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We investigate electron charge decoherence in a laterally coupled single-electron semiconductor double
quantum dot through electron-phonon interaction. We analytically and numerically evaluate the relaxation and
dephasing rates due to electron coupling to both acoustic and optical phonons, and explore the system param-
eter space in terms of interdot distance, strength of single-dot confinement, and interdot coupling strength. Our
numerical results show that the electron scattering rates are strongly dependent on the strength of the electron
confinement and the size of the system. In addition, although the most dominant factor that determines the
charge decoherence rate is the energy splitting between the charge qubit states, the details of the double dot
configuration are also very important.
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I. INTRODUCTION

Ever since Peter Shor showed that a purely quantum-
mechanical computer can be used to achieve exponential
speedup �compared to classical computers� in solving the
prime factoring problem,1 there has been widespread interest
in the study of quantum information science in general, and
in building a practical quantum computer in particular.2,3

Some of the most prominent proposals are based on solid
state structures, whether superconducting nanocircuits4–7 or
semiconductor nanostructures such as quantum dots and
regular donor arrays.8–13 A major presumed advantage of
these systems, especially the semiconductor artificial struc-
tures, are their potential scalability, supported by the power-
ful and advanced semiconductor industry.

The great interest in semiconductor-based quantum com-
puter architectures has prompted extensive studies of a vari-
ety of physical properties of nanostructures that are relevant
to single electron spin or charge degree of freedom.14 In the
present paper we focus on the decoherence properties of a
charge qubit in semiconductors.10,12,13 For a charge qubit
based on a single electron in a semiconductor double quan-
tum dot �QD�, charge decoherence has two important chan-
nels: Coulomb interaction to the background charge fluctua-
tion and electron-phonon interaction.15–21 The former
decoherence channel is widely present in all nanostructures.
Presumably it is due to coupling with defects in the system
and is thus extrinsic. The latter, however, is intrinsic to any
solid state host material for the charge qubit.

In the following we present our study of charge qubit
decoherence caused by electron-phonon interaction in a hori-
zontally coupled two-dimensional GaAs double quantum
dot. In Sec. II, we identify the electronic states we are inter-
ested in, and clarify the relevant types of phonons and
electron-phonon interactions involved. We then derive the
various relaxation and dephasing rates for double-quantum-
dot-trapped single electrons. In Secs. III and IV, we show our
results on charge relaxation and dephasing rates for a variety
of configurations and states, and discuss the physical pictures
and implications. Section V presents a summary of our re-
sults and our conclusions.

II. THEORETICAL DESCRIPTION OF ELECTRON-
PHONON INTERACTION

A. A single confined electron in two coupled quantum dots

In this study we consider gated lateral quantum dots in a
AlGaAs/GaAs/AlGaAs quantum well �QW�. The growth di-
rection �z direction, or vertical direction� confinement is due
to the higher bandgap of the barrier material of AlGaAs. The
lateral confinement is produced by the electrostatic potential
from surface metallic gates. In general, the vertical direction
confinement length ��10 nm� is much smaller than the lat-
eral confinement length �50 nm�, so that we can safely treat
the dynamics along vertical and horizontal directions as de-
coupled. The system Hamiltonian �within the effective mass
and envelope function approximations� is thus

Ĥ = Ĥ� + Ĥz, �1�

where the growth direction component Ĥz takes the form

Ĥz = −
�

2
�z

1

m*�z�
�z + V0���z� − Lz� . �2�

Here m*�z� is the electron effective mass and V0 the offset
between the band edges of the GaAs well and the AlGaAs
barrier. For simplicity, we take the z-direction wave function
as the wave function of an infinite QW �V0→��. In this
work, we do not consider excitations along z direction be-
cause of the much higher excitation energy �compared to the
lateral direction�, so that the z-direction wave function is
always given by �z�z�=A cos��z /2Lz�, where A is a coeffi-
cient to be determined by normalization and 2Lz is the width
of the QW.

