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Abstract. It has often been assumed that electrically floating qubits, such as
flux qubits, are immune to decoherence due to capacitive coupling. We show
that capacitive coupling to bias leads can be a dominant source of dissipation,
and therefore of decoherence, for such floating qubits. Classical electrostatic
arguments are sufficient to get a good estimate of this source of relaxation for
standard superconducting qubit designs. We show that relaxation times can be
improved by designing floating qubits so they couple symmetrically to the bias
leads. Observed coherence times of flux qubits with varying degrees of symmetry
qualitatively support our results.
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1. Introduction

A quantum computer architecture based on superconducting thin film wires and Josephson
junctions is attractive in large part because of its compatibility with current state of the
art fabrication methods for solid state devices. A wide array of impressive experimental
demonstrations of this include single- and two-qubit gates using a variety of superconducting
qubits [1]–[9]. In parallel, coherence times of qubits have increased from tens of nanoseconds
to a few microseconds through an improved understanding of microwave engineering [10, 11]
and materials research [12, 13]. Nonetheless, there is still much to be learned about coherence
times in these systems. While some qubits appear limited by two-level defects [11, 13], a
clear explanation of the decoherence processes that affect many of these qubits remains
elusive [9, 14].

Here, we analyze a previously overlooked dissipation (and therefore decoherence) channel
that could explain some of the observed short coherence times. We will show that capacitive
coupling to bias leads can be a significant source of relaxation in the form of spontaneous
emission via electric dipole transitions even for floating flux qubits. Such dissipation mechanism
has been well understood for charge qubits [15] but it has, to the best of our knowledge, not yet
been considered for flux qubits. When flux qubits are floating, it has been assumed that the
connection of the qubit to ground is poor and therefore such qubits are immune to capacitive
coupling. This assumption is shown to be incorrect. The reactance Y = iωCg of the capacitance
to ground Cg, even for floating qubits, becomes sizeable for frequencies ω in the microwave
range. Thus, the coupling via this capacitance to (resistive) bias leads becomes important as our
estimates show below. As we know from the formulae for the capacitance to ground in simple
geometries such as discs and loops, the scale of Cg is basically fixed by the overall physical size
of the qubit device, and cannot be altered much by details of device shape or geometry.

The coherence of a superconducting qubit is obviously a quantum-mechanical
phenomenon. But this paper will present relaxation-time estimates based purely on classical
electric circuit theory applied to linear (RLC) circuits. Of course, Josephson junction devices
can be strongly nonlinear; but in cases of current interest experimentally, they operate in a nearly
linear regime, in which their functioning in a circuit can be modeled by a simple inductor.
Our classical calculations then assume the basic form of an RC time constant, which makes it
easy to gain an intuitive understanding of the features that determine the short relaxation times
of these qubits. At the same time, these classical calculations are very informative about the
quantum behavior of these devices, because of the limit that the relaxation time T1 puts on the
time T2 for the decay of quantum coherence: T2 6 2T1. Previous, fully quantum mechanical
calculations [16] confirm that the small anharmonicities present in our system do not strongly
change the computed values of T1.2

Our modeling shows that the strong relaxation due to this capacitive coupling can be
mitigated by symmetrically coupling the qubit to the bias leads and by engineering the
admittance of the bias leads. The classical physics makes it very clear that by configuring the
bias leads in such a way that no circulating currents can be generated in the qubit, relaxation
times will significantly increase. The fact that symmetry is crucial is qualitatively supported by
various experimental results: symmetric qubits perform better than asymmetric ones, and we
believe the reason for this involves capacitive coupling. Naturally, a long T1 does not guarantee
a long T2, and our calculations here will not address many other mechanisms that are being

2 We have also used the fully quantum mechanical models to confirm the symmetry arguments.
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investigated for the loss of quantum phase coherence. But since long coherence times are
possible only in systems with long relaxation time, our calculations show a necessary set of
conditions for achieving high quantum coherence.

Our models focus on simulating a RF superconducting quantum interference device
(SQUID)—the simplest implementation of a floating flux qubit [17]. The simulations can be
extended to other qubit designs with multiple Josephson junctions, and we believe that the
underlying arguments for decoherence will not be drastically altered.

Our calculations indicate that there is not such a large difference between floating qubits
and ‘grounded qubits’—ones connected to electrical ground via a direct metallic contact. It has
been previously understood [11, 18, 19] that when qubits are grounded, they are susceptible to
decoherence via capacitive coupling to bias leads. Phase qubits, for example, are excited via a
small coupling capacitor and therefore decohere via the same mechanism, although the coupling
capacitance is generally small enough not to have an impact on current coherence times [6]. But
we show here that most floating qubits in fact also have a strong (reactive) coupling to ground,
because the capacitance to ground of an isolated object scales only with its linear dimension
instead of volume or area and is thus appreciable for all but the smallest of flux qubit designs.

