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The theory of nuclear spin-lattice relaxation via paramagnetic centers in diamagnetic crystals is investi-
gated in terms of both the single-relaxation-center and the multirelaxation-center models. In this theory, the
distances between centers are allowed to be finite. A new case is found for which the theory predicts a new
dependence of the spin-lattice relaxation time upon the applied magnetic field, the concentration of the
paramagnetic centers, and the magnitude of the diffusion constant. An adaptation of the theory to the rotat-
ing reference frame shows that under certain conditions the spin-lattice relaxation time in the rotating frame

can be larger than in the laboratory frame.

I. INTRODUCTION

HE dominant role played by paramagnetic im-

purities in nuclear spin-lattice relaxation in certain
diamagnetic crystals was recognized as early as 1947.!
In 1949, Bloembergen proposed and investigated the
idea of spin diffusion? as a means of transporting nuclear
energy to the paramagnetic impurity centers. In this
paper Bloembergen derived the transport equation for
the nuclear magnetization and solved the time-inde-
pendent case numerically to obtain an expression for
T, in the diffusion-limited case. Later, Khutsishvili
found an analytical solution to the equation?#* de
Gennes also solved the problem and showed that to a
first-order approximation, the same 7T expression could
be obtained from either the steady state or the transient
solution.® Blumberg investigated nuclear spin-lattice
relaxation due to paramagnetic centers for the case
where the effect of spin diffusion was negligible.® He
derived the #/2 law for the growth of the nuclear
magnetization a short time after the nuclear spin system
was saturated. Blumberg also worked out a theory to
cover the case in which spin diffusion is so fast that the
relaxation rate depends completely on the rate at which
paramagnetic centers can absorb energy (rapid-diffu-
sion case). Khutsishvili subsequently solved this prob-
lem also” by taking the proper limits for his solution
to the steady-state transport equation. In 1964,
Rorschach derived a general expression for 7% that
linked the two limiting cases in one expression.® This
solution shows a rather abrupt transition for the be-
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havior of 7y when going from one limiting case to the
other (the rapid-diffusion case and the diffusion-limited
case).

Most of the developments of the theory are based on
the assumption that the paramagnetic-center concen-
tration in the crystal is so dilute that the average
impurity separation is essentially infinite in comparison
to the range of direct interaction between the para-
magnetic center and the surrounding nuclei. For some
experiments, this assumption is violated. These theories
also assume that the direct relaxation due to the para-
magnetic centers is spherically symmetric.

In Sec. ITA of this paper the general spin-lattice
relaxation-time equation in the laboratory reference
frame is set up. In Sec. IIB, a spin-lattice relaxation
time 71 is computed from this equation for a spherically
symmetric single-paramagnetic-center model for a finite
average separation between centers. Various limiting
cases are considered. In Sec. IIC, the general spin-
lattice relaxation-time equation in the laboratory refer-
ence frame is solved for a multi-paramagnetic-center
model, and its solutions are connected on to the single-
center model.

A nonequilibrium value of magnetization may be
generated along a magnetic field rotating in a plane
that is perpendicular to the large applied static mag-
netic field. The time constant with which this magneti-
zation decays, called the rotating reference frame spin-
lattice relaxation time and denoted by 7, may be
different from 7. The calculations of Sec. II are
repeated in Sec. III for Ty

II. SPIN-LATTICE RELAXATION TIME IN THE
LABORATORY REFERENCE FRAME

A. Differential Equation for M(r, ¢)

In a solid containing paramagnetic centers, the nu-
clear spins are acted upon by the time-varying local
magnetic fields produced by these centers. If an initially
saturated spin system is put in a static magnetic field
By, nuclear magnetization will be built up most rapidly
near the paramagnetic centers due to the strong inter-
actions of the nuclear spin system with the time-varying
279
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local fields at these sites. This gives rise to a spin-
temperature gradient which causes spatial diffusion of
nuclear spin energy. It will be assumed that the nuclear
spins and the paramagnetic centers occupy fixed po-
sitions in space.

Let M (r, ) denote the nuclear spin magnetization at
position r and time ¢ Then,

[aM( T, t) /at]total= [aM( r, t) /at]p+ EaM( T, t) /at:ld-
(1)

The term [0M (1, ) /0¢], represents the rate of change
of M(r,t) due to the direct interaction of the nuclear
spins with the paramagnetic centers, and is given by?

[aM(l‘, t)/atjp= I:MO——M(r’ t)]/Tlp(r)y (Za)
[Ty(r) 1= 2 [Ci/| 1R, [*]. (2b)

where

M, is the equilibrium value of the nuclear spin magneti-
zation at the lattice temperature T' in the applied
magnetic field Be. R; is the position of the jth para-
magnetic center, and the sum is over all the para-
magnetic centers of the lattice. As shown in Eq. (A27)
of Appendix A, for worcKw,r., the term C; has the
value

C;j=3 sin%; cos®Byy,2y,2h2S (S+1) [/ (1+wir) 1, (3)

where 6; is the angle between the vector (r—R;) and
the applied magnetic field Be; v, and v, are the mag-
netogyric ratios of the paramagnetic center and nucleus,
respectively; .S is the spin of the paramagnetic center,
7. is the correlation time of the z component of the
paramagnetic center spin, 7’ is the correlation time of
the x or y component of the paramagnetic center spin,
wo="YxBo, and w,="v,Bq.

