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By viewing current in the detecting lead of a spintronic device as being an ensemble of flowing spins
corresponding to a mixed quantum state, where each spin itself is generally described by an improper mixture
generated during the transport where it couples to other degrees of freedom due to spin-orbitsSOd interactions
or inhomogeneous magnetic fields, we introduce the spin-density operator associated with such current and
express it in terms of the spin-resolved Landauer transmission matrix of the device. This formalism, which
provides a complete description of coupled spin-charge quantum transport in open finite-size systems attached
to external probes, is employed to understand how initially injected pure spin states, comprising fully spin-
polarized current, evolve into the mixed ones corresponding to a partially polarized current. We analyze
particular routes that diminish spin coherencessignified by decay of the off-diagonal elements of the current
spin-density matrixd in two-dimensional-electron-gas-based devices due to the interplay of the Rashba and/or
Dresselhaus SO coupling andsid scattering at the boundaries or lead-wire interface in ballistic semiconductor
nanowires; orsii d spin-independent scattering off static impurities in both weakly and strongly disordered
nanowires. The physical interpretation of spin decoherence in the course of multichannel quantum transport in
terms of the entanglement of spin to an effectively zero-temperature “environment” composed of open orbital
conducting channels offers insight into some of the key challenges for spintronics: controlling decoherence of
transported spins and emergence of partially coherent spin states in all-electrical spin manipulation schemes
based on the SO interactions in realistic semiconductor structures. In particular, our analysis elucidates why
operation of both ballistic and nonballistic spin-field-effect transistors, envisaged to exploit Rashba and
Rashba+Dresselhaus SO coupling, respectively, would demand single-channel transport as the only setup
ensuring complete suppression ofsD’yakonov-Perel’-typed spin decoherence.
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I. INTRODUCTION

The major goal of recent vigorous efforts in semiconduc-
tor spintronics is to create, store, manipulate at a given loca-
tion, and transport electron spin through a conventional
semiconductor environment.1 The magnetoresistive sensors,
brought about by basic research in metal spintronics,2,3 have
given a crucial impetus for advances in information storage
technologies. Furthermore, semiconductor-based spintron-
ics1,4 offer richer avenues for both fundamental studies and
applications because of wider possibilities to engineer semi-
conductor structures by doping and gating.The two principal
challenges4 for semiconductor spintronics are spin injection
and coherent spin manipulation.

The current efficiency of conventional spin injection into
a semiconductorsSmd at room temperaturesvia Ohmic con-
tacts and at the Fermi energyd, based on ferromagneticsFMd
metallic sources of spin currents, is much lower than in the
case of metal spintronic structures5 due to the mismatch in
the band structure and transport properties of FMs and Sms.6

Nevertheless, basic transport experiments at low tempera-
tures can evade paramount problems in spin injection into
bulk semiconductors by employing diluted magnetic
semiconductors7 or optical injection techniques8,9 fnote that
spin injection and detection in a high-mobility two-
dimensional electron gass2DEGd has turned out to be much
more demanding10g. Also, quantum-coherent spin filters,11

quantum spin pumps,12 and mesoscopic generators of pure
si.e., not accompanied by any net charge currentd spin Hall

current13 are expected to offer alternative solutions by mak-
ing possible spin current induction without using any ferro-
magnetic elements. In addition, quantum-coherent spintronic
devices have been proposed14–16 that could make possible
modulation of conventionalsunpolarizedd charge current in-
jected into a semiconductor with Rashba spin-orbitsSOd in-
teraction by exploiting spin-sensitive quantum interference
effects in mesoscopic conductors of multiply connected ge-
ometry ssuch as ringsd. Thus, even with successful genera-
tion of spin currents in semiconductor nanostructures a chal-
lenge remains—careful manipulation of transported spins in
classical fsuch as spin-field-effect transistors17,18 sspin-
FETsdg or quantumssuch as mobile spin qubits19d informa-
tion processing devices that will not destroy coherent super-
positions of quantum statesau↑ l+bu↓ l necessary for their
operation.

The spin-FET proposal17 epitomizes one of the most in-
fluential concepts to emerge in semiconductor spintronics—
replacement of cumbersome traditional spin control via ex-
ternally applied magnetic fields by all-electrical tailoring of
spin dynamics via SO interactions. Electric fields can be pro-
duced and controlled in far smaller volumes and on far
shorter time scales than magnetic fields, thereby offering
possibility for efficient local manipulation of spins and
smooth integration with conventional high-speed digital
electronic circuits. In the envisaged spin-FET device, spin
swith polarization vector oriented in the direction of trans-
portd is injected from the source into the Sm wire, it pre-
cesses within this nonmagnetic region in a controlled fashion
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due to the Rashba type20 of SO couplingsarising because of
the structure inversion asymmetry of heterostructuresd that
can be tuned by the gate voltage,21 and finally enters into the
drain electrode with a probability that depends on the angle
of precession. Thus, such a polarizer-analyzer electrical
transport scheme would be able to modulate the fully spin-
polarized source-drain charge current.

Inasmuch as coherent spin states can be quite robust in
semiconductor quantum wells due to weak coupling of spin
to the external environment, they have been successfully
transported over hundreds of micrometers at low
temperatures.22 However, since SO interactions couple the
spin and momentum of an electron,23 they can also enable
some of the main mechanisms leading to the decay of spin
polarization4,24 when elasticsoff lattice imperfections, non-
magnetic impurities, interfaces, and boundariesd or inelastic
soff phononsd charge scattering occurs in a 2DEG. For ex-
ample, in the semiclassical picture, put forth by D’yakonov
and Perel’sDPd for an unbounded system with scattering off
static impuritiesswhich does not involve instantaneous spin
flipd,25 spin gets randomized due to the change of the effec-
tive momentum-dependent Rashba magnetic fieldBRskd sre-
sponsible for spin precessiond in each scattering event. Thus,
the DP spin relaxation26 will compete with controlled Rashba
spin precession, which can impede the operation of devices
involving SO couplings. This has prompted recent reexami-
nation of the spin-FET concept toward possibilities for non-
ballistic modes of operation where spins could remain coher-
ent even in the presence of charge scattering,18 in contrast to
the original proposal of Datta and Das17 which essentially
requires clean one-dimensional wires.

While inelastic processes inevitably drive the spin polar-
ization to zero in the long-time limit,27 the DP spin relaxation
involves only elastic scattering of impurities, which is
incapable28 of dephasing the full electron wave function.
Therefore, in the case of quantum transport through a meso-
scopic sphase-coherentd SO-coupled Sm region, where the
electron is described by a single wave function,28,29 the cou-
pling between spin polarization and charge currents can be
interpreted as stemming from the entanglement of spin and
orbital quantum states30,31 of single electrons injected and
detected through electrodes supporting many orbital con-
ducting channels.31 Within the entangled single-particle
wave function, the spin degree of freedom cannot be de-
scribed by a pure state any more—that is, the spin becomes
subjected to decoherence process akin to mechanisms com-
monly studied when open quantum systems become en-
tangled with a usually large sand dissipatived
environment.32,33 Since present nanofabrication technologies
yield quantum wires with more than one open conducting
channel at the Fermi energysincluding single-wall carbon
nanotubes where spin propagates via two channels34d, it is
important to quantify the degree of coherence of spin trans-
ported through such structures in the presence of SO cou-
pling.

