,t � �
n

an

2
�Ŝe

+Ĵn
− + Ŝe

−Ĵn
+� . �B2�

The off-diagonal hyperfine interaction in the lowest order is
eliminated by the standard canonical transformation,

Ŵ � exp��
n

an

2��e − �n�
�Ŝe

+Ĵn
− − Ŝe

−Ĵn
+�� . �B3�

The residual second order term in the transformed Hamil-

tonian Ĥred=ŴĤŴ−1 is ĤA in Eq. �3a�. We neglect higher
order terms whose effects are by at least a factor of

���e
�N /A�−2�1 smaller as compared to ĤA. Note that

while the Zeeman energy �e�10–100 	eV for field
�1–10 T,17 A /�N�T2

*−1�0.1 	eV in GaAs fluctuation
dots.18

The canonical transformation also rotates the basis states,
�± � � �J�, �J�� �n�jn�, by a small amount

Ŵ� ± � � �J� 
 �1 −
1

2�
n

�wn
±�2�� ± � � �J� � �

n

wn
±� � �

� �jn ± 1� �
m�n

�jm� , �B4�

where we have kept only the lowest order correction in terms
of the expansion coefficient

wn
± �

an

2��e − �n�
�j�j + 1� − jn�jn ± 1� , �B5�

which is small number due to the inequalities, �e��n�an.
j=3/2 for all three relevant isotopes 75As, 69Ga, and 71Ga.

The rotation of the state vector actually accounts for the
rapid initial drop of the electron spin coherence. We show
below that this reduction in the visibility of the spin beat is
negligible under the field strength �1 T. The state evolution
in the very initial stage �t�an

−1� can be expressed as

e−iĤt� ± � � �J� = Ŵ−1e−iĤredtŴ� ± � � �J�


 Ŵ−1e−i�Ĥe+ĤN+ĤeN,l�tŴ� ± � � �J�


 e�i�1/2���e+EJ�te−i�njn�nt

���1 − �
n

�1 − e±i��e+EJ−�n±an�t��wn
±�2�

�� ± � � �J� ± �
n

�1 − e±i��e+EJ−�n±an�t�

�wn
±� � � � �jn ± 1� �

m�n
�jm�� , �B6�

where EJ=�njnan is the Overhauser energy of the electron

spin under the nuclear configuration �J� which arises from
the longitudinal �or diagonal� hyperfine interaction. To single
out the process of visibility loss, we have omitted above the

nuclear-nuclear coupling terms in Ĥred.
2 The reduced density

matrix of the electron spin can be derived as

�+,+
e �t� 
 �+,+

e �0��1 − p+�t�� + �−,−
e �0�p−�t� , �B7a�

��+,−
e �t�� 
 ��+,−

e �0���1 −
p+�t�

2
−

p−�t�
2

� , �B7b�

with

p±�t� � 4�
n

�wn
±�2 sin2

��e + EJ − �n ± an�t
2

. �B8�

The interference between different frequency components on
the right-hand side �RHS� of Eq. �B8� will lead to a visibility
loss of the coherence and the initial drop of the population
with amplitude �p±� ��e

�N /A�−2�1, occurring in the
time scale �an

−1. Therefore, in the high field limit ��1 T�,
the electron spin-flip by the nuclear spins is efficiently sup-
pressed �T1→� if phonon mechanisms excluded�.

To conclude, the transverse �or off-diagonal� part of the
hyperfine interaction has two effects: �i� the transformation
acting on the Hamiltonian results in an effective coupling

between the nuclear spins �ĤA in Eq. �3��, which contribute
to the pure dephasing of the electron spin coherence; �ii� the
transformation acting on the state vector can be understood
as a visibility loss. While the two processes coexist, we have
shown that under the field strength �1 T, the visibility loss
is negligibly small. Therefore, the exact evolution of the
electron nuclear system can be well approximated as

e−iĤt� ± � � �J� � e−iĤredt� ± � � �J� �B9�

with the effect of the transverse hyperfine interaction well

incorporated as the extrinsic nuclear coupling ĤA.

APPENDIX C: SOLUTION OF THE DYNAMICS OF THE
ELECTRON-NUCLEAR SPIN SYSTEM

The elementary process driven by the interaction Hamil-
tonian, Eq. �2�, is the pairwise homonuclear spin flip-flop.
Here, we examine the dynamics of the basic flip-flop pro-
cess, based on which we build a hierarchical framework of
many-spin basis states for dynamics, investigate the spin cor-
relations, and construct a pseudospin method.