The term [0M(r,t)/dt]a represents the rate of
change of M(r,¢) due to the spatial transport of
magnetization. When there is a spatially inhomogeneous
distribution of magnetization, it has been shown® that
due to spin-spin interaction

[oM(x,t)/ot]a= 23: D8(8%/9x9xF) M (1, 1), (4)
a,f=1

where D*8 is the af component of a spin-diffusion
tensor. Near the various paramagnetic centers, the
value of D*8 goes to zero. The local field due to the
paramagnetic center is different at different nuclear
spin sites, and this tends to prevent the T || T
transition from taking place. This process is necessary
for spin diffusion, and when this process is quenched,
the spin-diffusion rate goes to zero. This spin-diffusion
quenching is normally introduced into a calculation by
defining a radius & about each paramagnetic center,
called the spin-diffusion barrier radius, inside of which
D6=0 and outside of which D* has a constant value.

°1. J. Lowe and S. Gade, Phys. Rev. 156, 817 (1967).
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This radius b is defined as the distance from the para-
magnetic center at which the change of B,, the mag-
netic field of the paramagnetic center, is of the order
of the local field B; produced by nuclei at the sites of
other nuclei. Its value is given by®

b= (3a{up)s/B1)"", (3)

where {u,). is the average effective value of the mag-
netic moment of the paramagnetic center in quenching
spin diffusion and ¢ is the distance between neighboring
nuclear spins.

The magnetic field of the paramagnetic centers also
broadens the resonance lines of the nuclei near the
centers so that these nuclei normally do not contribute
to the signal produced by the nuclei in a measurement.
We can define a radius b, about each paramagnetic
center, inside of which the nuclei have such broadened
resonance lines that their contributions to a measured
signal are unobserved. A reasonable criterion for the
value of b, is that distance from the paramagnetic
center, where B, is of the order of B;. Assuming B,~

(up)./7*, one has
bo= ({up)s/B1) " (6)

It is obvious that by> b.
Substitution of Egs. (2) and (4) into Eq. (1) yields
3

am(r, 1) /ot= D Db(3%/dx*0x")m(z, 1)
a,f=1
—m(r,4) 2_(Ci/| t=R; [, (T)

where m(r,t)=My—M(r,t). If one could find the
general time-dependent solution to Eq. (7), one could
then find the behavior of the total magnetization of the
nuclear spin system as a function of time for a reason-
able set of initial conditions (such as m= M, at {=0).
From this behavior, one could then deduce a nuclear
spin-lattice relaxation time for this model. Unfortu-
nately, this differential equation is difficult to manipu-
late, and a number of simplifying assumptions or ap-
proximations have to be made.

B. Single-Paramagnetic-Center Model

One type of assumption that can be made to solve
Eq. (7) is that in each region of the sample, only one
of the paramagnetic centers is important in determining
the total nuclear spin-lattice relaxation rate in that
region. The sample is thus divided up into “regions of
influence.” These regions are assumed to be spheres
centered on the various paramagnetic centers and have
radii R equal to the average separation of the para-

magnetic centers:
R=(3/4nNV,)'", (8)

where N, is the number of paramagnetic centers per
unit volume in the sample. The second approximation
is that D*¥¥=0 for a##p, and that D= D%=D%=D,
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The third approximation is that Cj, which is angularly
dependent, can be replaced by the constant C equal to
the value of C; averaged over all angles:

=2S(S+1) vty h 7o/ (14wi'rs) ] %)
With these approximations, Eq. (7) reduces to
am(r, 1) Jot=DVm(r, 1) — (C/r®)m(r,1).  (10)

The paramagnetic center is located at the center of the
coordinate system, and the region of interest for the
solutions to the above equation is »<R. Even these
simplifications are not enough to yield a nuclear spin-
lattice relaxation time 73, and one must resort to
further round-about methods.

Let 91 (¢) denote the total observed magnetization in
the sphere about the paramagnetic center.

R
M(r, t)r2dr.

bo

M) =4r (11)
In this model of noninteracting spheres of influence,
the only way that 91(f) can change is by the direct
relaxation of the nuclei in the sphere with the para-
magnetic center in the sphere. Diffusion only moves
magnetization around from one part of the sphere to
another. Thus, since the nuclei for which 7 <, are not
observed, and since the nuclei for which <& have
D=0 and thus do not make contact with the nuclei
that have r>b, we can write

M (1)

—4r / (M= M(r,0)]% . (12)
b 4
Let us now assume the distribution of magnetization
in the sphere is such that 991 (¢) /9t is exponential with
a time constant 7;. Then

AM (1) /at=[M(o0) —M (1) ]/T1
47r
Ty

Combining Equations (12) and (13) yields
R g R
1 1=/ Mdr/ m(r, )rkdr.  (14)
b r bo

If one knew m(r,t) for any particular time during
the exponential relaxation process, one could compute
T, from the above equation. This equation shows that
T: is not extremely sensitive to the detailed shape of
m(r, ). We cannot solve Eq. (10) rigorously for m(7, ),
but we can find the time-independent solution rigor-
ously?® for m(7) and use it to compute 7'y from Eq. (14).
While 7(r) might not look like (7, t) in detail, these
differences should not produce major errors in the
computation of 7.

Setting am(r, t) /0t=0 in Eq. (10) yields

(m)72(8/ar) {rLom(r) /or]} — (8/7*)m(r) =0, (15)

/ [Mo—M(r, ) JPdr.  (13)
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where

= (C/D) . (16)

The quantity 8 has the dimensions of length and is a
measure of the competing contributions between direct
relaxation and spin diffusion. Equation (15) for m(7)
is a second-order differential equation and yields a
solution with two arbitrary constants whose values can
be determined from boundary conditions. Since D=0
for r<b, no magnetization can flow across the sphere
about the paramagnetic center with radius 4. Thus

am(r)) rg \
D( ). 41r/;7 7,Gm(r)rdr.