The loss of coherence32,33 of transported spins is encoded
into the decay of the off-diagonal elements of their density
matrix r̂s. Recent theoretical pursuits have offered diverse
approaches35–41 which make it possible to follow the quan-
tum dynamics ofr̂s in the course of transport, while treating

the ballistic39,40or diffusive35,37,38propagation of chargessto
which the spins are attachedd semiclassically. The Landauer-
Büttiker scattering formalism,28,29 which intrinsically takes
into account phase-coherent propagation of electrons through
finite-size devices attached to external current and voltage
probes, is also frequently employed to treat quantum spin-
tronic transport in semiconductor structures.42–46 However,
previous applications of the scattering formalism evaluate
only the spin-resolved charge conductances which, on the
other hand, do not provide enough information to extract the
full density matrix of transported spins, “hiding” in the quan-
tum transmission properties of the device. Such approaches
yield only a single component of the spin-polarization vector
of detected current in the right lead of Fig. 1, while all three
components are needed tosid determine the vector of spin
current flowing together with charge current in this lead;sii d
evaluate the density matrix of the corresponding ensemble of
transported spins; andsiii d extract their degree of
coherence.32,33,47

Here we demonstrate how to associate the spin-density
matrix with detected current, which emerges after charge
current with arbitrary spin-polarization propertiessunpolar-
ized, partially polarized, or fully spin-polarizedd is injected
through multichannel leads and propagated through a
quantum-coherent semiconductor nanostructure where trans-
ported electrons are subjected to spin-dependent interactions.
Following our earlier analysis of the density matrix of a
single spin injected through one of the Landauer conducting
channels,31 we introduce in Sec. II a density matrix of an
ensemble of spins flowing through the detecting lead in Fig.
1. This central tool of our approach is expressed in terms of
both the amplitudes and the phases ofsspin-resolvedd Land-
auer transmission matrix elements. In Sec. II B we extract
from it the spin-polarization vectorsPx

s ,Py
s ,Pz

sd of the out-
going current in Fig. 1 while taking into account different
possibilities for the polarizations of the incoming current.
This also allows us to elucidate rigorous way of quantifying
the spin polarizationsas a scalar quantityd of current which is
measured in spin detection experiments.10,23,48Together with

FIG. 1. sColor onlined Spin transport through generic two-probe
spintronic device where fully spin-polarized currentscomprised of
pure spin statesuPu=1d is injected from the left lead and detected in
the right lead. The central region is a 2DEG where the electron can
be subjected to a magnetic field and/or SO interactions pertinent to
semiconductor heterostructures: Rashba due to the structure inver-
sion asymmetry; and Dresselhaus due to the bulk inversion asym-
metry. If the injected current is fully spin polarized, such as along
the x axis sPx=1,Py=0,Pz=0d chosen in the figure, the outgoing
current will, in general, have its polarization vector rotated by co-
herent spin precession in the semiconductor region, as well as
shrunk uPu,1 due to processes that lead to loss of spin quantum
coherencessuch as spin-independent scattering at static impurities
or interfaces in the presence of SO couplingd.
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the Landauer formulas for spin-resolved charge conduc-
tancesswhich involve only the squared amplitudes of the
transmission matrix elements42–46d, our equations for
sPx

s ,Py
s ,Pz

sd offer a complete description of the coupled
spin-charge quantum transport in finite-size devices where
experimentally relevant boundary conditionsssuch as
closed boundaries at which current must vanish, interfaces,
external electrodes, and spin-polarization properties
of the injected currentd, which are crucial for the treatment
of transport in the presence of SO couplings,40 are easily
incorporated.

The magnitude ofP quantifies the degree of coherence of
the spin state. We employ this formalism in Sec. III to study
how spin-orbit entanglement affects transport, entailing the
reduction ofuPu in ballistic sSec. III Ad or disorderedsSec.
III B d semiconductor multichannel quantum wires. This also
offers a direct insight into the dynamics of quantum coher-
ence of spin which would propagate through multichannel
ballistic17 swith Rashba couplingd or nonballistic swith
Rashba=Dresselhaus couplingd spin-FET devices.18 For the
transport of noninteracting electrons through finite-size
structures,sPx

s ,Py
s ,Pz

sd can be evaluated nonperturbatively in
both the SO couplings and the disorder strength. This makes
it possible to treat the dynamics of spin coherence in a wide
range of transport regimessfrom high mobility in ballistic to
low mobility in localized systemsd, thereby unearthing quan-
tum effects in the evolution ofuPu that go beyond conven-
tional semiclassical25 or perturbative quantum treatments49

of spin relaxation in diffusive bulk semiconductors
with weak SO interaction. We conclude in Sec. IV by high-
lighting requirements to combat spin decoherence in spin-
tronic devices relying on fully coherent spin states, while
also pointing out at capabilities of partially coherent
spin states that inevitably emerge in multichannel devices
examined here.

II. PURITY OF TRANSPORTED SPIN STATES

For the understanding of quantum dynamics of open spin
systems and processes which leak their coherence into the
environment,32,33 the central role is played by the density
operator47,50 r̂s. The expectation valuekSur̂suSl gives the
probability of observing the system in stateuSl. For spin-12
particle, this operator has a simple representation in a chosen
basis50 u↑ l , u↓ lPHs,

r̂s = Sr↑↑ r↑↓
r↓↑ r↓↓

D =
Î s + P · ŝ

2
, s1d

which is a 232 spin density matrix whereÎ s is the unit
operator in the spin Hilbert space andŝ=sŝx,ŝy,ŝzd is the
vector of Pauli spin matrices. The diagonal elementsr↑↑ and
r↓↓ represent the probabilities to find an electron with spin↑
or spin ↓. The off-diagonal elementsr↑↓ ,r↓↑ define
the amount by which the probabilities of coherent
superpositions of basis vectorsu↑l,u↓l deviate, due to
quantum-interference effects, from the classicalsincoherentd
mixture of states. The two-level system density matrix
Eq. s1d is the simplest example of its kind since it is

determined just by a set of three real numbers representing
the components of the spin polarization47,50 sor Blochd
vector P=sPx,Py,Pzd. For spin-12 particles, the polarization
vector is experimentally measured as the quantum-
mechanical average

"

2
P =

"

2
skŝxl,kŝyl,kŝzld = TrFr̂s

"

2
ŝG , s2d

which is the expectation value of the spin operator
"ŝ /2.

A fully coherent state of spin-1
2 particle is pure and, there-

fore, described formally by a vectoruSl belonging to the
two-dimensional Hilbert spaceuSlPHs. The density opera-
tor formalism encompasses bothpure r̂= uSlkSu states and
mixturesr̂=oiwiuSilkSiu describing an ensemble of quantum
states appearing with different classical probabilitieswi. One
can quantify the degree of coherence of a quantum state32 by
the purity P=Tr r̂2. However, since the density operatorr̂s

of a spin-12 particle is determined solely by the polarization
vectorP, all relevant information about its coherence can be
obtained from the magnitudeuPu=ÎPx

2+Py
2+Pz

2, so that
Ps=s1+uPu2d /2 snote that in the case of, e.g., a spin-1 par-
ticle one has to measure additional five parameters50 to
specify r̂s and its purityd.

For fully coherent pure states the polarization vector has
unit magnitudeuPu=1, while 0ø uPu,1 accounts for mix-
tures. The dynamics of electron spin is affected by external
magnetic field, local magnetic fields produced by magnetic
impurities and nuclei, and different types of SO couplings.
These interactions not only generate quantum-coherent evo-
lution of the carrier spin, but can also induce spin
decoherence.4,32,33Thus, coherent motion is encoded into the
rotation of vectorP, while the decay of spin coherence is
measured by the reduction of its magnitudeuPu below 1.
Figure 1 illustrates how these generic features in the dynam-
ics of open two-level systems will manifest for spins in a
nonequilibrium steady transport state.

