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Theory of dephasing by external perturbation in open quantum dots
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We propose a random matrix theory describing the influence of a time-dependent external field on the
average magnetoresistance of open quantum dots. The effect of the external field is taken into account to all
orders of perturbation theory, and the result is applicable to both weak and strong fields.
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The anomalous magnetoresistance of bulk disordered sysffects of the electron-electron interaction on the conduc-
tems is governed by weak localizatigivL).'~3 Being an  tance which are as small asNf,,** while the weak local-
interference phenomenon, it is extremely sensitive to inelasization correction to the conductance is proportional to
tic processes commonly referred to as dephasing. 1/N.,. The same condition also allows us to use a conven-

Recently, another object for the study of quantum effectdional diagrammatic techniglieto take the ensemble aver-
appeared—ballistic quantum ddtén the absence of inelas- age.
tic processes, the transport properties of the dots are well The Hamiltonian of the system'fs
described within the random matrix theotRMT).> The o
magnetoresistance within this theory manifests itself as a H=Hp+H_ +Hp, @
crossover between two universal ensemlgtethogonal and
unitary), and the strength of the magnetic field defines thewhere HD is the Hamiltonian of the electrons in the dot,
position on this crossover. This picture per se did not includevhich is determined by th& XM matrix Hpy:
dephasing, and the dephasing processes were considered on a N
phenomenological basisThe relation of this phenomeno-
logical description used to fit the data of Ref. 7 to the micro- E
scopic mechanisms of dephasing is still an open question.

In this paper, we propose a random matrixlike theory ofwhere the thermodynamic limi — o is assumed. We con-
magnetoresistance affected by an external time-dependesider the case, whei#,, is a time-dependent random matrix
perturbation. We will find both the amplitude and frequencyin the form
dependence of the magnetoresistance using only one un-
known parameter. This parameter can be related to the cor- Ham(t) =Hamt Vame(t). (€)

relator of the level velocities due to the same perturbation ait-|ere the time-independent part of the Hamiltortiy), is a

zero frequency and, thus, in principle, can be determined bYandom realization of thé1x M matrix, which obeys the
an independent experiment. After the strength of the poten Sorrelation function

tial is normalized by this parameter, all results become uni-

nmlr//m 1 (2)

nm=1

versal. As for the experimental realization, we imply chang- He S V=N S AN S S 4
ing the shape of a quantum dot by applying an external ac (Mo ) o emm mmnme @
bias to the dot forming leads. where A\=M (6, /m7)? and \'=\(1—g,/4M), and g, de-

Before we proceed, let us mention that the effect studiedines the crossover from orthogonal,&0) to unitary @,
in the present paper is similar to that of Refs. 8 and 9, where=-4M) ensembles. The parametgy has the meaning of the
it was shown that a uniform ac-electric field suppresses thelephasing rate due to an external magnetic field in the units
weak localization correction to the conductivity of a disor- of the level spacinggl_&lo It can be estimated agy,
dered wire. The results of Ref. 8 are not directly applicable=g, (®/®,)?, where® is the magnetic flux through the
to quantum dots with sizé so small that the Thouless en- dot andd,=hc/2e is the flux quantum. The time-dependent
ergy Er~17il7erq is much greater than all other energy scalesperturbation is described by the symmetkicx M matrices
of the problem(here 7,4 is the characteristic time for a v, and the function of timen(t).
classical particle to cover all of the available phase space  The coupling between the dot and the leads is

On the other hand, in this limit, one can use the RMT to
study the conductance of the system, see Ref. 10. All correc- A t
tions to the RMT are as small &.,,/9q4ot;940t= ET/ 61 and Hipo= aznk [Whatho(K) ¢hntH.Cl, ®)
&1 is the mean level spacing. We consider the WL correction .
to the conductance of quantum dots with a large number ofvhereys,, corresponds to the states of the dpt(k) denotes
open channeldN.,. In this approximation, we neglect the different electron states in the leads, and momeritdabels
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continuous states in each channrel For a dot connected We perform calculations of the average conductance
with two leads byN, andN, channels, respectively, we de- keeping the leading terms inM/. The diagrammatic tech-
note the left lead channels bysle<N,; and the right chan- nigque is somewhat similar to that developed for bulk
nels byN,+1<a<N,, whereN,,=N,+N, . The electron metals}* where the small parameter isetfry, with e
spectrum in the leads near the Fermi surface can be lineabeing the Fermi energy and,, being the elastic mean free
ized: time.