2. Circuit modeling

The scale of the capacitance to ground of a flux qubit can be estimated by using several
well-known results: the capacitance of a sphere of diameter D to a ground at infinity is
Cg,sphere = 2πε0 D [20]. The capacitance of a disc with diameter D is Cg,disc = 4ε0 D, differing
only by the factor 2/π from Cg,sphere [20]. One might think that a useful estimate is only obtained
by a geometry more similar to the qubit; but the capacitance of an isolated loop of diameter D
and wire width a with D � a is [21]

Cg,toroid =
2π 2ε0 D

log(8D/a)
. (1)

For typical loop dimensions and wire widths the logarithmic term is in the range of 5–10.
Therefore, Cg,toroid ≈ Cg,sphere/3 which means that the capacitance of a loop is within a factor
of three of the capacitance of a sphere with the same linear dimension.

When the loop is on top of a dielectric substrate, Cg,toroid is modified. It can be approximated
by taking the arithmetic mean of the capacitance when the object is in free space and when it is
surrounded by the dielectric, giving

Cε
g,toroid ≈

π 2(εsubs + ε0)D

log(8D/a)
. (2)

For typical loop geometries of D ∼ 10–100 µm and εsubs = 10ε0 we obtain Cg ∼ 10 fF. This is
consistent with full, numerical capacitance calculations. While 10 fF may seem to be a small
capacitance, we will see that it is not negligible and can in fact open the door to significant
relaxation. Note also that equation (2) is a lower bound on the capacitance, because it is
computed assuming ground is at infinity. In practice, ground is not so distant from the qubit,
so that Cg is always somewhat larger than predicted by equation (2).

The simplest method to quantitatively compute the relaxation time of a qubit is to model
it as an LC resonator. This approach has been employed extensively to predict qubit coherence
times [11, 13, 19] and we restate the arguments for this approach here for completeness. Note
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Figure 1. Sketch of a simple flux qubit and its description using circuit elements.
(a) A simple flux qubit consists of a superconducting loop interrupted by a
Josephson junction. (b) It can be modeled as a Josephson inductance L J in
parallel with a loop inductance L and junction self-capacitance C . (c) Circuit
description of the simplest model to capture the qubit’s capacitance to ground Cg

and to a bias lead Cc. (d) A more accurate circuit model discretizes the loop into
n segments each with inductance L/n and capacitance to ground Cg/n (n = 5 is
shown).

that although the classical model does not, of course, predict the anharmonicity of the qubit, it
does accurately predict dissipation. We shall describe the modeling of a simple RF SQUID [17].
The RF SQUID consists of a Josephson junction embedded in a superconducting loop with
inductance L as shown in figure 1(a). When biased with a flux 80/2, where 80 = h/2e is
the flux quantum, the potential is symmetric. Furthermore, the Josephson junction has a phase
difference of π so that its inductance is approximately equal to L J ≈ −80/2π I0 where I0 is
the critical current of the junction. In order to be a useful flux qubit, the negative Josephson
inductance L J should have a value such that it roughly cancels out the loop inductance:
L J + L . 0. From a circuit element perspective, the qubit can now be modeled as two inductors
(L and L J) and a capacitance C (the junction self-capacitance or shunting capacitance) all
in parallel as shown in figure 1(b). Suppose the qubit is capacitively grounded (Cg) and also
capacitively coupled (Cc) to a bias lead which, because it is connected to a long transmission
line, has an impedance of Z0 = 50 � as shown in figure 1(c). The capacitance to ground and the
bias lead can be lumped into a single capacitance Ceff = (1/Cg + 1/Cc)

−1.
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The relaxation time of the qubit at low temperature can now be calculated knowing only
the values of the classical circuit elements [19]. For the RF SQUID, the RLC model tells us that
the T1 time is given by a classical RC time constant

T1 = C/Re{Y } = C Reff. (3)

Here

Y = Z0(ωCeff)
2 + iωCeff (4)

is the reactance looking out from the qubit in the limit 1/ω Ceff � Z0, and Reff = 1/Re{Y } is
the effective resistance seen by the qubit.