A. Spin-density matrix of detected current

Most of the traditional mesoscopic experiments51 explore
superpositions of orbital states of transported spin-
degenerate electrons since inelastic dephasing processes are
suppressed in small enough structuressL&1 mmd at low
temperaturessT!1 Kd. This means that electron is described
by a single orbital wave functionuClPHo within the
conductor.28,29 When spin-polarized electron is injected into
a phase-coherent semiconductor structures where it becomes
subjected to interactions with effective magnetic fields, its
state will remain pure, but now in the tensor product of the
orbital and the spin Hilbert spacesuClPHo ^ Hs. Inside the
ideal sfree from spin and charge interactionsd leads attached
to the sample, the electron wave function can be expressed as
a linear combination of spin-polarized conducting channels
unsl= unl ^ usl at a given Fermi energy. Each channel,
being a tensor product of the orbital transverse propagating
mode and a spinor, is a separable47 pure quantum
state kr unsl±=Fnsyd ^ exps±iknxd ^ usl specified by a
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real wave numberkn.0, a transverse modeFnsyd defined
by the quantization of transverse momentum in the leads
of a finite cross section, and a spin factor stateusl swe
assume that orbital channelsunl are normalized in the usual
way to carry a unit current29d. When injected spin-polarized
flux from the left lead of a two-probe device is concentrated
in the spin-polarized channeluinl;unsl, a pure state
emerging in the right lead will, in general, be described
by the linear combination of the outgoing channels

uoutl = o
n8s8

tn8n,s8sun8l ^ us8l, s3d

which is a nonseparable47 state. This equation introduces the
spin-resolved Landauer transmission matrix whereutn8n,s8su2
represents the probability for a spin-s electron incoming
from the left lead in the orbital stateunl to appear as a
spin-s8 electron in the orbital channelun8l in the right
lead. The matrix elements oft depend on the Fermi
energyEF at which quantumsi.e., effectively zero tempera-
tured transport takes place. Thet matrix, extended to include
the spin degree of freedom and spin-dependent single-
particle interactions in quantum transport,42,43 is a standard
tool to obtain the spin-resolved conductances of a two-probe
device,

G = SG↑↑ G↑↓

G↓↑ G↓↓ D =
e2

h
o

n8,n=1

M Sutn8n,↑↑u2 utn8n,↑↓u2

utn8n,↓↑u2 utn8n,↓↓u2
D . s4d

Here M is the number of orbital conducting channelssthe
number of spin-polarized conducting channels is 2Md deter-
mined by the properties of the transverse confining potential
in the leads. In the Landauer picture of spatial separation of
single-particle coherent and many-body inelastic processes,52

it is assumed that the sample is attached to huge electron
reservoirs with negligible spin-dependent interactions. To
simplify the scattering boundary conditions, semi-infinite
ideal leads are inserted between the reservoirsswhich ther-
malize electrons and ensure steady-state transportd and the
semiconductor region.

Selecting the spin-resolved elements of thet matrix
ssee Sec. IIId allows one to describe different spin
injection and detection transport measurements. That is,
the spin-resolved conductances can be interpreted as
describing injection, transport, and detection of single spin
species in a setup involving spin filters or half-metallic
ferromagnetic leads with collinear magnetization directions.
For example,G↑↓ is the conductance of a setup where spin-↓
polarized current is injected and spin-↑ polarized current is
detected for↑ and↓ spin defined by the same spin quantiza-
tion axis. If both spin species are injected from the left
lead in equal proportion, as in the experiments with conven-
tional unpolarized current, one resorts to the usual Landauer
conductance formula28,29 G=G↑↑+G↑↓+G↓↑+G↓↓.

While the conductance formulas Eq.s4d require one
to evaluate only the amplitude of thet-matrix elements,
Eq. s3d reveals that both the amplitude and the phase of
tn8n,s8s determine the nonseparable electron state in the out-
going lead. Although theuoutl state Eq.s3d is still a pure
one, spin in such a state is entangled with orbital conducting

channels, i.e., it cannot be assigned a single spinor wave
function as in the case ofuinl state. Obviously, such SO en-
tanglement will be generated whenever the orbital and spin
parts
of the Hamiltonian do not commute, as in cases where,
e.g., an inhomogeneous magnetic field,46 random magnetic
impurities, or SO interaction term+inhomogeneous
spatial potential53 govern the quantum evolution of the
system.

To each of the outgoing pure states of Eq.s3d, we associ-
ate a density matrixr̂= uoutlkoutu,

r̂ns→out =
1

Z
o

n8n9s8s9

tn8n,s8stn9n,s9s
* un8lkn9u ^ us8lks9u,

s5d

whereZ is a normalization factor ensuring that Trr̂=1. After
taking the partial trace33,50 over the orbital degrees of free-
dom, which amounts to summing all 232 block matrices
along the diagonal ofr̂n→out, we arrive at the density matrix
describing the quantum state of the spin in the right lead.31

For example, when a spin-↑ electron is injected in channel
unl from the left lead, the incoming state isunl ^ u↑ l and the
explicit form of the density matrix for the outgoing spin state
in the right lead is given by

r̂s
n↑→out =

1

Z
o
n8=1

M S utn8n,↑↑u2 tn8n,↑↑tn8n,↓↑
*

tn8n,↑↑
* tn8n,↓↑ utn8n,↓↑u2

D . s6d

Since the full outgoing state Eq.s3d of an electron
is still pure, the reduced density matrixr̂s

ns→out does
not correspond to any real ensemble of quantum states
si.e., it is an improper mixture32d. On the other hand, the
current can be viewed as a real ensemble of electrons in-
jected in different channels, so that we consider spin and
charge flow in the right lead to give rise to an ensemble of
states described by a proper mixturer̂c=onr̂s

ns→out.
Thus, when spin-↑ polarized current is injected from the
left lead, we obtain for the current spin-density matrix in the
right lead

r̂c
↑ =

e2/h

G↑↑ + G↓↑ o
n8,n=1

M S utn8n,↑↑u2 tn8n,↑↑tn8n,↓↑
*

tn8n,↑↑
* tn8n,↓↑ utn8n,↓↑u2

D . s7d

By the same token, the spin-density matrix of the detected
current, emerging after the injection of spin-↓ polarized
charge current, is given by

r̂c
↓ =

e2/h

G↑↓ + G↓↓ o
n8,n=1

M S utn8n,↑↓u2 tn8n,↑↓tn8n,↓↓
*

tn8n,↑↓
* tn8n,↓↓ utn8n,↓↓u2

D . s8d

The most general case is obtained after the injection of par-
tially spin-polarized current, whose spins are in the mixed
quantum state

r̂s = n↑u↑lk↑ u + n↓u↓lk↓ u, s9d

which gives rise to the following spin-density matrix of the
outgoing current:
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r̂c
↑+↓ =

e2/h

n↑sG↑↑ + G↓↑d + n↓sG↑↓ + G↓↓d o
n8,n=1

M S n↑utn8n,↑↑u2 + n↓utn8n,↑↓u2 n↑tn8n,↑↑tn8n,↓↑
* + n↓tn8n,↑↓tn8n,↓↓

*

n↑tn8n,↑↑
* tn8n,↓↑ + n↓tn8n,↑↓

* tn8n,↓↓ n↑utn8n,↓↑u2 + n↓utn8n,↓↓u2
D . s10d

This density matrix reduces to Eq.s7d or Eq.s8d in the limits
n↑=1, n↓=0 or n↑=0, n↓=1, respectively.

The measurement of any observable quantityOs on the
spin subsystem within the right lead is described by the re-

duced spin-density matrixkOsl=Trsfr̂cÔsg, where Ôs is a
Hermitian operator acting solely inHs. An example of such
measurement is the spin operator itself in Eq.s2d. In the case
of semiconductor quantum wires explored in Secs. III A and
III B, the spin-density matrices in Eqs.s7d–s10d are deter-
mined by the polarization of injected current, number of or-
bital conducting channels in the leads, and spin- and charge-
dependent interactions within the wire. They characterize
transported electron spin in an open quantum system, and
can be easily generalized to multiprobe geometry for
samples attached to more than two leads.