The lateral confinement is assumed to be parabolic for a
single QD, so that a single electron Hamiltonian in the lateral
direction is
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Ĥ� = −
�2

2m*�2 +
1

2
m*�0

2r�
2, �3�

where �0 describes the strength of the harmonic confinement
in the x-y plane. The total electron wave function can now be
written as a product of

��r� = ���r���z�z� . �4�

In the case of a single QD, the two-dimensional �2D�
one-electron wave functions are essentially 2D harmonic os-
cillator functions22,23 and are described in terms of the prin-
cipal quantum number n=0,1 ,2 ,… and the angular momen-
tum quantum number m=0, ±1, ±2,… as

��
�n,m���̃,�� =� n!

�l2�n + �m��!
�̃�m�e−�̃2/2eim�Ln

�m���̃2� , �5�

where Ln
�m���̃2� are the Laguerre polynomials and �̃= �r�� / l is

a scaled radius, with l=�� /m*�0. The corresponding eigen-
values are

Enm = �2n + �m� + 1���0. �6�

For two QDs that are horizontally coupled, we use a
simple in-plane confinement of two parabolic wells separated
by an interdot distance 2	:

Vc =
1

2
m*�0

2min��x − 	�2 + y2,�x + 	�2 + y2� . �7�

The single electron wave function for the lateral direction is,
in general, given by a superposition of the single-dot wave
functions

�
�	 = 

k

Ck���,L
k 	 + Dk���,R

k 	 , �8�

and the total wave function of the system of the coupled QDs
is


�r� = 
��r���z�z� . �9�

Notice that for charge qubits there is only a single electron in
a double dot, in contrast with spin qubits, where each quan-
tum dot has an electron and double dot is only for two-qubit
operations.8,24 In the present study, the wavefunctions for the
coupled-QD are calculated numerically by direct diagonal-
ization, using reasonable parameters of a GaAs QW.

B. Electron-acoustic phonons coupling

In a polar semiconductor such as GaAs, electrons couple
to all types of phonons. More specifically, in GaAs electrons
couple to longitudinal acoustic phonons through a deforma-
tion potential, to longitudinal and transverse acoustic
phonons through piezoelectric interaction, and to the longi-

tudinal optical phonons �LO� through the polar interaction.25

The deformation potential electron-phonon interaction is
given by

HD = D

q
� �

2�mV�q
�1/2

�q���q��aq + a−q
† � , �10�

where D is the deformation constant, �m is the mass density
of the host material, V is the volume of the sample, aq and
a−q

† are phonon annihilation and creation operators, and ��q�
is the electron density operator. Table I presents the material
parameters used in our numerical calculation.

Electrons can interact also with longitudinal and trans-
verse acoustic phonons through piezoelectric interaction.
This type of interaction is essentially due to the lack of sym-
metry in the crystal, thus for materials such as Si, which has
crystal inversion symmetry, the piezoelectric interaction is
not present. On the other hand, the crystal of GaAs lacks
inversion symmetry, so piezoelectric interaction is nonvan-
ishing. The electric displacement D is related to the electric
field E, strain S, and the permittivity tensor � in a piezoelec-
tric crystal by26

Di = 

i

�ijE j + 

k,l

eiklSkl, �11�

where the third rank tensor eikl is the piezoelectric constant
tensor. As a result, the electron-phonon coupling due to the
piezoelectric effect is25

HP = i

q
� �

2�mV�q
�1/2

M�
pz�q̂���q��aq + a−q

† � , �12�

where � denotes polarization of the acoustic phonons. In the
case of zinc blende crystals there is only one independent
and nonvanishing piezoelectric constant: e14=e25=e36, so
that the matrix element M�

pz is given by25,27,28

M�
pz�q̂� = 2e e14�q̂xq̂y
z + q̂yq̂z
x + q̂xq̂z
y� , �13�

where 
 denotes the unit polarization vector and e is the
electron charge. Notice that the Hamiltonian for deformation
potential and piezoelectric interaction are real and imaginary,
respectively, which allow us to investigate separately these
interactions and calculate the total contribution by simply
adding up the two rates.25