It is interesting to compare with an apparently very different formula obtained from a
standard quantum mechanical treatment (e.g. [16, 19]):

T1 =

(
2π

80

)2 h̄

2ω

coth(h̄ω/2kBT )

|〈0|δ|1〉|2 Re{Y }
. (5)

This formula involves the same reactance Y , but also involves a quantum mechanical matrix
element of the superconducting phase operator δ (e.g. [19]). But for a harmonic system
this matrix element can be calculated, with the result 〈0|δ|1〉 = 2π/80

√
h̄/2ωC . With this

substitution, the quantum and classical formulae equations (5) and (6) agree exactly in the low-
temperature limit, where the hyperbolic cotangent factor is one.

Within the quantum mechanical calculation, we can investigate the change of the matrix
element resulting from the small anharmonicity of the qubit potential. The small resulting
rescaling of T1 can be represented in the classical formula by writing

T1 = αC Reff, (6)

with the multiplicative factor α in the range 1 < α < 3 for the parameters of a realistic flux
qubit. We will retain this factor in the otherwise classical formulae that we discuss below.

Returning to the RF SQUID analysis, with the expression for Y in equation (4), we find,
in the limit 1/ωCceff � Z0, Reff = 1/Z0(ωCeff)

2. The imaginary part of Y is equivalent to a
capacitor Ceff in parallel with C , raising the effective total capacitance of the LC resonator to
C + Ceff (see [18]). Therefore, for capacitive coupling to bias leads, and similar to [11, 18], we
find a relaxation time

T Ceff
1 ≈

α(C + Ceff)

Z0(ωCeff)2
. (7)

For flux qubits C ∼ 10 fF. Assuming ω/2π = 5 GHz, α = 1 and Cc = Cg ∼ 10 fF (Ceff ∼ 5 fF)
one computes

T1 ≈ 12 ns, (8)

a very short coherence time compared with the best published results, clearly indicating that
capacitive coupling can have a severe impact on coherence times. Note that Cg ∼ 10 fF is present
for typical loop sizes of about 50 µm as pointed out earlier, and similarly Cc ∼ 10 fF is easily
present in bias loops and/or measurement SQUIDs, particularly because capacitance only scales
logarithmically with distance. We next show that coherence times are not significantly altered
even when including a more realistic treatment of features such as the distributed nature of the
capacitance to ground.

The fact that this capacitance to ground is distributed can be modeled numerically by
computing the relaxation time of the circuit of figure 1(d) in which the distributed ground is
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Figure 2. Examples of circuits which are not impacted by capacitive coupling
(shown for n = 4 —arguments valid for n → ∞). (a) Coupling to one bias lead
symmetrically with capacitances Cc1 and Cc2 external noise cannot excite the
resonator and therefore it has an infinitely sharp resonance. (b) Coupling to a
bias lead to the center of the loop, the circuit also has no loss.

discretely approximated using n segments. We find that a distributed ground leads to an increase
in coherence times by about a factor of 26 β 6 5 for a wide frequency range and a variety of
10> Cg/Cc > 1 ratios. Therefore, when Cg is distributed we can write the coherence times as

T Ceff,dist

1 ≈
αβ(C + Ceff)

50(ωCeff)2
, (9)

and significant decoherence is present even for a distributed Cg.

3. Symmetry considerations

Thus far we have shown that capacitive coupling to bias leads can give rise to short (∼10 ns)
coherence times even for relatively small values for Ceff. Using our results, in order to obtain
coherence times on the order of 1 µs we require Ceff < 1 fF. In order for Ceff to be this small,
we either require qubit dimensions D ∼ 5 µm to obtain Cg < 1 fF, or alternatively we must
make Cc < 1 fF. This result implies that making large dimension flux qubits with long T1 is
not possible because Cg cannot be made small, and obtaining less than 1 fF stray capacitances
Cc is exceedingly difficult. Yet, a large flux qubit with coherence times of about 1 µs has been
demonstrated [22], apparently contradicting what we have described thus far. The discrepancy
can be explained by invoking symmetry.

Suppose that, with respect to the location of the Josephson junction, the qubit is
symmetrically coupled to a bias lead as sketched in figure 2(a). We find that the relaxation times
for such a circuit are infinite (ignoring all other sources of dissipation). A qualitative argument
is that no net circulating current can be generated in the qubit loop, similar to arguments for
decoherence due to magnetic coupling [23]. Suppose a voltage source was connected to the
coupling capacitor Cc1 and Cc2 was absent. In this case, a circulating current can be generated.
Now suppose only Cc2 was present. In this case, a circulating current can also be generated but
the circulation is in the opposite direction. Therefore, when Cc1 = Cc2 are both present the net
effect is zero. The LC resonator cannot be excited and by reciprocity cannot lose energy [13].