B. Spin polarization of charge currents in semiconductor
spintronics

What is the spin polarization of current flowing through a
spintronic device? In many metal and insulator spintronic
structures,3,5 as well as in some of the semiconductor ones,12

spin-upI↑ and spin-down currentsI↓ comprising charge cur-
rent I = I↑+ I↓ are independent of each other and the spin
quantization axis is usually well defined by external mag-
netic fields. Therefore, spin polarization is easily quantified
by a single number2,3,5

P =
I↑ − I↓

I↑ + I↓
=

G↑↑ − G↓↓

G↑↑ + G↓↓ . s11d

Using the language of spin-density matrices, a partially po-
larized currentPÞ0 is an incoherent statistical mixture of
u↑l and u↓l states described by Eq.s9d sfor n↑=n↓ we get the
conventional completely unpolarized charge current

r̂s= Î s/2⇒ uPu=0d.
Surprisingly enough, quite a few apparently different

quantities have been proposed in recent spintronic literature
to quantify the spin polarization of detected current in semi-
conductor devices.44,46,54,55In semiconductors with SO cou-
pling, or a spatially dependent interaction with surrounding
spins and external inhomogeneous magnetic fields,46 a non-
zero off-diagonal spin-resolved conductanceG↑↓Þ0ÞG↓↑
will emerge due to spin precession or instantaneous spin-flip
processes. Thus, in contrast to Eq.s11d, these
expressions44,46,54,55for “spin polarization” involve all four
spin-resolved conductances defined by Eq.s4d. However,
they effectively evaluate just one component of the spin-
polarization vector along the spin quantization axisswhich is

usually fixed by the direction of magnetization of ferromag-
netic elements or axis of spin filter which specify the orien-
tation of injected spins in Fig. 1d. For example, standard
applications of the Landauer-Büttiker scattering formalism to
ballistic45 or diffusive transport in a 2DEG with Rashba SO
interaction,44 where only spin-resolved charge conductances
are evaluated through Eq.s4d, allows one to obtain onlyPx

↑ in
the right lead in Fig. 1. The knowledge ofPx

↑ alone is insuf-
ficient to quantify the quantum coherence properties of de-
tected spins. Also, in the case of transport of fully coherent
spins, whereuPu=1 in the right lead, we need to know all
three components of the outgoing polarization vector to un-
derstand different transformations that the device can per-
form on the incoming spin.15,16,19

Our formalism provides a direct algorithm to obtain the
explicit formulas forsPx

s ,Py
s ,Pz

sd from the spin-density ma-
trix Eq. s10d by evaluating the expectation value of the spin
operator in Eq.s2d. When injected current through the left
lead is spin-↑ polarized, the spin-polarization vector of the
current in the right lead is obtained from Eqs.s2d ands7d as

Px
↑ =

G↑↑ − G↓↑

G↑↑ + G↓↑ , s12ad

Py
↑ =

2e2/h

G↑↑ + G↓↑ o
n8,n=1

M

Reftn8n,↑↑tn8n,↓↑
* g, s12bd

Pz
↑ =

2e2/h

G↑↑ + G↓↑ o
n8,n=1

M

Imftn8n,↑↑
* tn8n,↓↑g. s12cd

Here, and in the formulas below, thex axis is chosen arbi-
trarily as the spin quantization axissFig. 1d, ŝxu↑ l= + u↑ l and
ŝxu↓ l=−u↓ l, so that Pauli spin algebra has the following
representation:

ŝx = S1 0

0 − 1
D, ŝy = S0 1

1 0
D, ŝz = S0 − i

i 0
D . s13d

Analogously, if the injected current is 100% spin-↓ polarized
along thex axis we get

Px
↓ =

G↑↓ − G↓↓

G↑↓ + G↓↓ , s14ad

Py
↓ =

2e2/h

G↑↓ + G↓↓ o
n8,n=1

M

Reftn8n,↑↓tn8n,↓↓
* g, s14bd
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Pz
↓ =

2e2/h

G↑↓ + G↓↓ o
n8,n=1

M

Imftn8n,↑↓
* tn8n,↓↓g. s14cd

Finally, if we impose the unpolarized currentn↑=n↓ as the
boundary condition in the left lead, the polarization vector of
detected current in the right lead is given by

Px
↑+↓ =

G↑↑ + G↑↓ − G↓↑ − G↓↓

G↑↑ + G↑↓ + G↓↑ + G↓↓ , s15ad

Py
↑+↓ =

2e2

h

1

G↑↑ + G↑↓ + G↓↑ + G↓↓ o
n8,n=1

M

Reftn8n,↑↑tn8n,↓↑
*

+ tn8n,↑↓tn8n,↓↓
* g, s15bd

Pz
↑+↓ =

2e2

h

1

G↑↑ + G↑↓ + G↓↑ + G↓↓ o
n8,n=1

M

Imftn8n,↑↑
* tn8n,↓↑

+ tn8n,↑↓
* tn8n,↓↓g. s15cd

Introducing electric14,17or magnetic fields46 to manipulate
spin in spintronic devices selects a preferred direction in
space, thereby breaking rotational invariance. Thus, as dem-
onstrated in Secs. III A and III B, spin-resolved conduc-
tances and components of the polarization vector of the cur-
rent will depend on the direction of spin in the incoming
current with respect to the direction of these fields. In the
case of unpolarized injected current, all results are invariant

with respect to the rotation of incoming spin sincer̂s= Î s/2
independently of the spin quantization axis. To accommodate
different polarizations of incoming current, one has to
change the direction of spin quantization axis. This amounts
to changing the representation of Pauli matrices Eq.s13d
when computing bothsid the transmission matrix, andsii d the
polarization vector from Eq.s2d.

While the form of the spin-density matrices, the diagonal
Pauli matrix, and the component of spin-polarization vector
Px

s along the spin quantization axis are unique, the explicit
expressions forPy

s and Pz
s depend on the particular form

of the chosen representation for the nondiagonal Pauli matri-
ces. The component along the spin quantization axisfPx

s in
Eq. s15adg has a simple physical interpretation—it represents
normalized difference of the charge currents of spin-↑
sI↑=G↑↑+G↑↓d and spin-↓ sI↓=G↓↓+G↓↑d electrons flowing
through the right lead. The fact that our expression is able
to reproduce the commonly used Eq.s11d as a special
case demonstrates that the density matrix of transported
spin Eq.s10d derived in Sec. II A yields rigorously defined
and unequivocal56 measure of spin polarization. Therefore,
in the rest of the paper we reserve the termspin polarization
of charge current37,50 for uPu. It is insightful to point out that
the same spin-density matrix Eq.s11d also allows us to ob-
tain the vector of spin current13 Is=s" /2edsI↑− I↓d, sIx

s,Iy
s,Iz

sd
=s" /2edsPx

sI ,Py
sI ,Py

sId, flowing together with charge current
I = I↑+ I↓=GV in the right lead of the device in Fig. 1sbiased
by the voltage differenceV between the leadsd.

The explicit expressions for the density matrices of de-
tected currentr̂c

↑, r̂c
↓, r̂c

↑+↓, i.e., the corresponding polarization
vectors extracted in Eqs.s12d–s15d, together with the Land-
auer formula for charge conductances Eq.s4d, provide a uni-
fied description of coupled spin-charge transport in finite-
size devices attached to external probes. For such structures,
the system size and interfaces through which electrons can
enter or leave the device play an essential role in determining
their transport properties. The proper boundary conditions,
which require considerable effort in theoretical formalisms
tailored for infinite systems,35 are intrinsically taken into ac-
count by the Landauer-Büttiker scattering approach to quan-
tum transport. Moreover, the unified description is indispens-
able for transport experiments which often detect spin
current through induced voltages on spin-selective
ferromagnetic5,10,23 or nonferromagnetic probes.48 The main
concepts introduced here are general enough to explain also
spin polarization in experiments where spins are detected in
optical schemes which observe the polarization of emitted
light in electroluminescence processes.7

III. SPIN COHERENCE IN TRANSPORT THROUGH
MULTICHANNEL SEMICONDUCTOR NANOWIRES

Traditional semiclassical approaches to spin transport24,25

have been focused on spin diffusion57 in disordered systems,
where SO interaction effects on transport are usually taken
into account only through their role in the relaxation of a
nonequilibrium spin polarizations. On the other hand, quan-
tum transport theories have been extensively developed to
understand the weak-localization-type corrections that SO
interactions induce on the charge conduction prop-
erties.53,58,59Many electrically controlledsvia SO couplingsd
spintronic devices necessitate a mode of operation with bal-
listically propagating spin-polarized electronsssuch as the
original spin-FET proposal17d in order to retain a high degree
of spin coherence. The study of spin relaxation dynamics in
ballistic finite-size structuresssuch as regular or chaotic SO
coupled quantum dots40d requires techniques that differ from
those applied to, e.g., the D’yakonov-Perel’ type of spin re-
laxation in disordered systems with SO interactionsthe DP
mechanism dominates spin relaxation at low temperatures in
bulk samples and quantum wells of III-V semiconductorsd.
Yet another transport regime that requires special treatment
occurs in low-mobility systems whose charge propagation is
impeded by Anderson localization effects or strong electron-
phonon interactions.60

To quantify the degree of coherence of transported spin
states in a vast range of transport regimes, we provide in this
section one possible implementation of the scattering formal-
ism for the spin-density matrixsSec. II Ad, which takes as
input a microscopic Hamiltonian. This will allow us to trace
the dynamics of the spin-polarization vector of current ob-
tained after the injected pure spin quantum state propagate
through ballistic, quasiballistic, diffusive, and strongly disor-
dered multichannel semiconductor nanowires with the
Rashba and/or the Dresselhaus SO couplings.