The integral in the above equation vanishes for 7=,
so that [dm(r) /dr]=0, and we have our first boundary
condition. Combining Eq. (17) with Eq. (14) yields

T1*1=K2D<am(r)) / (e (18)

The second boundary condition is set artificially by
placing a magnetization sink at r=R, so that m(R)
has the fixed value of #:. The value of m; will eventually
cancel out of the expression for T7; so its actual value
is unimportant. The use of a magnetization sink is an
artificial device to yield a nontrivial solution to Eq.
(15). This artificial device, as well as the single-para-
magnetic-center model, should work reasonably well
for BKR, since for this case the direct interaction near
the boundaries of the spheres of influence make a
negligible contribution to 73, and only this case has
been studied in the past.® This restriction on R will be
relaxed here to cover a wider range of experimental
conditions. The solutions for the case B3>R are expected
to have the least validity because:

(17)

(1) T depends strongly on the behavior of the
magnetization near the boundaries.

(2) The nuclei near the boundaries of the spheres of
influence are acted on by several paramagnetic centers,
so that the single-paramagnetic-center model should no
longer be valid. That the solution to this problem for
BRR gives physically meaningful results will be shown
by a comparison of this solution with an exact solution
to the multicenter model carried out in Sec. II.

By making the substitution
m(r) =r"x(z), (19)
=3(8/r)?, (20)

Eq. (15) is transformed into the modified Bessel
equation

2dx (2) /d5+2dx (3) /dz— [+ (1/4)*Ix (2) =0.
(21)

Equation (21) has the linearly independent solutions
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F1c. 1. m(r) versus r for different values of § and A. The value of
R is arbitrarily picked as 10b. The value of g is allowed to range
from 0.5b to 1005, thus making the range of § from 0.125 to 5000.

I;4(2) and I_y4(2), where!®
(z/Z) +v+2m

L) = 2 e e D) (22)
for fractional values of v. Letting
K,(2)=K_,(3)
= {n[1_,(3)—1,(2)]}/2 sinym, (23)
the solution to Eq. (15) can be written as
m(r) =rVLAL(BY/2r") + BKys(8/2%)], (24)

where the constants 4 and B are to be determined from
the previously discussed boundary conditions. The first
boundary condition yields

A/B=K_34(8) /1 34(5), (25)
where
=3(B/8)% (26)
The second boundary condition yields
my= RV AL (A)+BKyu(A)], (27)
where
A=3(B/R)™. (28)

Solving for A and B and substituting the results into
Eq. (24) yields
m(r) =mi(R/r)!?
<K3/4(5) Tys(8%/2r*) +1_3/4(8) Kva(BY/ 272)) (29)
K/4(8) Iy/a(A) +1-3/4(8) Kvja(A) )
Substituting Eq. (29) into Eq. (18) yields the general
T expression
Ty1= (4m\N,DB%/R)
(1_3/4(3)K_3/4(A)—1—3/4(A)K—a/4(5)> (30)
I_34(8) K1ja(A) +I1a(A) K_514(3) /

10 For the properties of modified Bessel functions and their
recursion formulas, see G. N. Watson, A T'reatise on the Theory o
Bessel Functions (The University Press, Cambridge, England,

1944)
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where

A= f m (). (31)

mR®
The term X is a measure of the average value of m(r)
relative to its value at =R, and it is independent of
my. The expression for T3 is also independent of m;,
as was predicted earlier.

The above expressions for 7 (), A, and 77 are compli-
cated functions of A and 8. For several limiting cases,
these expressions can be simplified and some physical
insights about these results can be obtained.

Case 1: R>b>8

For the case where the direct relaxation rate is small
enough, one has that R>5>>8, and thus 13>6> A. The
arguments of the modified Bessel functions in Egs.
(29) and (30) are all much less than one, so that these
functions can be expanded in a power series and only
the first few terms kept. This simplification yields

m(r)=m[1—(8%/38%) (r'—R) +56'(1/r*—1/RY) ],

(32)
A=21+(b/R)?, (33)
T (N,C/0) [14 (b8 — ) /R*— 1 (8/6)*].  (34)

This case is called the rapid-diffusion case by
Rorschach.® Equation (32) shows m(r) to be almost
equal to m; for all » except near the diffusion barrier.
This is reasonable, since for this case, the direct relax-
ation term is small and not able to establish a large
spin-temperature gradient. Curve (1) of Fig. 1 shows
a plot of m(r) versus 7 for this case. The dependence
of the dominant term of 7% in Eq. (34) on various
parameters is listed in Table I.

Case 2: R>B>b

For this case, the direct relaxation rate is large
enough that R>B>>b and &>13>A. Equations (29)
and (30) can again be simplified by expanding those
modified Bessel functions with arguments much less
than one in a power series and keeping only the first
few terms, and expanding those modified Bessel func-
tions with arguments greater than 1 asymptotically.
This simplification yields

0. 707711

m(”)gm(f/ﬁ)”z exp(—p%/2r%),
r&B (35a)
m(r)=m[1+0.68(8/R—B/r)],  r>B (35b)
A=1-40.34(8/R), (36)

Ti7i=§mN,(C) (D) [14+-1.02(8/R)].  (37)

This case is called the diffusion-limited case by
Rorschach.® Equations (35a) and (35b) show m(r)
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to be nearly equal to m; for »>B and to decrease
rapidly to a small value for r<B. Curve (3) of Fig. 1
shows a plot of #(7) versus 7 for this case. As for case 1,
\ is well approximated by the value 1. For 3/R<«K1, the
dependence of the dominant term. of 7; in Eq. (37)
on various parameters is listed in Table I.