First we find the ensemble average Green’s function
(G, One can see thatG(®) is diagonal, (G (e))
=8,mGP(€). Using the self-consistency equation for the
Green'’s function, Fig. (), we find

ﬁL=vFEk Kip! () (k). 6)

wherev=1/27v is the Fermi velocity, and is the density
of states at the Fermi surface.

The coupling constantd/,,, in Eq. (5) are' (1 N
’ == hs
. 1+t,t ¢
M &, Y204 if n=a<Ng,, 1 nn
=\ 2| 1o otherwi @ Gll(a=—={ L 2,t*
2y otherwise, N —— fie
a=11+1t,t
wheret, determines the dimensionless conductance of each 1+ —— 2% n>Ngp.
lead (in units of 26%/h) according to \ 4M 13
N at,th AT O

9|:E

—, (8)  Above we introduced the dimensionless eneegmeasured
a=1 (1+1t,t%)

a=Ni+1 (1+t,t5)? in the units of yN/4M = 5,/27r. We expand these Green’'s
functions ine/M andg, , /M, since only those terms survive
the thermodynamic limiM —o. For the same reason, in the

; : i (R) \with n< i
open channelst(=1) is zero. A more complicated structure expression foS,™ with n< Ny, we neglect such terms since

of W can always be reduced to the forfW) by suitable the contribution of these elements to the final result is al-
rotations. ready of the order oN.,/M.

We rearrange Eq11) as the following:

O

and|t,|=<1. The factor in Eq(7) is chosen so that the en-
semble average scattering matdy; of a dot with fully

The scattering matrix of the systeﬁi, has the form

Sap(t,t)=8,56(t—t") =27 vW! Gm(t,t ) Wing, (9) N, g2+ N,g? . .
p p o me gzrg'—'zgr+fdtldtztr(J|S(t,t1)Jr8T(t2,t)),
and the Green’s functio®,(t,t’) is the solution to (91+9r)
(14
Jd - Na A
iE—H(t)meWWT G(t,t")=68(t—t"), (10
N ~ jl,r:;l,r_ g_:_r i (15
where the matricel andW are comprised by their elements 979

(3) and(7), respectively. . . .
The average dimensionless dc conductance of the dot gduation(14) immediately follows from Eq(11) and from

. , j itari ixSSt= i
temperaturd in terms of the scattering matrix of the system the unitarity of theS matrix SS"=1. The calculations of the
in linear response theory'fs conductance in the form of E@L4) are significantly simpler

since the vertice$15) are not dressed by the dashed lines,

+o0 . . see Fig. 1b). This trick is similar to the calculation of the
9:<J dtldtZtr[TIS(t’tl)TrST(tZrt)]>f(tl_tZ), conductivity of disordered bulk systems in terms of the
* current-current, rather than density-density, correlation func-

tion, Refs. 2 and 3.

Now, we substitute the scattering matrix defined by Eq.
f(t)= f”dw eiwti . _— mt (12) (9) to Eq.(14). One can independently average to the leading

—w Jw e¥/Ty1 sinhaTt’ order in 1/@,+g,) with the help of Eq.(13) and obtain the

. classical conductance
where(- - -) stands for both ensemble and tirhaverages.

We also introduce a notation for the projector on the left

11

lead, 7, which is a diagonaN., X N.,, matrix with the first o= 919 . (16)
N, diagonal elements equal to unity and the other diagon- “ g+tog,
al elements equal to zere,=1—17,.

The ensemble averagésS(t,t;)ST(t,,t))~8(t;—t,). Particularly, for the dot with fully open channels,&1), the
This property allows us to eliminate one of the time integralsaverageS matrix vanishes, and the first term of E@.4)
in Eq. (11) and the thermal functiof(t): f(0)=1. There- givesg,=N,N,/N.,, since in this casg, ;=N ;.
fore, the result does not depend on the electron temperature, The first order correction in 1g(+g,) to Eq. (16) is
similarly to the conductivity of bulk metal in the weak local- given by the diagram in Fig.(d). It represents the WL cor-
ization regime without interaction. rection to the conductance and has the expression
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FIG. 1. (a) Diagrams for the ensemble average Green’s function.”™ 0.6 i
The second term in the self-energy includes an intersection of

dashed lines and is as small ad/1/(b) The representation of the
conductance in the form of Eql4) forbids renormalization of the
verticesJ from Eq. (15) by disorder.
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THEORY OF DEPHASING BY EXTERNA . ..