C. Electron-optical phonons coupling

Even though the electronic energy involved in the study
of charge qubits is generally quite small �a few meV� com-
pared to the optical phonon energy ��36 meV in GaAs�, we
will demonstrate later that electron-optical-phonon interac-
tion does play a role in the decoherence of electron orbital
states. For the purpose of this calculation, we will use the

TABLE I. Material parameters �me is the electron mass�.

m /me D �eV� cs �m/s� � �kg/m3� e14 �V/m� �s �� �LO �meV� �TO �meV�

GaAs 0.067 8.6 3700 5300 1.38�109 12.9 10.89 36.25 33.29

V. N. STAVROU AND XUEDONG HU PHYSICAL REVIEW B 72, 075362 �2005�

075362-2



simple polar interaction in the bulk, neglecting the more in-
tricate details involving heterostructures.29–31 The electron-
phonon interaction due to LO phonons is thus given by25

HOP = 

q

M

q�V
��q��aq + a−q

† � �14�

and

M2 = 2�e2��LO� 1

��

−
1

�s
� �15�

in which �LO is the longitudinal optical frequencies, �s and
�� are the static and high frequency dielectric constant. Now
that we have identified all the electron-phonon interactions
involved in our system, we are ready to study what concrete
forms they take in a double quantum dot system, and evalu-
ate the dephasing and relaxation rates for an electron in a
double quantum dot due to its interaction with the phonons.

III. RELAXATION AND DEPHASING RATES DUE TO
ELECTRON-PHONON INTERACTION

A. Electron-phonon coupling in a double quantum dot

Before performing numerical evaluations of the electron
charge relaxation and dephasing rates, we first clarify the
physical picture of charge decoherence in a double quantum
dot. As an example and without loss of generality, let us
examine the deformation potential electron-phonon interac-
tion given by Eq. �10� in which ��q� is the Fourier transform
of the electron density operator

��q� = 

�,�

c�
†c�
 dr e−iq·r��

*�r����r� , �16�

where � and � are indices of electronic states, c� and c�
† are

electronic annihilation and creation operators for the � state,
while � are the electron wave functions. In the context of a
coupled double QD, we can choose the double dot eigen-
states as the basis for the single electron. For the two lowest-
energy double-dot states �±, which are chosen as the charge
qubit basis states, � and � take the values of + and − �from
now on, these two states will be equivalently referred to as
the ground and first excited states of the double dot, or the
charge qubit states�. The electron-phonon coupling Hamil-
tonian can then be conveniently written in this quasi-two-
level basis in terms of the Pauli spin matrices �x and �z
�where spin up and down states refer to the two electronic
eigenstates�:

HD = D

q
� �

2�mV�q
�1/2

�q��Ar�q��x + A��q��z��aq + a−q
† � ,

Ar�q� = �− �eiq·r� + 	 ,

A��q� =
1

2
��+ �eiq·r� + 	 − �− �eiq·r� − 	� . �17�

Since the basis for the quasi-two-level system are electron
eigenstates for the double dot, the term proportional to �x

above leads to transition between the two electronic eigen-
states and causes relaxation. On the other hand, the term
proportional to �z does not mix the electronic states, so that
it only causes fluctuations in the energy splitting between the
two electronic levels. Therefore it only leads to pure dephas-
ing between the two electronic charge states, but not to re-
laxation.