The computation of the Landauer transmission matrixt
usually proceeds either phenomenologically, by replacing the
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device with an equivalent structure described by a random
scattering matrixswhich is applicable to specific geometries
that must involve disorder or classical chaos due to the
boundary scattering,29 and extendable to include the SO
interactions61d or by using Hamiltonian formalisms. We
model semiconductor heterostructure containing a 2DEG in
thexy plane by an effective mass single-particle Hamiltonian
with relevant SO interaction terms,

Ĥ =
p̂x

2 + p̂y
2

2m* + Vconfsx,yd + Vdisordersx,yd +
a

"
sp̂yŝx − p̂xŝyd

+
b

"
sp̂xŝx − p̂yŝyd, s16d

wherem* is the effective mass of an electron in a semicon-
ductor heterostructure.62 HereVconfsx,yd represents the hard-
wall boundary conditions at those device edges through
which the current cannot flow. The random potential
Vdisordersx,yd is zero for ballistic wires in Sec. III A, and it
simulates spin-independent scattering off impurities in Sec.
III B. In semiconductor-based devices there are two main
contributions to the SO interactions:sad electrons confined to
the 2DEG within semiconductor heterostructures experience
strong Rashba SO couplingfthird term in Eq.s16dg because
of structure inversion asymmetry due to confining potential
and differing band discontinuities at the quantum well
interface;20 linear-in-momentum Dresselhaus SO coupling
ffourth term in Eq.s16dg which arises in semiconductors with
no bulk inversion symmetryswe neglect here the cubic
Dresselhaus termd.63 In a GaAs quantum well the two terms
are of the same order of magnitude, while the Rashba SO
coupling dominates in narrow-band-gap InAs-based struc-
tures sthe relative strengtha /b has recently been extracted
from photocurrent measurements64d.

Although it is possible to evaluate the transmission matrix
elements of simple systemsssuch as single-14,15 or two-
channel structures55d described by the Hamiltonian Eq.s16d
by finding the stationary states across the lead+sample sys-
tems via matching of eigenfunctions in different
regions,15,18,55,65for efficient modeling of multichannel trans-
port in arbitrary device geometry, as well as to include ef-
fects of disorder, it is necessary to switch to some type of
single-particle Green function technique.28 We employ here
the real̂ spin space Green operators, whose evaluation re-
quires one to rewrite the Hamiltonian Eq.s16d in the local
orbital basis

Ĥ = So
m

«mumlkmu − to o
km,m8l

umlkm8uD ^ Î s

+
a

"
sp̂y ^ ŝx − p̂x ^ ŝyd +

b

"
sp̂x ^ ŝx − p̂y ^ ŝyd

s17d

defined on theM 3L lattice, whereL is the length of the
wire in units of the lattice spacinga sof the order of a few
nanometers when interpreted in terms of the parameters of
semiconductor heterostructures employed in experiments62d,
andM is the width of the wire. In 2D systems,M is also the

maximum number of conducting channels that can be
opened up by positioningEF in the band center of the
Hamiltonian Eq.s17d. Here to="2/ s2m*a2d is the nearest-
neighbor hopping betweens orbitals kr uml=csr −md on
adjacent atoms located at sitesm=smx,myd of the lattice.
In the ballistic wires of Sec. III A we set the on-site potential
energy«m=0, while the disorder in Sec. III B is simulated
via the uniform random variable«mP f−W/2 ,W/2g.
In Eq. s17d ^ stands for the Kronecker product of
matrices, which is the matrix representation of the tensor
product of corresponding operators. The tight-binding repre-
sentation of the momentum operator is given by the matrix
kmup̂xum8l=dmx8,mx±1i"smx−mx8d /2a2. Therefore, the matrix
elements of the SO terms in Eq.s17d contain spin-orbit hop-
ping parameterstSO

R =a /2a and tSO
D =b /2a, which determine

the Rashba and the Dresselhaus SO-coupling-induced spin
splitting of the energy bands,42 respectively. All parameters
in the Hamiltonian with the dimension of energysW, EF, tSO

R ,
and tSO

D d will be expressed in the figures in units of standard
sorbitald hoppingto=1 of tight-binding Hamiltonians.

The SO coupling sets the spin precession length
LSO=p /2kSO defined as the characteristic length scale over
which spin precesses by an anglep si.e., the stateu↑l evolves
into u↓ld. For example, in the case of the Rashba SO
coupling42 kSO=m*a /"2 s2kSO is the difference of Fermi
wave vectors for the spin-split transverse energy subbands of
a quantum wired and17 LSO=ptoa/2tSO

R . The spin precession
length determines evolution of spin polarization in the course
of semiclassical spatial propagation through both the
ballistic40 and the diffusive25 SO coupled structuresswhich
are sufficiently wide and weakly disordered; see Sec. III Bd.

The spin-resolved transmission matrix elements

t = 2Î− Im ŜL
r

^ Î s · Ĝ1N
r ·Î− Im ŜR

r
^ Î s,

tn8n,↑↑ ; t2sn8−1d+1,2sn−1d+1,

tn8n,↑↓ ; t2sn8−1d+1,2n,

tn8n,↓↑ ; t2n8,2sn−1d+1,

tn8n,↓↓ ; t2n8,2n, s18d

are obtained from the Green operator,

Ĝr =
1

EÎo ^ Î s − Ĥ − SŜ↑
r 0

0 Ŝ↓
r
D , s19d

whereĜ1L
r is the 2M 32M submatrix of the Green function

matrix Ĝmm8,ss8
r =km ,suĜrum8 ,s8l connecting the layers 1

andL along the direction of transportsthe x axis in Fig. 1d.
The Green function elements yield the probability amplitude
for an electron to propagate between two arbitrary sites
swith or without flipping its spin during the motiond inside
an open conductor in the absence of inelastic processes. Here

the self-energiessr, retarded;a, advancedd ŜL,R
a =fŜL,R

r g†,

DECOHERENCE OF TRANSPORTED SPIN IN… PHYSICAL REVIEW B 71, 195328s2005d

195328-7



Ŝr =ŜL
r +ŜR

r account for the “interaction” of the open system
with the left sLd or the right sRd lead.28 For simplicity, we

assume thatŜ↑
r =Ŝ↓

r , which experimentally corresponds to
identical conditions for the injection of both spin speciessas
realized by, e.g., two identical half-metallic ferromagnetic
leads of opposite magnetization attached to the sample42d.

A. Ballistic spin-charge quantum transport in semiconductor
nanowires with SO interactions

Over the past two decades, a multitude of techniques has
been developed to fabricate few nanometer-wide quantum
wires and explore their properties in mesoscopic transport
experiments. An example is a gated two-dimensional elec-
tron gas,67 which has also become an important component
of hybrid spintronic devices.17 Nevertheless, even for present
nanofabrication technology it is still a challenge to fabricate
narrow enough wires that can accommodate only one trans-
verse propagating mode.