Agyi=— 2d7C(T,7,—7);
T (@t 27 o
17
where the form factor$, , are given by
o 16(t,t5)? & 16(t,th)°
=2 —— 5 f= — (19
a=1 (1+t,t7) a=Nj+1 (1+t,t7)
The CooperorC is defined in Fig._gb):
J
(E_—HC(T,T))C(T,T,T'):&T— '), (19
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FIG. 3. Representative curves B{y,z) as a function ofz for
two values ofy. F(y,z) decreases linearly withat small values of
z The inset shows thg dependence of the functidf(y,z) for two
values ofz. F(y,z) decreases quadratically ynat small values of
and saturates at larggr
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Co (21)

where we used the fact that the matvixis symmetric. This

where time is measured in the units of inverse level spacinf@rameter is related to the typical value of the level veloci-

2/ 61 and the “Hamiltonian” for the Cooperon is

K(T,7)=0, + 7Col @(T+ 7/2) — o(T—7/2)]%. (20)

Hereg, characterizes the total dephasing due to the escape

as well as the magnetic field,

9x=091t0r+0h,

and we chosep(t) =coswt to describe the time dependence

of the perturbation.
The only unknown parameteZ, in Eq. (20) depends on

the strength of the perturbation. In terms of the original

Hamiltonian(3), it is defined as

n n
J< >J R A
1 r

n n

g M

[ -

R £ g m
L O D e
A

E 42
Vi Vin
L S ¢
®

FIG. 2. (a) The diagram for the WL correction to the conduc-
tance.(b) The diagram equation for the Cooperon.

les, which characterizes the evolution of an energy level
€,(X) under the external perturbatiofV,*4

(96,,)2 de\ ?
axX axX |’
Since all other responsés.g., parametric dependence of the
conductance of the dpare expressed in terms of the univer-
sal functions of the same parametgg,4 it can be found
from independent measurements. For the rather unrealistic
case of homogeneous electric fifldntroduced into a dot of
linear sizel, one can estimat€,=(eEL)?/(E14,). It is
important to emphasize that a homogeneous shift of all levels
does not affect the magnetoresistance and that is why the
average level velocityde, /9X) is irrelevant.

In the absence of time dependent perturbatiea0 22
one obtains from Eqg17)—(20):

(22)

5iCo: <

_ fgi+fg
(91+9,)0,

The solution to Eq(19) gives the weak localization correc-
tion to the conductancdg,, in the presence of the time
dependent field. It can be expressed in terms of the unper-
turbed correction(23) as

(23

Agy T m?Cq
=F(y,z), = , Z= , 24
A (y.2), 'y 9. o, o (29)
where the dimensionless functiéi(y,z) is given by
o sinxy
Fya= | axe izl o=x- 0 @29
0
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Herely(¢) is the modified Bessel function. Some curves forin bulk systems, the result does not depend on the frequency
this function are plotted in Fig. 3. o for reasons we have already discussed.

Equations(24) and(25) are the main results of our paper.  In the case of a slowly varying field;<1, but still zy?
They give a universal description of the effect of an externak>1 (strong field we obtain
field on the weak localization correction. Below we will dis-

cuss different asymptotic regimes and compare them with 5 3\ 13
the results for bulk systents. Agw _ I'(1/6) ( 2610 ) 29
For a weak external field<max(ly ?) we find Agl®  7T(5/6)\ 9Cyw?)
A ZC 2 2
Ju T 7O (26) i.e., the dependences on both the amplitude and the fre-

Agy 9% o+ 859 quency are different from the bulk case.

In this regime the correction is quadratic in frequency for a I.n_COI']C|US.I0n, We propose a random matrix theqry de-
slowly oscillating field atw smaller than the dephasing rate scribing the influence of a time-dependent external field on

1/7,. However, the frequency dependence saturates at Iar%@e avgrage maggetore3|stt§n(iﬁ off openf cttjantu.m dotls% This
frequency. It is different from the result for bulk systems, CcPENUENCE can be recast in the form of the universal func-

where a characteristic spatial scale shrinks a&»1tvhereas ;:22 dEg' (ii) i?]f dznee:ét'er:g girirrri]rit:;tlzslq'ii) \rléglglrt]scggn?]it be
in our case it is determined by the size of the dot. y P P '

In the opposite limit of a strong external field; described by a simple replacemegy —g, + . Finally,

>max(ly 2), we have to consider separately the cases ofve note that th_ermal flu_ctuatlons of the gate_potentlal_s may
fast,y>1, and slowy<1 field oscillations. In the first case Induce dephasing by virtue of th_e mechanism congldere_d
we %ind ' k ' here. However, the spectral density of such fluctuations is

model dependent and thus not universal.
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