1. The basic nuclear spin excitation

The transition for the pair-flip driven by the operator Ĵn
+Ĵm

−

consists in a pair of nuclear spins in state �jn , jm� going to
�jn+1, jm−1� if permitted, i.e., jn+1� j and jm−1�−j for
spin j. The shorthand k is used to denote this pair transition.
Such a kth pair-flip transition between two many-nuclear
spin states is described as
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� ± ��J� → � ± ��J,k� . �C1�

The transition matrix element ±Ak+Bk and the energy cost
Dk±Ek, the sign conditioned on the electron spin state ���,
can be derived from Eq. �3�,

Ak � �J,k�ĤA�J�

=
anam

4�e

�j�j + 1� − jn�jn + 1��j�j + 1� − jm�jm − 1� ,

�C2a�

Bk � �J,k�ĤB�J�

= Bn,m
�j�j + 1� − jn�jn + 1��j�j + 1� − jm�jm − 1� ,

�C2b�

Dk � �J,k�ĤD�J,k� − �J�ĤD�J�

= �
n�

Dn,n�jn� − �
m�

Dm,m�jm� − Dn,m, �C2c�

Ek � �J,k�ĤE�J,k� − �J�ĤE�J� = �an − am�/2. �C2d�

2. The hierarchy of nuclear pair-flip states

The evolution of the nuclear spin state �J±�t���e−iĤ±t�J�
can be formally described by pair-flip transitions in a hierar-
chy of basis states. The hierarchy is composed of the seed
state, �J�, the first-generation states, each �J ,k� generated
from the seed state by the kth pair-flip, the second-generation
states, each �J ,k1 ,k2� generated from the first-generation
state �J ,k1� or �J ,k2� by the k2th or the k1th pair-flip, respec-
tively, and so on. A many-nuclear spin state can be expanded
in this basis as

�J±�t�� = CJ
±�t��J� + �

k1

CJ,k1

± �t��J,k1� + �
k1,k2

CJ,k1,k2

± �t�

��J,k1,k2� + ¯ , �C3�

in which the wave function satisfies the equation

�tCJ,k1,. . .,kp

± = − iEJ,k1,. . .,kp

± CJ,k1,. . .,kp

±

− i�
j=1

p

�
kj

�Bkj
± Akj

�CJ,k1,. . .,kj−1,kj+1,. . .,kp

±

− i �
k�k1,. . .,kp

�Bk
* ± Ak

*�CJ,k1,. . .,kp,k
± , �C4�

where the energy EJ,k1,. . .,kp

± is the eigenenergy of the basis

state �J ,k1 , . . . ,kp� under the Hamiltonian ĤD± ĤE, respec-
tively. The hierarchy description of the nuclear spin dynam-
ics is illustrated in Fig. 5.

The many-body nature of the problem lies in the fact that
the pairwise flip-flops are correlated in general. The correla-
tion between two pair-flips can be developed in the following
three cases:

�1� Exclusive pair-flips as shown in Figs. 6�a� and 6�b�.
When one pair-flip �k1� has taken place, the other one �k2�
which shares one or two spins with the flipped pair cannot
occur any more, and vice versa.

�2� Subsequent pair-flips as shown in Figs. 6�c� and 6�d�.
When two pair-flips share one or two nuclear spins, one pair-
flip is possible only after the other one has already taken
place.

�3� Neighboring pairs as shown in Fig. 6�e�. Two pair-
flips can be correlated even when they do not share a nuclear
spin but are in the neighborhood, since one pair-flip will
change the nuclear spin configuration in the neighborhood of
the other pair and thus modify the energy cost �Dk� due to the

FIG. 5. �Color online�. The hierarchy structure for the nuclear
spin state evolution driven by pairwise flip-flops. The k1� and k5�
pair-flips are possible only when the pair-flips k1 and k5 have taken
place, respectively. Some pair-flips occurs exclusively to each other,
such as k2 and k3.