Case 3: B>>R>b

For this case, the direct relaxation rate is large
enough that S>3>R>b and §>A>>1. The arguments of
the modified Bessel functions in Egs. (29) and (30)
are all greater than one so that they can all be expanded
asymptotically. This simplification yields

1/2 2 Q2 2 (32
wr=m () Tren (o0 (£5)

s Grplee (o) o9

A=B%/3R411/6, (39)
Ty '=[4(xN,) FC(146R/8?),
=17.5CN 24+40.4(CD) V2N 43, (40)

Equation (38) shows that #(r) has the proper limiting
value of m;, but it falls very quickly to zero for r some-
what smaller than R. This is what one would expect,
since for € large enough, diffusion is relatively un-
important in determining the magnetization value ex-
cept for very near the boundary of the sphere. Curve
(5) of Fig. 1 shows a plot of m(r) versus r for this case.
N\ is much greater than 1, which follows from the
average magnetization being much less than m;. As
long as B/R>1, the spin-lattice relaxation time does
not depend upon the diffusion constant D. This is
physically reasonable since the direct relaxation rate is
now so fast that spin diffusion does not have a chance
to transport magnetization from one part of the sphere
to another.

While this calculation is correct, the model on which
it is based has no validity for actual experimental
situations. As mentioned above m(r) is different from
zero only near the surface of the sphere. Since direct
relaxation dominates in this case, those nuclei near the
surface of the sphere are acted on by several para-
magnetic centers and a multi-paramagnetic-center
model, in which the angular dependence of C; is kept,
should be used to compute T1.

Case 4: RB>>b

For this case, the direct relaxation rate is large enough
that R8>>b and $>>A=1. For this case, neither the
power-series expansions nor asymptotic expansions used
for the previous cases will work. The behavior of m(r)
as a function of » will lie somewhere between that of
m(r) for cases 2 and 3. Curve (4) of Fig. 1 shows a
plot of m(r) versus 7 for such a case. Also, the behavior
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TaBLE 1. The dependence of the leading terms in the relaxa-
tion time 7y upon C, Bo, 7, Np, b, and D for the condition of
were>1.

Exponent dependence of Ty

Case Condition C By 7. N, b D

Rapid <1 -1 2 1 -1 3 0
diffusion AKL1

Diffusion 1 -1 4 1 -1 0 -3
limited AL

Diffusion o>1 -3 1 3 -4 0 —1
vanishing  A~1

of A and Ty7! for case 4 should lie somewhere between
that of cases 2 and 3. In both cases 2 and 3, as 8/R
approaches 1, the correction term to 7y in ﬂ/R be-
comes of the same order of magnitude as the leading
term and the limiting forms for 77! are no longer valid.
For case 2, the first-order correction term to 77! is

37N,(C)14(D)*[1.02(8/R) ]=10.4N,#3(C)12( D),
(41)
while for case 3, the ﬁrst order correction term to 757! is
[$(xlV,) (C) (6R?/8%) = 40.4N,3(C) (D) 2, (42)

Both these correction terms have the same dependence
upon N,, C, and D, but they have different multiplying
coefficients. In a crude fashion, this suggests that the
behavior of 77! should be of the form listed in Egs.
(41) and (42), but with a different multiplying coeffi-
cient. This argument should not be pressed too hard,
however, because the model on which it is based is not
very sound in this region. Sounder arguments that lead
to the same behavior for 7y listed in Egs. (41) and
(42) will be given in the next section.

To keep pace with the existing names for cases 1 and
2, this relaxation region is loosely designated as the
diffusion-vanishing case, suggesting that the large value
of 8 can be produced by the small value of the diffusion
constant. The new features that distinguish the diffu-
sion-vanishing case from the others are (a) T\ is linearly
dependent upon the applied magnetic field, and (b) Ty
is dependent upon the concentration of paramagnetic
centers to the —§ power. Table I summarizes the
dependence of the leading terms of 73 upon various
parameters for cases 1, 2, and 4.

C. Multi-paramagnetic-Center Model for the
Diffusion-Vanishing Case

The direct spin-lattice relaxation term T4, listed in
Eq. (2b), is strongly spatially dependent. For a sample
containing many paramagnetlc centers, 7,71(r) should
have positions where it is a minimum, these positions
being far away from the paramagnetic centers. A second
type of approximation that can be used to solve Eq. (7)
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is to expand Ty 1( r) in a power series about a position
¥, where it is a minimum, and keep only terms through
second order in r, where the origin for r is now taken
at X, Since this terminated power-series expansion accu-
rately represents the direct relaxation term only for
small 7, when this approximation is used, solutions to
Eq. (7) for m( 1, 1), are acceptable if they are large
only in the region for which r<R.

In the power- -series expansion of T 1 ~1(r) about =,
terms linear in «, v, z will be absent since position 2:
is chosen to lie at a minimum for 7', 1( r). By choosing
the coordinate system so that terms in xy, xz, and yz
do not appear in the second-order term the power-series
expansion for T',71(r) may be written as

[T1p( 1) T7'= thot hast® 203, >+ 1057,

where the #’s are constants that are evaluated in
Appendix C. Inserting Eq. (43) into Eq. (7) and
assuming that D¥=0 for a7p yields

(43)

2 2
om(r, 1) /ot= (Dw %jL ﬂ——i—D” )m(r )

= (tty+ g+ uwy2+unz2) m(r1,t). (44)

The variables in Eq. (44) can be separated by
making the substitution

m(s, y, 2, £) =f=(2)f,(9)f:(2) /:(8) . (45)
This yields the equations
Do @f (%) [ A26?]— thaabafa (¥a) = — Rafa(¥a) ,
a=x,y,2 (46)
dfe(t) /di=—f(8) / T1(kay by, k2) (47)
T (ks oy k2) = kat-ky kot to, (48)

where ks, k,, and]k, are constants. Equation (46)}is
similar to that for the one-dimensional quantum-
mechanical harmonic oscillator, whose solution is given
in a number of standard texts.! This solution is

f" m(a) (xa) = exp[-——% (um/Daa) 1/2xa2]