To investigate spin coherence in multichannel wires,
we commence with the simplest example—Fig. 2 plotsuPu
as a function of the Fermi energyEF of electrons whose
transmission matrixtsEFd determines spin-charge transport
in a quantum wire supporting at most twosn=1,2d orbital
conducting channels. The current injected from the left lead
is assumed to be fully polarized along the direction of trans-
port, as in the case of the spin-FET proposal where such a
setup ensures a high level of current modulation.45 As long
as only one conducting channel is open, spin is coherent
since the outgoing state in the right lead must be of the form
sau↑ l+bu↓ ld ^ un=1l. At exactly the same Fermi energy
where the second conducting channel becomes available for
quantum transport, the spin polarization drops below 1 and
the spin state, therefore, loses its purityuPu,1. This can be
explained by the fact that at thisEF, the quantum state of
transported spin of an electron in the right lead appears to be

entangled with the “environment” composed of two open
orbital conducting channels of the same electron

uoutl = au ↗ l ^ ue1l + bu ↙ l ^ ue2l. s20d

The scattering at the lead-semiconductor interface, which in
the presence of the SO interaction give rise to the nonsepa-
rable sor entangledd state in Eq.s20d, is generated by the
different nature of electron states in the wire and in the leads.

Recent studies have pointed out that interface between an
ideal leadswith no SO couplingsd and a region with strong
Rashba SO interaction can substantially modify spin-
resolved conductances42 and suppress spin injection.55 Fur-
thermore, here we unearth how moderate SO couplingssthe
values achieved in recent experiments are of the order of62

tSO
R ,0.01d in wires of a few nanometers width will affect the

coherence of ballistically transported spins, even when uti-
lizing wires with Rashba=Dresselhaus SO couplings18 ssee
also Fig. 8 belowd. This effect becomes increasingly detri-
mental when more channels are opened, as demonstrated in
Fig. 3sad for anM =10 channel nanowire. Thus, such mecha-

FIG. 2. sColor onlined The degree of quantum coherence re-
tained in spins that have been transmitted through a clean two-
channel semiconductor nanowire, modeled on the lattice 23100 by
Hamiltonian Eq.s17d, for different strengths of the Rashba and the
Dresselhaus SO coupling tuned totSO

R = tSO
D . The vertical dashed

lines label the position of the Fermi energy in the leads at which the
secondsorbitald conducting channel becomes available for injection
and quantum transport.

FIG. 3. Purity of transported spin states through a clean semi-
conductor nanowire 103100 with different strengths of the Rashba
SO couplingtSO

R . The casesad should be contrasted with Fig. 2
where the only difference is the number of transverse propagating
modessi.e., channelsd in the leads through which electrons can be
injected. Insbd, a tunnel barrier has been introduced between the
lead and the 2DEG wire by reducing the strength of the lead-2DEG
hopping parameter fromtL-Sm= to in casesad to tL-Sm=0.1to in plot
sbd.
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nism of the reduction of spin coherence will affect the op-
eration of any multichannel spin-FET,68 independently of
whether the semiconductor region is clean or disordered.
Note also that injection through both channels of the two-
channel wire is not equivalent to transport with only the first
two channels opened in theM =10 channel wire case because
unoccupied modes can influence the transport through open
channels in a way that depends on the shape of the transverse
confinement potential.69

Since tunnel barriers have become an important ingredi-
ent in attempts to evade the spin injection impediments at the
FM-Sm interface,6 we introduce the tunnel barrier in the
same ballistic setup by decreasing the hopping parameter
between the lead and the wire in Fig. 3 totL-Sm=0.1to. Al-
though a tunnel barrier inserted into an adiabatic quantum
point contact changes only the transmissivity of each channel
without introducing the scattering between different
channels,66 here the scattering at the interface takes place in
the presence of SO interactions. Thus, it can substantially
affect the spin coherence of outgoing spins transmitted
through two tunnel barriers in Fig. 3sbd.

To understand the transport of spin coherence along the
clean wire, we plotuPu in Fig. 4 as a function of the wire
length. Contrary to the intuition gained from the DP mecha-
nism, which in unbounded diffusive systems leads to an ex-
ponential decay ofuPu to zero for any nonzero SO interac-
tion, the spin coherence in clean wires displays oscillatory
behavior along the wire or attains a residual value which
exemplifies a partially coherent spin state. Similar behavior
has been recently confirmed for semiclassical transport
through confined disorder-free structures with integrable
classical dynamics.40 These effects depend strongly on the
direction of spin of the injected electrons with respect to the
Rashba electric fieldsFig. 1d and on the concentration of
carriers. Nevertheless, in some range of parameters appar-
ently DP-like spin relaxation to zero can occur for short

enough wires. This would appear as a finite spin coherence
length in ballistic wires where no impurity scattering along
the wire takes place.34,40

In the absence of external magnetic fields or magnetic
impurities, the SO couplings dominate spin dynamics in
semiconductor systems with inversion asymmetry due to ei-
ther crystalline structure or physical configuration. In such
systems, they lift the spin degeneracy of Bloch states while
at the same time enforcing a particular connection between
wave vector and spin through the remaining Kramers
degeneracy50 sstemming from time-reversal invariance
which is not broken by the effective momentum-dependent
magnetic field corresponding to SO interactionsd of states
uk ↑ l and u−k ↓ l. For example, this leads to the applied elec-
tric field inducing spin polarization in addition to charge

FIG. 4. sColor onlined Transport of spin coherence along the
ballistic nanowires of different lengthL. The wires are modeled on
the lattice 303L with the Rashba SO interaction strength
tSO
R =0.03 and the corresponding spin precession length

LSO=ptoa/2tSO
R =52a. The injected fully spin-polarized electron

states from the left lead have spin↑ pointing in different directions
with respect to the Rashba electric fieldsFig. 1d. The number of
open conducting channels is 10 atEF=−3.0, 23 atEF=−0.5, and 30
in the band centerEF=0.

FIG. 5. sColor onlined The disorder-averaged components of the
spin-polarization vectorskPxldis,kPyldis,kPzldisd, as well as its mag-
nitude kuPuldis, for the outgoing current as a function of the length
L of the weakly disordered semiconductor quantum wire modeled
on the lattice 303L with Rashba SO interactiontSO

R =0.03 sLSO

=52ad and the disorder strengthW=1 swhich sets the mean free
path,.4ad. The injected electrons withEF=−0.5 are spin↑ polar-
ized alongsad the x, sbd the y, andscd the z axis.
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current23 or correlations between spin orientation and carrier
velocity that are responsible for the intrinsic spin Hall
effect.13,70

While coupling of spin and momentum is present in the
semiclassical transport,23,41 for quantum-coherent spatial
propagation of electrons it can be, furthermore, interpreted as
the entanglementof spinor and orbital wave function, as ex-
emplified by the nonseparable47 quantum state in Eq.s20d.
Note that this type of nonseparable quantum state describing
a single particle has been encountered in some other
situations30—for example, even when the initial state is a
product of a spinor and a wave function of momentum, the
state transformed by a Lorentz boost is not a direct product
anymore because spin undergoes a Wigner rotation which
depends on the momentum of the particle. These examples of
entanglement of spin and orbital degrees of freedomsde-
scribed by state vectors belonging to two different Hilbert
spacesd are somewhat different from more familiar
entanglement47 between different particles, which can be
widely separated and utilized for quantum
communication,30,32 because both degrees of freedomsspin
and momentumd belong to the same particle. Nevertheless,
their formal description proceeds in the same way—the state
of the spin subsystem has to be described by a reduced den-
sity matrix obtained by tracinguoutlkoutu in Eq. s20d over the
orbital degrees of freedom33

r̂s = Trououtlkoutu = S uau2 ab*ke2ue1l
a*bke1ue2l ubu2

D . s21d

Here we utilize the fact that the type of quantum state in Eq.
s20d, containing only two terms, can be written down for
each outgoing state in the right lead for any number of open
conducting channelsù2. That is, such Schmidt decomposi-
tion consists of only two terms if one of the two subsystems
of a bipartite quantum system is a two-level onesindepen-
dently of how large is the Hilbert space of the other
subsystemd.47