For a discussion of the qualitative behavior of the
electron-phonon coupling in a double dot, we first analyze
the simple situation where the two dots are well separated
and not strongly biased, so that only the two single-dot
ground orbital states are involved. The relevant single-
electron double-dot states are then

�+ = a�A�r� + b�B�r�; �− = b�A�r� − a�B�r� , �18�

with �A�B��r�=��r−RA�B�� u0�r�, where ��r� is a slowly
varying envelope function, and the Bloch function at the
conduction band minimum �k=0 at � point� is equal to the
periodic part u0�r�. Though we have chosen the envelopes �
centered at each well to be identical, they could as well be
different, as is generally the case for quantum dots. For small
energy splittings between the �± states, the fast oscillatory
Bloch function u0�r� can be integrated separately, so that the
matrix element Ar can be written as19

Ar�q� = �ab* − a*beiq·R� 
 dr eiq·r���r��2 + ��b�2

− �a�2� 
 dr eiq·r��r���r − R� . �19�

Here the first integral is an on-site contribution modified by
the phase difference eiq·R between the two dots, while the
second integral is a two-dot contribution that is generally
much smaller because of the small interdot overlap.

The dephasing matrix element A� can be similarly calcu-
lated and the result is19

A��q� = i��b�2 − �a�2�eiq·R/2sin
q · R

2

 dr eiq·r���r��2 + �a*b

+ ab*� 
 dr eiq·r��r���r − R� . �20�

Here the prefactors �b�2− �a�2 and a*b+ab* are for intradot
and interdot integrals, exactly the opposite to those in Eq.
�19�.

Equations �19� and �20� clearly demonstrate that electron-
phonon interaction induced electron charge decoherence is
dominated by relaxation when �b���a� so that A� is
small,20,21 and by pure dephasing when �b� and �a� are very
different �so that, for example, �b��1 and �a��0�.21 In other
words, if the energy levels of the two quantum dots are close
to resonance, relaxation matrix element is much larger than
pure dephasing matrix element; while when the two single-
dot levels are biased, relaxation is suppressed. These quali-
tative trends will persist even when we consider more real-
istic electron eigenstates as studied in Sec. II A. The
argument here is based on the assumption that the off-site
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contributions are small because of a small wave function
overlap between the two dots. Obviously, if the overlap is
larger, the above trend becomes weaker.

B. Relaxation rates

The electron relaxation rates associated with phonon
emission �or absorption� can be evaluated using Fermi’s
golden rule

� =
2�

�


q

��
�F��r��Hint�
�I��r�	�2��EF − EI ± Eq�

� �NB�Eq,Tlat� +
1

2
±

1

2
� . �21�

Here labels I and F refer to the initial and final electron
orbital states, respectively, the plus �minus� sign denotes
emission �absorption� of a phonon, and NB is the Bose-
Einstein distribution for phonons with lattice temperature Tlat
�our calculations presented in this paper are all done at Tlat
=0, when phonon absorption can be neglected.�.

Due to their large energies ��36 meV for LO phonons in
GaAs�, optical phonons do not contribute to electron orbital
relaxation in a quantum dot except for the highly excited
states, which are irrelevant for the context of charge-based
quantum computing. Therefore, the only phonons that con-
tribute to electron relaxation here are acoustic phonons.32–35

C. Pure dephasing rates

Relaxation is not the only way charge qubits can be de-
cohered. If the energy difference between the two charge
states fluctuates, phase information will get lost and decoher-
ence occurs. Such pure dephasing �in the sense that no tran-
sition occurs between the two charge states� due to a bosonic
bath has been calculated before.36,37 Pure dephasing due to
electron-acoustic-phonon interaction has also been evaluated
for spherical quantum dots and donors in semiconductors.21

The density operator of an electron in a boson bath can be
written in a general expression as

��t� = � �00�0� �01�0�e−B2��t�+i��t/�

�10�0�e−B2��t�−i��t/� �11�0�
� ,

�22�

where � is the energy splitting between the electron energy
levels. In short, pure dephasing causes a decay in the off-
diagonal element of the density matrix for the two-level sys-
tem that makes up the charge qubit21,36,37