FIG. 6. �Color online� Possible correlations between two nuclear
spin pair-flips �k1 and k2, indicated by solid and dotted arrows,
respectively�. �a� and �b�, the two pair-flips sharing one or two
nuclei occur exclusively to each other. �c� and �d�, one pair-flip can
take place only after the other pair has been flipped. �e� The energy
cost Dk of one pair-flip depends on whether or not the other pair has
been flipped, when they involve spins in the neighborhood. �f� The
two pair-flips are independent of each other when they are far apart
from each other.
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diagonal nuclear spin interactions of one pair-flip. This cor-
relation can be clearly seen from Eq. �C2c�.
When two pairwise flip-flops are not in the neighborhood
�Fig. 6�f��, they are independent of each other.

With increasing numbers of pair-flips, the nuclear spin
state involves basis states further up in the hierarchy struc-
ture depicted in Fig. 5, and higher order correlations may
occur, making the solution of nuclear spin dynamics a for-
midable task in general.

3. Pair-correlation approximation (PCA)

Two pair-flips are correlated only when they are located in
the neighborhood. We can estimate the probability of having
pair-flips correlated in the pth generation of the hierarchy: if
p−1 pair-flip excitations have been generated, the probabil-
ity of having the pth pair outside the neighborhood of all the
previous ones is about �1−q�p−1� /N�. By induction, the
probability of having p pair-flips uncorrelated is

1 − Pcorr � �
j=1

p−1

�1 − qj/N� � exp�− qp2/N� . �C5�

The number of pair-flip excitations at time t may be esti-
mated by

Nflip � max
	=±

��
p=1

�

p�CJ,k1,. . .,kp

	 �2� . �C6�

If qNflip
2 �t��N in the time scale of interest, the probability,

Pcorr, of having pair-flip excitations correlated is negligibly
small. Thus, by removing the few states reached via subse-
quently correlated pair-flips and adding few states containing
exclusive pair-flips, the exact Hilbert space can be mapped
into the tensor product of two-dimensional Hilbert sub-
spaces, each of them corresponding to a pair-flip available
from the seed state �J�, namely

	�J�, �J,k1�, �J,k1,k2�, . . . 
 → �
k

	�↑k�, �↓k�
 , �C7�

where the index k runs over all possible pair-flips from the
seed state to the first generation. The mapping can be explic-
itly expressed as

�J� → �
k

�↑k� , �C8a�

�J,k1� → �↓k1
� �

k�k1

�↑k� , �C8b�

�J,k1,k2� → �↓k1
��↓k2

� �
k�k1,k2

�↑k� , �C8c�

etc., and the nuclear bath state can be factorized into elemen-
tary excitations as

�J±�t�� = e−iEJ
± t

�
k

�gk
±�t��↑k� + fk

±�t��↓k�� . �C9�

Furthermore, the energy cost of a pair-flip is assumed inde-
pendent of whether or not another pair-flip has occurred in
the neighborhood. So all the elementary excitations are

treated independent of each other and their dynamics is de-
termined solely by their own energy costs and transition ma-
trix elements as

i�tgk
± = �Bk ± Ak�fk

±, �C10a�

i�t fk
± = �Dk ± Ek�fk

± + �Bk ± Ak�gk
±, �C10b�

with initial conditions gk
±�0�=1 and fk

±�0�=0. The above ap-
proximation strategy is denoted as the pair-correlation ap-
proximation �PCA� where all pair-correlations among the
nuclear spins are kept and higher order nuclear correlations
are neglected.

In PCA, we will calculate physical properties by using
Eq. �C9� as the bath state at time t instead of the exact state
Eq. �C4�. In this paper, the electron spin coherence of interest
is essentially the state overlap between two differently driven
bath state as shown in Eq. �12a�. The relative amount of
change to the bath Hilbert space structure by PCA is Pcorr.
Therefore, the relative error of PCA in calculating the coher-
ence is bounded by

� � Pcorr � 1 − exp�− qNflip
2 /N� . �C11�

4. The pseudospin model

The uncorrelated pair-flip dynamics given in Eq. �C10� is
nothing but the independent evolutions of two-level systems
	�↑k� , �↓k�
. Thus the electron-nuclear spin dynamics �J±�t��
from the initial state �J� is mapped, by PCA, to the preces-
sion of N noninteracting pseudospins under pseudofields
conditioned on the electron spin state

Ĥk
± � hk

± · �̂k/2, �C12a�

hk
± � �±2Ak + 2Bk,0,Dk ± Ek� , �C12b�

where �̂k���̂k
x , �̂k

y , �̂k
z� is the Pauli matrix for the pseudospin

corresponding to the kth pairflip available from the seed state
�J�. Note that by the Hamiltonian mapping from Eq. �2� to
Eq. �13�, the energy of the seed state has been shifted by a
constant �k�Dk±Ek� /2, which does not affect the calculation
of ��J−�t� �J+�t���. The directions �indicated by the super-
scripts x, y, and z� for the pseudospins are not defined in the
real-space but in a fictitious pseudospace.