XHn(a)[(u'aa/Daa) 1/496(,], (49)
ka,n(a) = [27[«(&) + 1] (D«muaa) 1/27
”(a>=01 1,23, (50)

where H, @ (£) are Hermite polynomials of order #(a).
The Hermite polynomials form a complete set, so that
we have found all the solutions. The general solution

may now be written as

m(xv Y % t) = Z
n(2),n(y) ,n(2)

Xm(x, ¥y %, Dn@ mwy @, (51)

11 Gee for example, Leonard I. Schiff, Quantum Mechanics
(McGraw-Hill Book Company, Inc., New York 1955).

(COHStant) n(z) ,m @) n(z)
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m(%, ¥, 2, Dnnw .n(e)z[Hfa.n(a) (%a) ]
a

Xexp{—t/T1[n(x),n(y), n(z) ]}, (52)
T (), n(y), n(z) J= vt 2_[2n(0) +1](D*tea) 2,
(53)

where the constants in Eq. (51) are to be determined
from some initial set of conditions. Equation (53)
shows Ty [ n(x), n(y), n(z) ] to be a rapldly increasing
function of #(x), n(y), and n(z). If one is willing to
wait long enough after some initial excitation of the
nuclear spin system to make a measurement of the
magnetization, only the (0, 0, 0) mode should make an
appreciable contribution to m(x, vy, , {); assuming that
it has been initially excited. Since Ho(¢) =1, the long
time solution for m(x, y, 2, 1) is

m(x, v, 2, t) = (constant)

1/2 1/2 )
o [ (52) 4G () )
1

(54)

Ty1=Ty-1(0, 0, 0)
—_ u0+ (D:czuu) 1/2+ (Dyyum!) 1/2+ (Dzzuzz) 1/2' (55)

As mentioned at the beginning of this section, the
expansions used in this model should only lead to valid
results if m(x, 9, 2, ¢) is small near the paramagnetic
centers. From Eq. (54), we can conclude that a neces-
sary and sufficient condition for our solution to satisfy
this criterion is

(#haa/D*)12R2> 1 (56)
for a=x, y and z. Replacing #., and D,, by their
spherical averages, and using the results of Appendix B,
the above condition can be crudely approximated by

$(O/R)N, 6
(52 e,

(57)
which is approximately the condition for the diffusion-
vanishing case that was discussed for cases 3 and 4 of
Sec. IIB.

For the purpose of making a quantitative estimate
of Ty, using Eq. (55), it will be assumed that the
paramagnetic centers form either a simple cubic lattice,
a face-centered cubic lattice or a body-centered cubic
lattice. It will be further assumed that D**=Dw=
D#==D. Using

w=nC/L",
Yaa="1aaC/ L5,
1= 1aa 11257, (58)
Eq. (55) can be rewritten as
= (nC/L%) +4[(CD)*?/L4], (59)
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TasBre II. Constants used to evaluate 777! for the diffusion-vanishing case. Only one of the positions of the (7},)~! minima is given.
The others within the unit cell can be found from the symmetry properties of the cube.

Position of
(T1p) ! mini-

Paramagnetic center mum in cubic

lattice unit cell L1 70 Nez Ty Nez 7 No A
Simple cubic [3,0,0 2N,M3 0.048 = 0.0135 0.0135 15 3.86 3.1 61
Face-centered cubic [%,4,3 21BN 13 0.5 15 15 30 13.3 1.95 33.2
Body-centered cubic [3,3,0] 2203V 113 0.075 15 15 1.9 9.1 1.2 58.5

where 2L is the edge dimension of the cubic unit cell.
The values of the 5’s are given in Table II for the
applied magnetic field pointing along a cubic axis.
Equation (59) can be rewritten in terms of the number
of paramagnetic centers per unit volume, N,, as

Ti'=N\CN 24N (CD)YV2(N )43, (60)

The values of Ap and M for the three cubic lattices are
also given in Table II.

The form of 75! in Eq. (60) is identical to 7!
given in Eq. (40) for case 3 of the single-center model.
The coefficient of N,2 in Eq. (40) is much greater than
that in Eq. (60), however. Those regions where the
direct relaxation is a minimum are weighted most
heavily in both models, but the value for the direct
relaxation is made artificially high in the single-center
model by neglecting the angular variation of the direct
relaxation term in the process of replacing C; by C.
This leads to the much larger coefficient of N, in
Eq. (40). In contrast to this large difference of coeffi-
cients for N,% the coefficient of N,® in Eq. (40)
agrees very well with the several computed coefficients
of N, in Eq. (60). This could be attributed to the
averaging effects on the relaxation rate due to diffusion,
but the good agreement is more likely fortuitous and
we ascribe no significance to it.

In Eq. (59), the ratio of the direct relaxation term
to the one involving spin diffusion can be written in
the form (n0/7) (8/L)2. All three lattices for the para-
magnetic centers yield values for 70/7<1, as shown in
Table II. Therefore, as long as /L is less than 4 or 5,
the direct relaxation term makes a negligible contri-
bution to T} and may be dropped from Egs. (59) and
(60). The range of N, for 1<B/L<35 is 125.

One normally expects the paramagnetic centers to
have a random spatial arrangement. The positioning
of the paramagnetic centers in an ordered arrangement
was assumed in order to compute the values of the
w’s in Eq. (43). This procedure does not seem un-
reasonable, since the form of 77! in Eq. (60) should
not depend upon the detailed arrangement of the para-
magnetic centers, and the values of Ay and X in Table II
do not vary greatly for the three lattices for which
they are evaluated. Averaging 77! over a random
distribution of paramagnetic centers yields

TN CN 24X (CD) 12N A8, (61)

where the expected order of magnitudes for the \’s are

7\0%2, A=250.