�01�t� � �01�0�e−B2�t�, �23�

where the exponent function B2�t� is defined by

B2�t� =
V

�2�3 
 d3q
�g�q��2

�q
2 sin2�qt

2
coth

��q

2kBT
. �24�

Here �q is the frequency of the phonons. In our study, we
have investigated dephasing effects due to both acoustic and
optical phonons. For acoustic phonons, we choose �q=qcs

for the relevant branches, while for longitudinal optical
phonons, we choose �q=�LO. It can be shown straightfor-
wardly that the phonons that contribute significantly to pure
dephasing are zone-center phonons �small �q� values�, so that
choosing linear and constant dispersion for acoustic and op-
tical phonons is an excellent approximation. The coupling
constants g�q� due to deformation potential, piezoelectric
and optical phonons are, respectively, given by

gdef�q� = D� �q

2�csV
I�q� , �25�

gpiezo�q� = M�
pz�q�� �

2�csV
I�q� , �26�

gpolar�q� =
M

q�V
I�q� , �27�

where I�q� is defined by

I�q� =
1

2
��
−�r��e�iq·r�
−�r�	 − �
+�r��e�iq·r�
+�r�	�

= − A��q� . �28�

Here ± refer to the two states for the double dot charge qubit.
Notice that all the integrals in this study are carried out using
the Monte Carlo technique.

IV. RESULTS AND DISCUSSIONS

A. Charge relaxation due to acoustic phonons

We first calculate the electron relaxation rate from the
excited charge qubit state �the first excited state of the double
quantum dot� and explore its behavior as a function of the
double dot parameters such as interdot distance and strength
of the single dot confinement. Notice that throughout this
paper, the QW width takes on a fixed value of 2Lz=6 nm.
We have also done calculations for a well width of 10 nm
and the results are only slightly different.

Figure 1 shows the electron relaxation rate as a function

FIG. 1. Relaxation rates of an electron in the first excited state
through acoustic phonon emission as a function of the half interdot
distance 	. The relaxation rates due to deformation potential inter-
action, piezoelectric interaction, and the total relaxation rates are
presented by dashed, dotted, and straight lines, respectively. The
strength of the lateral confinement is ��0=3 meV.
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of the interdot distance for an electron that is initially in the
first excited state. The relaxation process is dominated by the
emission of one acoustic phonon. For small interdot separa-
tions, the contribution due to deformation potential interac-
tion is larger than due to piezoelectric interaction. For larger
interdot separation, however, piezoelectric coupling becomes
the dominant contributor because of the different wave vec-
tor dependence in the deformation and piezoelectric matrix
elements ��q for deformation potential versus 1/�q for pi-
ezoelectric interaction�. Since phonon density of state goes to
zero at small energy �E2, the relaxation rate decreases with
decreasing energy splitting between the initial and final
states, which is the case for both very shallow confinement
wells and for largely separated quantum dots. Experimen-
tally, it has been found15 that for large dots and large interdot
distance ��150 nm� relaxation rates due to electron-phonon
coupling should be smaller than 109 s−1. Our calculations are
quite consistent with these experimental observations.

In Fig. 2 we plot the dependence of the relaxation rates on
the confinement strength of one of the quantum dots �they
are considered to be identical in this problem� for a fixed
interdot distance of 2	=60 nm. The relaxation rates increase
with increasing confinement strength as the energy splitting
between the first excited state and the ground state increases
�as illustrated by the inset of Fig. 3�, until the confinement
strength reaches about ���2.4 meV. Further increase in
confinement strength causes increase of interdot barrier and a
decrease in energy separation of the charge qubit states, so
that relaxation rates also decrease as a consequence of the
reducing energy splitting. The differences between the con-
tributions of the two different types of electron-phonon in-
teractions can again be interpreted in the same manner as in
Fig. 1. The relaxation rates can also be given as a function of
the energy splitting between the first excited state and the
ground state ����, as presented in Fig. 3. Theoretically this
graph more directly reveals the behavior of the relaxation
rates: that it decreases monotonically with decreasing energy
splitting between the initial and final states, basically because
of the fast decreasing phonon density of state. In the double
dot situation we study here for each energy splitting there
could be two different dot configurations, as illustrated in the
inset, thus there are two branches for Fig. 3. Notice that the

energy splitting dependence of the relaxation rates is not
universal,17 because the electron-phonon matrix elements do
sensitively depend on the form/size of the electron wave
functions.