The decay of the off-diagonal elements ofr̂s in Eq. s21d,
represented in a preferred basissu↑l,u↓l selected by the prop-
erties of incoming currentd, is an example of formal descrip-
tion of decoherence of quantum systems.32,33 The informa-
tion about the superpositions of spin-↑ and spin-↓ states is
leaking into the “environment”scomprised of the orbital de-
grees of freedom of one and the same electrond while the full
quantum state still remains pure as required in mesoscopic
transport. It is important to clarify that the loss of coherence
in the entangled transported spin state, as an exchange of
phase information between the orbital and spin subsystems,
occurs here without any energy exchange that often accom-
panies decoherence in solid state systems. Such decoherence
without involvement of inelastic processes can, in fact, un-
fold at zero temperature with the proviso that environmental
quantum state is degenerate.71 This situation is effectively
realized in quantum transport of spin through multichannel
wires, where the full electron state remains a pure one
PHo ^ Hs sinelastic processes would inevitably decohere
this full stated. The degeneracy of the “environment” here
simply means that more than one conducting channel is open

at those Fermi energies in Figs. 2 and 3 whereuPu,1. Note
that even when transitions between different open channels
are absentsso that individual spins remain in the same chan-
nel in which they were injected and no SO entanglement
takes placed, the spin-density matrix of currentr̂c can still be
“dephased”26,32 when its off-diagonal elements are reduced
due to the averagingfas in Eq.s10dg over states of all elec-
trons in the detecting lead.

B. Coupled spin-charge quantum diffusion in semiconductor
nanowires with SO interactions

Although the problem of spin dynamics in diffusive SO-
coupled semiconductors was attacked quite some time ago,25

it is only recently that more involved theoretical studies of
spin-density transport in a 2DEG with SO interactions have
been provoked by the emerging interest in
spintronics.35,49,72,73While standard derivations1,4 of the DP
spin relaxation25 in semiclassical diffusive transport through
bulk systems start from a density matrix which is diagonal in
k space, but allows for coherences in the spin Hilbert space,1

in this section we examine quantum corrections to this pic-
ture in finite-size SO coupled systems by analyzing the decay
of the off-diagonal elements of the spin density matrix Eq.
s7d, which is obtained by tracing over the orbital degrees of
freedom of the density matrix of pure state characterizing
fully quantum-coherent propagation in mesoscopic systems.

To facilitate comparison with our treatment of coupled
spin-charge quantum transport, we recall here the simple
semiclassical picture explaining the origin of the DP spin
relaxation mechanism.40 For example, if an ensemble of
electrons, spin polarized along thez axis, is launched from
the bulk of an infinite 2DEG with Rashba SO interaction
ŝ ·BRskd in different directions, then at timet=0 they start to
precess around the direction of the effective magnetic field
BRskd. However, scattering off impurities and boundaries
changes the direction of the electron momentumk and,
therefore, can change drasticallyBRskd. Averaging over an
ensemble of classical trajectories leads to the decay of thez
component of the spin-polarization vector, whose time evo-
lution is described by

Pzstd = exps− 4t,/LSO
2 d, s22d

assuming that the spin precession lengthLSO is much greater
than the elastic mean free path,=vFt. For elastic scattering
time shorter than the precession frequencyt,1/uBRskdu, the
DP spin relaxation25 is characterized by the relaxation rate
1/ts.tBRskd. Compared to other mechanisms of spin relax-
ation in semiconductors that generate instantaneous spin flips
ssuch as Elliot-Yafe or Bir-Aronov-Pikus mechanismsd,24 the
DP spin relaxation25 is a continuous process taking
place during the free flight between scattering events.
Thus, within the semiclassical framework,24 the spin
diffusion coefficient determining the relaxation of an inho-
mogeneous spin distribution is the same as the particle dif-
fusion coefficient. This renders the corresponding spin diffu-
sion lengthLsdiff=ÎDts=LSO to be equal to the ballistic spin
precession lengthLSO and, therefore, independent of,. The
ratio , /L controls whether the charge transport is diffusive
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s, /L!1d or ballistic s, /L@1d. For a disordered
2DEG, modeled on the 2D tight-binding lattice, the semi-
classical mean free path is74 ,=s6lF

3EF
2d / sp3a2W2d slF

is the Fermi wavelengthd, which is valid for weak disorder
«mP f−W/2 ,W/2g in the Hamiltonian Eq.s17d and no spin-
flip scattering.

To address both the fundamental issues of quantum inter-
ference corrections to spin precession and challenges in re-
alization of semiconductor devicesssuch as the nonballistic
mode of operation18 of the spin-FETd, we introduce the stan-
dard diagonal disorder«mP f−W/2 ,W/2g in Hamiltonian
Eq. s17d which accounts for short-range isotropic spin-
independent impurity potential within the wire. The principal
spin transport quantities examined in this section will be the
disorder-averaged components of the polarization vector
skPxldis,kPyldis,kPzldisd, as well as its magnitudekuPuldis, as a
function of the wire length, disorder strengthW, and SO
coupling strengths. Note that in quasi-one-dimensional sys-
tems weak disorder can induce localization of electron states
when their lengthL@j becomes greater than the localization
length j=s4M −2d, in systems with broken spin rotation
invariance.29

In contrast to the simple exponential decay in semiclassi-
cal theory Eq.s22d, typical decay of spin polarization in the
multichannel quantum wire plotted in Fig. 5 is more compli-
cated. That is, the oscillatory behavior ofkPxldis, kPyldis,
kPzldis stems from coherent spin precession, while the reduc-
tion of kuPuldis quantifies spin decoherence in disordered
Rashba spin-split wires. As shown in Fig. 6, the decay rate of
kuPuldis along the wire decreases as we decrease the wire
width, thereby suppressing the DP spin relaxation in narrow
wires.72 Within our quantum formalism this effect has a
simple interpretation—the spin decoherence is facilitated
when there are many open conducting channels to which
spin can entangle in the process of spin-independent scatter-
ing that induces transitions between the transverse subbands.
In all of the phenomena analyzed here, one also has to take
into account the orientation of the incoming spin with respect
to the Rashba electric field in Fig. 1. For example, when
injected spin is polarized along they axis, the oscillations of

the polarization vector vanish because of the fact thatBRskd
in quasi-one-dimensional systems is nearly parallel to the
direction of transverse quantizationsthey axis in Fig. 1d and
injected spin is, therefore, approximately an eigenstate of the
Rashba Hamiltonianŝ ·BRskd.

There are salient features ofskPxldis,kPyldis,kPzldisd in Fig.
5, brought about by SO quantum interference effects in dis-
ordered 2DEGs, which differentiate fully quantum treatment
of coupled spin-charge transport from its semiclassical
counterparts.37,38The spin polarizationkuPuldis exhibits oscil-
latory behavior since spin memory is preserved between suc-
cessive scattering events. As the localized regime is ap-
proached, mesoscopic fluctuations of transport quantities
become as large as the average value, which is therefore no
longer a representative of wire properties.29 For the disorder-
averaged polarizationkuPuldis studied in Fig. 5, we notice that
mesoscopic sample-to-sample fluctuations render it to be
nonzero even after spin has traversed very long wires, i.e.,
kÎPx

2+Py
2+Pz

2ldisÞÎkPx
2ldis+kPy

2ldis+kPz
2ldis.

Fig. 7 shows how quantum interference effects in phase-
coherent spin-charge transport through strongly disordered
systems slow down the DP semiclassical spin relaxation,25

while going beyond the weak localization induced slowing
down49 derived assuming weak SO coupling in random po-
tential which can be treated perturbatively. The current spin
polarizationkuPuldis in the wires of fixed length can increase

FIG. 6. sColor onlined The spin polarizationkuPuldis of current
transmitted through semiconductor wires of different widths sup-
porting different numbers of conducting channelsM. The nanowires
are modeled onM 3L lattices where quantum transport is deter-
mined by the same set of parameters as in Fig. 5:tSO

R =0.03
sLSO=52ad; W=1 s,.4ad; andEF=−0.5.