III. SPIN-LATTICE RELAXATION TIME IN THE
ROTATING REFERENCE FRAME

A. Differential Equation for M(r, ¢)

Besides the static magnetic field By that was applied
to the sample in Sec. II, let there now also be applied a
magnetic field B;(#) that rotates in the xy plane at the
Larmor frequency wo/2mr, In the presence of this strong
resonantly rotating magnetic field, the nuclear spin
magnetization along the rotating field, denoted by
Mr(r,t), behaves as if it were proceeding toward
thermal equilibrium in the coordinate frame rotating
with the field. The same arguments used in Sec. IIA
to derive an equation for the time rate of change for
M(r,t) can also be used to derive an equivalent one
for M7(r,1t).

As in Sec. ITA, one may write that

[oM™(x, 8) /0t ]totar=[OM" (1, £) /0t ], +[OM" (1, £) /3]s,
(62)

with
[OM(x, t) /0t ]p=[My—M"(1,8) ]/ Ty’ (1). (63)

My is the equilibrium magnetization along the rotating
magnetic field. Equation (A26) of Appendix A demon-
strates that one may write

[Ty (n)]= ;(Cz’/ | r—R; %,
and that for w,r,">>1, and w>wy,
Cyr =" B2S(S+1) {§(1—3 cos;) [/ (1+wird) ]
+3 sin%; cos®,[ 7o/ (1+wir2) J}.  (65)

[0M7(r,¢)/0t]a in Eq. (62) represents the rate of
change of M"(r,#) due to the spatial transport of
magnetization. It is shown in Appendix C that the
diffusion tensor for magnetization in the Larmor ro-
tating reference frame is exactly 1/2 that in the labora-
tory reference frame. Thus

[oMr(x,t)/0t]a= D D (8%/axdxf) M"(r, 1), (66)
a,f=1

(64)

where Defr=1%De8,
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As in the case of spin diffusion in the laboratory
reference frame, spin diffusion in the rotating reference
frame is quenched near paramagnetic centers due to the
local magnetic field of these paramagnetic centers. If
By is much larger than the nuclear spin-spin interaction,
then the component of the magnetic field of the para-
magnetic centers that lies along B;(#) is the most
effective component of this field in quenching spin
diffusion. The value of this field, denoted by B/, is
found from Eqs. (A23), (A4), and (AS) to be

Bir=— (va) "1 exp(—iwot) D [A5S,—(t)

Xexp (twyt) +CinSoe(t) +Ein Sy () exp(—ioyt) ]
(67)

+complex conjugate.
The same formalism as Rorschach’s® may now be used
to compute that part of the magnetic moment that is
effective in quenching spin diffusion in the rotating
reference frame. This analysis leads to the conclusion
that only that part of U’ [denoted by (Ui)ess]
whose Fourier spectrum lies between —3(27/T2) and
+3(2n/T;) is effective in quenching spin diffusion.
T. is the “linewidth’ of the nuclear resonance line. If
wyrd>1, then S,.(¢) and S, () listed in Eq. (67)
make a negligible contribution to (U.")esr because of
the exp[i(Zdwp—wo)¢] factor multiplying them. This
leaves S,.(f) exp(—iwit) in Eq. (67) as the dominant
contributor to B;". Only that part of S,.(¢#) whose
Fourier spectrum lies near wy is effective in quenching
spin diffusion because of the exp(—iwt) factor. Let us
denote the spin diffusion barrier radius in the rotating
reference frame by &, and use the same criteria in
evaluating it (an admittedly crude one since it ignores
angular variations in various coefficients) as is used in
the laboratory reference frame. From the above argu-
ments, it follows that for wer>>1, "<<b; while for
woTeK1, I"Rb.

It should be added at this point that the region about
each paramagnetic center, inside of which the nuclei
have broadened resonance lines and are unobservable,
depends upon the method of observation. Assuming
the magnetization to be observed by the same technique
as the laboratory reference frame experiments, the
radius of this region may also be taken to be &, the
same radius as used in Sec. TTA.

Substitution of Egs. (64) and (66) into Eq. (62)
yields
am’ (1, 1) /ot= D, Dbr(8%/dx~9x") m (1, 1)

a,B

—m' (1, i)Z(C:"/| r—R;[%), (68)

where m7(r, t) = My—M(r, t). Equation (68) is iden-
tical in form to Eq. (7), and the same sets of approxi-
mations and forrmalism that were used to solve Eq. (7)
may be used to solve it, too.
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B. Single-Paramagnetic-Center Model—Rotating
Reference Frame

To apply the single-paramagnetic-center-model so-
lution of Sec. IIB to relaxation in the rotating reference
frame, a set of approximations, identical to those of
Sec. IIB, must be made. D*¥" must be set equal to zero
for a8, and equal to D for a=p. C; must be replaced
by C, its value averaged over all angles:

— 4 Te 1 Te
Cr=ry, 722 S (S+1 (— Lo ) 69
VRS (SN Treme 75 1reirs) (2

These approximations yield the equation

"—’-”f—;t"—t DV (r, §) —% m(r,).  (70)
Defining the parameters 87, 6" and A" as
gr= (DY
F=5(8/0)?
Ar=3(87/R)?, (71)

and applying the procedures of Sec. IIB to Eq. (70),
yields the following results for 77, the spin-lattice
relaxation time in the rotating reference frame:

Rapid-diffusion case: R> >3

v -]

Diffusion-limited case: R>>>>b"

(Ty)~1=3mN,(C7) (D)3 (141.0287/R). (73)
For the condition: >>R>b
(T7)1=17.5C"N 2440.4(CrD) 2N 43, (74)

The discussion in Sec. IIB about the properties of the
solutions of 7' and properties of T also holds for the
above listed solutions for 7.