Since we have calculated the low-energy spectrum of a
horizontally coupled double quantum dot, we can easily cal-
culate phonon emission rates when the electron is in an ex-
cited state. For example, Fig. 4 presents the phonon emission
rates of an electron initially in the second excited state as a
function of the half interdot dot distance 	. Now a phonon-
emitting transition can take the electron to either the first
excited or the ground state. Furthermore, since the second
excited state of a double dot is essentially made up of the 2p
orbitals of the two single quantum dots, the energy splitting
between the second excited and the first excited or ground
states never goes to zero: at large interdot separation, this
energy splitting approaches single electron excitation energy
��0, which is chosen as 3 meV in this calculation. Thus the
phonon emission rate remains finite at large interdot separa-
tion, as clearly illustrated in Fig. 4. In essence now electron
relaxation is dominated by the electron-phonon coupling in
each of the single quantum dots. This also explains why the

FIG. 2. The relaxation rates versus the strength of the confine-
ment. The scattering rates due to deformation potential, piezoelec-
tric phonons and total relaxation rates are presented by dashed,
dotted, and straight lines, respectively. The interdot distance is 2	
=60 nm.

FIG. 3. Electron relaxation rates as a function of the energy
splitting between the first excited state and the ground state in a
double quantum dot. Again, rates due to deformation potential, pi-
ezoelectric interaction, and the total relaxation rates are represented
by dashed, dotted, and straight lines, respectively. The energy split-
ting versus the confinement strength is given in the inset. The in-
terdot distance is 2	=60 nm.

FIG. 4. The relaxation rates for the second excited state as a
function of the half interdot distance 	. The total scattering rates
include contributions from both the deformation potential and the
piezoelectric interaction. The straight line gives relaxation rates to
the ground state, while the dashed line is the relaxation rates to the
first excited state. The strength of the confinement is ��0=3 meV.
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relaxation rates into the first excited state and the ground
state become identical as interdot separation increases.

In summary, our results on the electron relaxation through
single phonon emission in a double quantum dot38 show a
relatively simple and straightforward dependence on energy
separation of the initial and final states �basically related to
phonon density of state�, and thus a sensitive dependence on
the confinement strength and interdot distance �since energy
splitting between the charge qubit states depends sensitively
on these parameters�. According to Eq. �19� there is a strong
angular dependence for the electron-phonon coupling matrix
elements. However, integral over the phonon wave vectors
essentially averages out all the detailed features in the final
relaxation rates. Another feature of our results is that piezo-
electric interaction dominates when the energy splitting be-
tween the charge qubit states is small, while deformation
potential interaction dominates when the energy splitting is
large. This feature again has a very simple physical explana-
tion in the different q dependence of the two types of inter-
action.

B. Pure charge dephasing due to acoustic and optical phonons

Electron-phonon interaction not only causes electron re-
laxation �or excitation at finite temperatures� between qubit
states, it can also cause dephasing between them if the elec-
tron is in a superposition state, as we have discussed in Sec.
III C. Here we calculate the dephasing effects from both
acoustic and optical phonons. According to Eqs. �23� and
�24�, the the quantity B2�t� completely determines coherence
loss of from the off-diagonal density matrix element between
the charge qubit states, therefore it is the quantity we focus
on in all the results and figures in the following.