APPENDIX D: RANGE OF VALIDITY OF THE PAIR-
CORRELATION APPROXIMATION

Within the PCA, the averaged pair-flip number Nflip de-
fined in Eq. �C6� has a simpler form

Nflip = max
±

��
k

��↑ �e−iHk
±t�↑��2� , �D1�

with which we can make an a posterior self-consistency
check of the validity of the approximation. If Nflip obtained
from Eq. �D1� is small, we conclude that it also faithfully
reflects the number of pair-flip excitations in the exact dy-
namics and therefore, the error estimation would be faithful
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and the physical property can be calculated based on PCA
with a relative error bounded by Eq. �C11�.

The total number of pair-flip excitations can be divide into
two parts: Nflip�t�=Nflip,A�t�+Nflip,B�t�, where Nflip,A is the
number of nonlocal pair-flip excitations and Nflip,B is the
number of local pair-flip excitations that have been created.
Nflip,A�t� and Nflip,B�t� have very different dependence on
time and system parameters, and we analyze them separately.

In free-induction evolution, the number of nonlocal pair-
flip excitations is given by

Nflip,A�t� = �
k
� 2Ak

�Ek
2 + 4Ak

2�2

sin2
�Ek

2 + 4Ak
2t

2

� �
k

Ak
2t2 � NA

A4

N4�e
2 t2 �

A4

N2�e
2 t2, �D2�

where NA�N2 is the number of nonlocal nuclear spin pairs.
Since the evolution of the nonlocal pair correlation is com-
pletely reversed by the � pulses �see the discussion in Sec.
V�, Nflip,A�t� is also reversed and returns to zero at each spin-
echo time. Therefore, Nflip,A�t� does not accumulate in the
pulse controlled dynamics22 and we just need to look at the
maximum value of Nflip,A�t� between echoes.

For single system FID and ensemble spin-echo calcula-
tion presented in this paper, the sufficient condition for
PCA to be valid is Nflip,A

2 �TH��N by noticing that

T2
min�T2,A ,T2,B� and TH=�2T2,B. From Eq. �17�, we have,

Nflip,A�TH� � N−3/2�e
−2b−1A3, �D3�

Therefore, we obtain a lower bound on the dot size N for the
validity of PCA: N4�A6�e

−4b−2. For GaAs fluctuation dot in

a field of 10 T, the above condition is well satisfied for N
�104.

In contrast to the nonlocal pair dynamics, the local pair
dynamics is not reversed under the influence of the electron
spin-flip and Nflip,B�t� accumulates all through the time.
Nonetheless, it turns out that for all scenarios of interest
including the evolution under the pulse sequence control as
in Ref. 22, we have,

Nflip,B�t� � �
k

Bk
2t2 � NBb2t2 � Nb2t2, �D4�

where NB�N is the number of local nuclear spin pairs. For
the relevance of the single system FID and ensemble spin-
echo calculation, we shall examine

Nflip,B�TH� � N3/2bA−1 �D5�

and therefore, the condition �Nflip,B�2�N sets an upper bound
on the quantum dot size N: N2b2A−2�1. In GaAs, the above
condition is well satisfied for quantum dot size N�108.

To conclude, for nuclear pair correlations to dominate
over higher order correlations in the relevant time scale, local
nuclear pair dynamics driven by the intrinsic couplings im-
poses an upper bound on N while non local nuclear pair
dynamics driven by the extrinsic coupling imposes a lower
bound. This mesoscopic regime covers quantum dots of all
practical size. Within this mesoscopic regime, higher order
nuclear correlations are well negligible under the time scale
of interest. The error estimation is based on characterizing
the difference in the Hilbert space structure of the exact dy-
namics and that of the pseudospin model and assuming this
difference has a full influence on the electron spin coherence
calculation. Therefore, the bound of Eq. �C11� is not neces-
sarily a tight bound.
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