Extending this idea of symmetry one can quickly derive that capacitively coupling to the
center of the main loop inductance L also gives infinitely long coherence times (see figure 2(b)).
This can be seen from figure 2(a) by moving Cc1 and Cc2 closer to each other while maintaining
symmetry. Eventually Cc1 and Cc2 meet in the middle of the loop.
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Figure 3. Transformed impedance when capacitively coupling to an inductively
grounded bias line (Ceff = 5 fF).

Several qubit results published in the literature are consistent with the observations made
here. Smaller flux qubits have better coherence times because of a smaller Cg but more
importantly because of symmetry with respect to the junctions. A small, symmetric flux qubit [3]
has been show to have long coherence times. However, a slightly larger and asymmetric
design [9] has significantly shortened coherence times. A large but highly symmetric flux qubit
design has been shown to have good coherence times [22]. This is in contrast with a large flux
qubit [14] with large Cg and Cc which has very short coherence times, even shorter than those
reported in [9].

4. Other strategies

Next, we discuss additional methods for reducing the impact of capacitive coupling. By
engineering the effective reactance seen by the qubit [23], it is possible to obtain long coherence
times even in the presence of large parasitic capacitances to bias leads. This can be achieved in
two possible ways.

The first method is to ground the bias lines, which must be done for flux bias lines and
measurement SQUID lines anyway. A sample scenario is shown in figure 1(c) where the qubit
is capacitively coupled to the bias line (SQUID or flux bias), which in turn is connected to
ground by an inductor Lg. If the bias line is well grounded then the capacitive coupling should
vanish because no voltage can appear on the bias coil. The effective resistance of this bias
circuit is plotted in figure 3 for several values of Lg and Ceff = 5 fF. It becomes clear that small
inductances to ground are desirable. However, what is surprising is that even an inductance of
1 nH gives an effective resistance that is only about 2–10 times larger than if the inductance to
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ground was infinite. This value of inductance is present for wires that are only 1 mm in length
and therefore as far as decoherence is concerned a connection to ground of more than 1 mm is as
poor as one that is absent or infinitely long. In order to achieve significant gains in the effective
resistance (about 2–3 orders of magnitude), the inductance to ground should be made 100 pH
corresponding to a wire length of only 100 µm.

The second method includes inserting choke inductors or capacitors to ground into the bias
line in front of the coupling capacitance to improve the effective reactance even further [23].
The exact values for inductors and capacitors depend on the required bandwidth of the bias
lines which is typically less than 1 GHz except for microwave lines. It is therefore conceivable
to engineer a large effective resistance at qubit frequencies greater than 5–6 GHz.

5. Discussion

Finally, we shall make some qualitative remarks about T2 dephasing times within the setting of
capacitive coupling. Besides the limit to dephasing from T1 times (T2 = 2T1) we believe there are
no significant contributions to dephasing from capacitively coupling to bias leads, in particular
for flux qubits. Dephasing is the result of low-frequency noise that leads to modulations of the
qubit resonance frequency. Because we are concerned with capacitive coupling, low-frequency
noise should not easily couple into the qubit. As a result, the integrated noise should be small.
Additionally, even if some low-frequency noise reaches the qubit, leading to asymmetric current
flow, the flux qubit should retain long dephasing times because its resonance frequency to first
order does not vary with the bias flux when biased at 80/2. Dissipation should therefore remain
as the most significant source of decoherence.

In summary, we have shown that it is hard to prevent the capacitance to ground from being
a significant or even dominant contributor to decoherence for floating qubits. The classical
formulae for relaxation times as well as the dependence of these on symmetry set a hard limit
on the degree of quantum coherence that is possible in these systems. Although various parts
of our arguments (capacitance to ground, dissipation from capacitive coupling to bias leads in
resonators, symmetry) have been touched on in the literature, they have not been previously
combined to give a full picture of the expected capacitive losses in floating qubits. Although
our estimates for the degree of anharmonicity and the amount of distributed versus lumped
capacitance will not apply to all experiments, we believe that the qualitative aspects of our
predictions will be very widely applicable. Because we predict potentially short coherence times
in asymmetric floating qubit designs and because an eventual quantum computer requires very
long coherence times, it is clear that careful attention must be paid to the impact that capacitive
coupling has on the prospects of scalability. We are currently concerned about the prospects of
scalability for qubits with small self-capacitance: since T1 ∝ C , even small asymmetries can lead
to a drastic reduction in coherence times. In addition to qubit–qubit interactions due to capacitive
coupling, it is also not clear how to arrange multiple qubits and their associated inputs/outputs
in a symmetric fashion to minimize capacitive coupling. On the other hand, qubit designs with
much larger self-capacitances exist (e.g. phase qubits). Although capacitive-coupling dissipation
will certainly also occur in these systems, it may occur at a more manageable level.
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