Let us now compare T and 7y for a given sample
(so that R is fixed) at a given temperature (so that
7. is fixed). Let us assume that 7, is long enough that
wore>wite>1, and therefore 8~>B3. The forms of the
solutions for 7'y and Ty may be of the same type, but
not necessarily. While 7'y might be in the rapid-diffusion
region, 7'y might be in the diffusion-limited or diffusion-
vanishing region. While 7'y might be in the diffusion-
limited region, 7'y might be in the diffusion-vanishing
region. Without knowing the precise values for the
various constants that control the types of solutions
for Ty and 77, little can be gained by a mere comparison
of Ty and 7" This is not the case when 7. is short enough
that I>>wire>wire (it is assumed that 7. is still long
enough that w,r/>>1 so that our approximations are
valid). This condition can be recognized by 73 and 7'y
being independent of wp and wi, respectively. For this
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short 7. condition

Cr/C=1/6, (75)
brob, (76)

and
Br/B=(7/3)"*=1.24. (77)

Since 8 and B are now small and almost equal (because
of the shortness of 7,), and since " and b are also about
equal, 71 and Ty will both be given by either the
diffusion-limited solution or the rapid-diffusion solu-
tion. Which solution holds depends upon the values
of B and B7. The ratio between Ty and 77 may
be calculated separately for each of these cases from
Eqgs. (34), (72), (37), and (73), or calculated for
both these cases together from Eq. (30). Carrying
out the second procedure yields to lowest order in &,
b, B, and g7,

Ty /Ty=1.62[I3/a(8) I_3/a(8") /1_3s(8) I1s(87) 1, (78)

where 6= 1.536. The ratio 7y"/T listed above is plotted
as a function of 8 in Fig. 2. In the rapid-diffusion region
(6<0.1), Ty"/ T has the value 0.86. For this range of 3,
T varies as 8 and Ty varies as (4")% Thus a small
difference between & and & would strongly affect the
ratio 7y /T: and the result should only be treated as
approximate. In the diffusion-limited region (6>2),
Ty/T: has the value 1.62. Since b and & do not enter
into the values of 77 and Ty in this region, this ratio
should be more reliable than the one for the rapid-
diffusion region. It is interesting that this theory pre-
dicts that under suitable conditions 7" can be larger
than 7.

C. Multi-paramagnetic-Center Model for the Diffusion-
Vanishing Case—Rotating Reference Frame

Using arguments similar to those of Sec. IIC one
can show that a multi-paramagnetic-center model is
valid for the diffusion-vanishing case in the rotating
reference frame. T3,"(r) has a different spatial de-
pendence than T3,(r), so the spatial positions where
T1,"(r) has minima will not necessarily coincide with
those for Ti,(r), and expansion coefficients may be
different. Expanding 1/T3,7(r) about points where it
is a minimum, keeping only terms through second
order, and choosing a coordinate system so that terms
in xy, 3, and yz do not appear in the second-order
term yields

1/T1,7 (1) = g™+ s 024 10y 14,72, (79)

where the #’s are constants and are evaluated in
Appendix B. Inserting Eq. (79) into Eq. (68) and
assuming that D¥r=0 for a5f yields

omr(r,t) /ot
= [ D= (8%/9x*) + D (9/dy*) + D= (8%/9z*) Jm" (1, 1)
— ("t %2 2y 10,.722) w7 (1, 8) . (80)
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Equation (80) is identical in form to Eq. (44), and
the solutions of Eq. (44) may be used to yield a value
of the spin-lattice relaxation in the rotating reference
frame of

(Tlr) -1 uor_*__ (Dzzruzzr) 1/2+ (Dwruwr) 1/2+ (Dzzruzzr) 1/2,
(81)

For the purpose of making a quantitative estimate of
Ty using Eq. (81), it will be assumed that:

(1) wore>1, so that the second term in Eq. (65) is
small in comparison to the first term and may be
dropped.

(2) Dzer = Duyr= Dzer = Dr,

(3) Paramagnetic centers form either a simple cubic
lattice or a face-centered cubic lattice. Using

w=nCr/ LS,
Uoa = naaTC’lr/ L4;

7"= (122") 24 (") 24 (n227) P2, (82)
Eq. (81) can be rewritten as
(Tlr) 1=y OrC‘rlr / L6+ﬂr<c_flr Dr) 12]4 ( 8 3)

The quantity of Cy" is defined in Appendix B. The values
of the u’s are given in Table III for the applied mag-
netic field pointing along a cubic axis. Equation (83)
can be rewritten in terms of the number of para-
magnetic centers per unit volume, V,, as

(Tlr) “1=)\y N X sz+ A (C_er Dr) 1/2 N,,“/‘"’. ( 84)

The values of A" and A" for two cubic lattices are also
given in Table III. All of the remarks made about
Egs. (59) and (60) also hold for Egs. (83) and (84)
and need not be repeated. Asin the multi-paramagnetic-
center-model calculation in the laboratory reference
frame, averaging (77")~! over a random distribution of
paramagnetic centers yields

( Tlr) ——lgxoré v Np?_{_Xr (C_er D) 1/2 N,,“/",
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Tasie IIT. Constants used to evaluate (737)~! for the diffusion-vanishing case. Only one of the positions of the (71,") ™ minima is given.
The others within the unit cell can be found from the symmetry properties of the cube.

Position of
(T1,") ! mini-

Paramagnetic center mum in cubic

lattice unit cell Vol 70" Nea” Nuy” N2d 7" No” AT
Simple cubic [3,5 3] 2N, 0.0080 0.165 0.165 0.66 1.62 0.51 25.9
Face-centered cubic [+ 4% 4] 21BN 13 0.255 25.5 25.5 87.4 19.4 1.02 48.9

where the expected orders of magnitude for the \’s are
Ko’NO.']S, Ar37.