FIG. 7. sColor onlined The dependence of the disorder-averaged
spin polarizationkuPuldis of the outgoing current, which has been
transmitted through a semiconductor quantum wire modeled
on the lattice 303100, as a function of the disorder strengthW sthe
corresponding semiclassical mean free path is,.16ato

2/W2d
and the following parameters:sad different values of Rashba cou-
pling and direction of injected spin polarization at fixedEF=−0.5;
sbd different Fermi energies of transported electrons, with
initial spin-↑ polarization along thex axis, in wires withtSO

R =0.03
sLSO=52ad.
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with disorder even within the semiclassical regime,.a.
This effect survives strong Rashba interaction Fig. 7sad or
opening of more channels Fig. 7sbd. A conventional pertur-
bative interpretation of this effect44,49,72 is that quantum in-
terference corrections to spin transport are generating longer
ts, so thatLsdiff cease to be disorder independent. Our picture
of spin entangled to the “environment” composed of orbital
transport channels from Sec. III A sheds new light on this
problem by offering a nonperturbative explanation for both
the weakly and strongly localized regimes—as the disorder
increases, some of the channels are effectively closed for
transport thereby reducing the number of degenerate “envi-
ronmental” quantum states that can entangle to spin.

Finally, we investigate the quantum-coherence properties
of spin diffusing through multichannel wires with different
types of SO interactions. As shown in Fig. 8, the spin diffu-
sion in Rashba nanowires has the same properties as the
diffusion in the Dresselhaus ones after one interchanges the
direction of injected polarization for situations when incom-
ing spins are oriented along thex and they axes. This stems
from the fact that the Rashba term and linear Dresselhaus
terms can be transformed into each other by the unitary ma-
trix sŝx+ŝyd /Î2. Therefore, the nontrivial situation arises
when both of these SO interactions are present, as shown in
the middle panel of Fig. 8.

In particular, when they are tuned to be equala=b, we
find infinite spin coherence time andLsdiff→`, as discovered
in the nonballistic spin-FET proposal.18 However, although
the current spin polarizationkuPuldis does not change along
the wire, its length-independent constant value is set below
1, kuPuldis,1 and, moreover, it is sensitive to the spin-
polarization properties of injected current. Thus, the trans-
ported spin in such a 2DEG with carefully tuned SO cou-
plings will end up in a mixed quantum state which remains
partially coherent75 with constant degree of coherence along
the wire. The partial coherence of the state is reflected in the

reduced oscillationssi.e., reduced “visibility” of spin
interferencesd of measurable propertiessPx

s ,Py
s ,Pz

sd
along the nanowire, as shown in Fig. 9sfor fully coherent
states, where spin↑ and spin↓ interfere to formau↑ l+bu↓ l,
all components of the spin polarization would oscillate
between +1 and −1d. While such states are able to evade
DP spin decoherence in propagation through diffusive
systems,18 they are partially coherent due to the fact that the
value of their purity is set by the scattering events at
the lead-2DEG interface. As demonstrated by Fig. 2 for
ballistic wires with Rashba=Dresselhaus couplings, the
spin decoherence processes at the interfacesoccurring before
the diffusive regime is enteredd cannot be suppressed by
tuning a=b.

IV. CONCLUSIONS

We have shown how to define and evaluate the
spin-density matrix of current that is transmitted through a
metal or a semiconductor where electrons are subjected to
nontrivial spin-dependent interactions. This formalism
treats both the dynamics of the spin-polarization vector and
spatial propagation of charges to which the spins are attached
in a fully quantum-coherent fashion by employing the
transmission quantities of the Landauer-Büttiker scattering
approach to quantum transport. Thus, it provides a unified
description of the coupled spin and charge quantum
transport in finite-size open mesoscopic structures, while
taking into account attached external leads and different
boundary conditions imposed by spin injection through
them.

The knowledge of the spin-density matrix of electrons
flowing through the detecting lead of a spintronic device
allows us to quantify the degree of quantum coherence of
transmitted spin quantum states as well as to compute the
components of spin current flowing together with the charge
current. The analysis of coherence properties of transported
spin is essential for the understanding of limits of all-

FIG. 8. sColor onlined The degree of quantum coherence of
transmitted spin states, measured bykuPuldis, in a FM-Sm-FM spin-
FET-like structure with disorder and Dresselhausstop paneld,
Rashbasbottom paneld, and Rashba=Dresselhaussmiddle paneld
SO couplingsfas envisioned in the nonballistic spin-FET proposal
sRef. 18dg. Note that the curves for spin-↑ injection along thex and
y axes overlap in the middle panel. The semiconductor region is
modeled on the lattice 303L with disorder W=1 s,.4ad and
EF=−0.5 for transported electrons.

FIG. 9. sColor onlined The components of the spin-polarization
vector ofpartially coherentspin states that are transmitted through
a nonballistic spin-FET-like structuresRef. 18d with tSO

R = tSO
D . The

structure is modeled by the same Hamiltonian used to compute the
disorder-averaged purity of these stateskuPuldis in the middle panel
of Fig. 8.
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electrical manipulation of spin via SO interactions in semi-
conductors. That is, despite offering engineered spin control,
they can induce mechanisms that lead to the decay of spin
coherence, even in perfectly clean systems, when electrons
are injected through more than one conducting channel. We
find that a single spin injected through a given channel of the
left lead will end up in a partially coherent spin state in the
right lead when transitions between different transverse
subbandssdue to scattering at impurities or interfacesd
take place, thereby entangling the spin quantum state to the
“environment” composed of different orbital transverse
propagating modes. This is, therefore, a “genuine” decoher-
ence mechanism26,32 encoded in our spin-density matrix. In
addition, even if every transmitted electron remains in
the same channel through which it was injected, the off-
diagonal elements of the spin-density matrix of the detected
current can be reduceds“fake” decoherence32 or
“dephasing”26d due to the averaging over different channels
in multichannel transport, i.e., because of an incomplete
description carried out by the averaged density matrix22,32

r=1/Noi=1
N uSilkSiu.

In general, reduction of visibility of quantum interference
effects can arise becausesid different phases in different
transmission channels prevent conditions for destructive or
constructive interference being simultaneously satisfied
seven though the spin states remain fully coherentd and/orsii d
the transmitted charge or spin is coupled to other degrees of
freedom.75 In the semiconductor nanowires with different
types of SO couplings studied here, each spin is subjected to
a genuine decoherence mechanism via unconventional real-
ization of entanglement where the electron spin, viewed as a
subsystem of a bipartite quantum system composed of spin
and orbital degrees of freedom of a single electron, couples
to open Landauer orbital conducting channels. The ensemble

of such spinsswhich are not in pure, but rather in improperly
mixed quantum statesd in the right lead is then subjected to
“dephasing” when performing the averaging of their proper-
ties in typical transport-based spin detection schemes. Such
physical interpretation provides a unified description of the
decay of spin coherence from the ballistic to the localized
transport regime.

In most of the structures examined here, the off-diagonal
elements of r̂c do not decay completely to zero on
some characteristic time scale. Instead, in the steady-state
transport through multichannel wires with SO interaction
spins will end up in a partially coherent quantum state.75,76

The analysis ofr̂c for such states, which is characterized by
0, uPu,1, allows one to identify remnants of full spin inter-
ference effects, such as the oscillations of components of the
spin-polarization vector shown in Fig. 9. Partially coherent
states as the outcome of entanglement of the spin of a trans-
mitted electron with the spin in a quantum dot have been
found recently in experiments.76 Here we find similar par-
tially coherent outgoing spin states, which are, however, in-
duced by a physical mechanism involving entanglement
which is different and single particle in nature. Finally, even
though current modulation through the coherent dynamics of
transported spin in spin-FETsRefs. 17 and 18d and spin-
interference ring devices14–16will be the strongest for single-
channel semiconductor structures, quantum interference ef-
fects with partially coherent states could be utilized in
realistic structures that are not one dimensional and not
strictly ballistic.16
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