Figure 5 presents the time dependence of dephasing be-
tween the charge qubit states for an unbiased system due to
acoustic phonons. According to Eq. �20�, dephasing should
be quite small in the unbiased situation because it mostly
comes from overlaps in between the double dot. An interest-
ing feature of curves in Fig. 5 is that they rapidly increase for
the first 10 ps or so, then more or less saturate, so that B2�t�

depends only very slowly on time after 100 ps. Mathemati-
cally, the very fast time dependence of dephasing is due to
the trigonometric dependence on phonon frequencies and
time sin �st /2. As indicated in Eq. �20�, only zone-center
phonons contribute significantly to dephasing �because of the
integral over exp�iq ·r��, with frequency ranging from zero
up to ��cs /	, which is in the order of 0.1–1 THz for GaAs.
As time evolves starting from zero, the zone-center phonon
contributions quickly mix and the initial rise of B2�t� is
mostly determined by the higher frequency phonons because
their density of state is much higher. After the initial rise,
phonons with different frequencies will not contribute al-
ways constructively, thus producing the much flatter behav-
ior of B2�t�. Furthermore, B2�t� will not rise monotonically
after the initial rise because the phonons contribute through a
sinusoidal function. The time evolution shows that dephasing
quickly rises but then saturates after about 100 ps.

The dephasing behavior here is quite different from the
ordinarily assumed exp�−�pht� type of behavior. This differ-
ence is closely related to the spin-boson type of coupling in
the present problem36,37 and to the phonon density of state of
the semiconductor structure. There are two important conse-
quences for the temporal behavior of B2�t�. First, there is a
very fast initial rise of dephasing, occurring in a time period
smaller than 100 ps, due to the interaction between the qubit
electron and the acoustic phonon bath. Second, the time de-
pendence of B2 at large time is very flat—it can basically be
taken as a constant after 100 ps. A constant dephasing factor
will not produce a decaying signal in terms of, for example,
oscillations in electrons. Instead, it simply reduces the con-
trast in the charge oscillation. This can be seen easily from
Eq. �22�. The presence of a constant
exp�−B2��exp�−0.05� simply reduces the magnitude of �01

by a constant factor of 0.05, which is not a particularly large
suppression �though significant in terms of fault tolerant
quantum computing�.

In Fig. 6 we further explore the dephasing rates as a func-
tion of the interdot distance for an unbiased system. As indi-
cated in Eq. �20�, if the two quantum dots are well separated,
the overlap integrals go down quickly, so that dephasing
should also be strongly suppressed. This is exactly the be-
havior we observe in Fig. 6.

FIG. 5. Dephasing factor B2�t� as a function of time t. The
dashed, dotted, and straight lines represent dephasing rates due to
deformation potential, piezoelectric interaction, and the total, re-
spectively. The strength of the confinement ��0=3 meV, the inter-
dot distance is 2	=60 nm, and there is no interdot bias: VR

=0 meV.

FIG. 6. Dephasing factor B2�t� as a function of the half interdot
distance 	. No bias is applied across the two quantum dots, and
time t is chosen to be 60 ps. The dephasing rates due to deformation
potential, piezoelectric interaction, and total dephasing rates are
represented by dashed, dotted, and straight lines, respectively. The
strength of the confinement is ��0=3 meV.
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When a bias is applied between the two quantum dots of
the double dot, the magnitude of dephasing should increase,
which is exactly what our numerical results presented in
Figs. 7 and 8 show. Figure 7 shows a very similar temporal
behavior as that in the unbiased cases, albeit with a much
larger saturated value for B2. Figure 8 shows the dependence
on the interdot bias voltage VR by the dephasing rate. As
expected from Eq. �20�, the dephasing rate increases but then
saturates as the qubit states at high bias are essentially the
two single dot ground states �assuming higher excited states
still have not influenced the charge qubit states yet�. In Fig. 8
we have also included the contribution of optical phonons to
dephasing. Although this contribution is smaller than the
acoustic phonon effect, it is still a considerable contribution.

As we have pointed out before, optical phonons do not
contribute significantly to electron relaxation. However, the
zone-center longitudinal optical phonons do contribute to

dephasing through the polar interaction. To better understand
the pure dephasing due to the electron polar interaction with
optical phonons, we can perform an analytical assessment for
a simple double dot configuration. For optical phonons, �q
=�LO is a constant near the zone center. Thus at zero tem-
perature

B2�t� =
M2

�3���LO�2sin2�LOt

2

 d3q

�I�q��2

q2

=
2e2

�2��LO
� 1

��

−
1

�0
�sin2�LOt

2

 dqd��I�q��2.

�29�

The q integral is now just a number that is inversely propor-
tional to the size of the double dot. The magnitude of B2 is
thus determined by the polar interaction strength and the
double dot size, and the time dependence of B2 is all in the
sinusoidal factor. Therefore, pure dephasing due to optical
phonons sets in at a very small time scale, in the order of 100
femtoseconds because of the fact that ��LO�36 meV. The
magnitude of B2 is not vanishingly small, either. Using nomi-
nally GaAs parameters and assume spherical quantum dots
with Gaussian wavefunctions �exp�−r2 /2a2�, we can esti-
mate the order of magnitude of the dephasing factor as

B2�t� �
4�2�e2/a�
����LO

� 1

��

−
1

�0
�sin2�LOt

2
� 0.05 sin2�LOt

2
.

�30�

For the last step we assume a wavefunction size a�20 nm,
which corresponds to a pretty small quantum dot. Since B2 is
inversely proportional to the size a of the quantum dot wave
function, larger quantum dot would produce a smaller
dephasing magnitude for B2. Anyway, it is clear that optical
phonons produce a dephasing effect that has a comparable if
somewhat smaller magnitude as the acoustic phonons.

The dephasing effect from optical phonons evolves ex-
tremely fast, so that the only observable effect would be its
average over time, which is a constant. This is quite similar
to the pure dephasing effect from the acoustic phonons,
which also rises rapidly ��100 ps, slower than optical
phonons but still much faster than the ordinary time scale of
nanosecond for charge dynamics�. Recall that a constant
dephasing factor will only reduce the contrast in the measur-
able quantities such as charge oscillation. For optical
phonons this amounts to a reduction in the magnitude of �01
by a constant factor of 0.95, which, as for acoustic phonons,
is not a large suppression. Experimental techniques have not
developed to the degree to allow detection of such a small
suppression of signals.

In short, dephasing effects on the electron orbital degrees
of freedom from electron-phonon interaction in a double dot
should reveal itself mostly through a reduction of contrast in
measurable physical quantities �such as electron oscillation
between the double dot�, but not a temporally decaying sig-
nal. Decays observed in experiments such as Ref. 15 should
originate from relaxation, not dephasing, if it is dominated
by electron-phonon interaction.

FIG. 7. Dephasing factor B2�t� as a function of time t in the
presence of interdot bias. Again, the dephasing rates due to defor-
mation potential, piezoelectric interaction, and the total rates are
represented by dashed, dotted, and straight lines, respectively. The
strength of the confinement is ��0=3 meV, the interdot distance is
2	=60 nm, and the interdot bias voltage is VR=1.5 meV.

FIG. 8. Dephasing factor B2�t� as a function of time of the
interdot bias voltage VR. The solid line represents dephasing rates
due to electron-acoustic-phonon interaction through both the defor-
mation potential and piezoelectric interaction. The dashed and dot-
ted lines represent the deformation potential and piezoelectric con-
tributions separately. The dot-dashed line represents the dephasing
effects from polar interaction with optical phonons. Here the
strength of the confinement is ��0=3 meV, the interdot distance is
2	=60 nm, and the time of observation for the dephasing effect is
t=60 ps.
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V. CONCLUSIONS

In this study we have investigated electron decoherence in
a double quantum dot due to electron-phonon coupling. In
particular, we have evaluated electron relaxation through
emission of a single acoustic phonon. We found a sensitive
dependence of the relaxation rates on system parameters
such as confinement strength and interdot distance. We have
also evaluated electron dephasing through interaction with

both acoustic and optical phonons—because of the absence
of energy conservation requirement, all phonon modes con-
tribute to dephasing.
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