IV. DISCUSSION

These calculations show that the introduction of a
finite separation distance between paramagnetic centers
does not greatly alter the calculated values of the spin-
lattice relaxation time 74 for the rapid-diffusion and
diffusion-limited cases. It, however, has the advantage
that the T expression is extracted from the steady-state
solution of the transport equation using the physically
reasonable assumption that the shape of the magneti-
zation distribution remains unchanged throughout the
observed relaxation process, and is not very different
from the steady-state distribution.

The use of a finite separation distance between para-
magnetic centers permits the investigation of a new
relaxation case, the diffusion-vanishing case. The single-
center model is not particularly valid for this case but
nevertheless seem to join on very nicely to the new
model that is introduced, the multicenter model. The
multicenter model is only valid for the diffusion-
vanishing case, but appears to be a rigorous solution
for this case. It has the advantages of introducing the
spin-lattice relaxation time 7; in a very natural way
and takes into account the angular dependence of the
direct spin-lattice relaxation rate, and the spin-diffusion
constant.

Measurements of spin-lattice relaxation rates in the
rotating reference frame are becoming common in cur-
rent literature. The results of the calculations of Sec. ITI
shows that it will probably be a useful tool for providing
a quantitative test of spin diffusion. In the following
paper are measurements we have made that test the
spin-diffusion theory, using analyses based upon Secs.
IT and IIT of this paper.

APPENDIX A: DERIVATION OF Ti,; AND T1,:"

We give here a brief sketch of the derivation of the
nuclear spin-lattice relaxation time due to the coupling
of a nuclear spin /; with a number of paramagnetic
centers. The nucleus has spin I, magnetogyric ratio
v, and its interactions with other nuclear spins will be
ignored. Each of the paramagnetic centers will be
assumed to have a spin .S, a magnetogyric ratio v,
and generate a fluctuating dipolar magnetic field at the
site of the nucleus, The effects of the nuclear spin on

the motion of the paramagnetic center will be ignored,
and angular momentum of the paramagnetic center
will be treated classically. Denoting the applied static
magnetic field by Bj2, the Hamiltonian for the ith
nuclear spin is

Je="35Co+-3¢1 (1), (A1)
3Co= — hwol iz, (A2)
31() =t Usy (D Iy +Ui() i+ Uil ], (A3)
Uit (1) = 2TA0S.—(1) exp(ioyt) +CinSya(l)
+E:4,8,,.(2) exp(—iwyt)], (A4)
Ui () =[Usx) 1% (A5)
Ui(t)= Eyj[Bi,Sa,(t) +Ci Sy (1) exp(—icwyt)
+D,,S,_ explic,t) ], (A6)
where
Bi,=vp¥ahri3(1—3 cos?y,),
Ay=—1Bu,
Ciy=—3ypyafirs, 8 sinf;, cosb, exp(—ids),
D;,=Cy%,
Eiy= — 3y a8 sin®y, exp(— 2igs),
Fo=Ey*
wp="YpBo, wo="aBo. (A7)

The summations over » in Eqgs. (A4) and (A6) are to
be taken over all the paramagnetic centers in the
sample. 7;,, 0;,, and ¢y, are the spherical coordinates of
the vector connecting the ith nucleus and the »th para-
magnetic center. The z axis of the coordinate system lies
along the applied static magnetic field.

Assuming that the time dependence of Ui (f) has a
random component, we can calculate Wyn, the tran-
sition probability per unit time of the ith nuclear spin
going from the unperturbed state 7 to the unperturbed
state 7 using first-order perturbation theory:

an= (ﬁ2)_1 /m exp <‘-% (]’:n""];:m)T)

-0

X[(n.! JC1(1+T)| my{m | 31 (&)| n)Indr; (A8)

2 A, Abragam, The Principles of Nuclear Magnetism (Oxford
University Press, London, 1961), p. 273.
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E, is the energy of the nth eigenstate. The matrix
elements in the large brackets above are averaged
over .an ensemble. Since U(f), (a=-+, —,2), are
independent of the nuclear spin states, Eq. (A8) can
be rewritten as

Wom= (F2)"1 > (n| I, | m){m | Ig | n)
L
X/:o exp (—;L (En—Em)T)[Uia(t_l—T) Uss(1) Indr.
(A9)

The direct spin-lattice relaxation time for the ith
spin, denoted by T%,; is given by the formula®®

1Tspi=% 3 (Eu—En) W/ 2 E2. (A10)

Substituting Eq. (A9) in Eq. (A10) and rearranging
terms yields

1/T1pi
=— Zﬂ J () Tr{[3Co, I3, 151} /22 Tr{30e},

(Al11)
where

T8 () = f " exp i) [Usa(t4-7) Usp(§) Jndr  (A12)

and 7w is the energy difference between states coupled
by the operator /,.

Tr{ [t 2100, 761} _
Tr{3Cs?}

_—'27 Ol=+,B=—,

=_2: C¥='—,6=+,

=0, otherwise.
Thus, Eq. (A11) reduces to

1/Tipi=J i ~(wo) +Ji +(—w).

(A13)

(A14)

If we assume that the fluctuations of the direction of
angular momentum of the paramagnetic centers is
described by an exponential correlation time, then

LSve(t47) Soa(t) Iu=3S(S+1) exp(—I 7 I/7.),

(A15)
LS (t47) S () =[S (t+7) Sur () T,

=2(8) (S+1) exp(—I 7 /7)),
(A16)

where 7, is the correlation time of S,; and 7, is the
correlation time of S,; and .S,,. Combining Eqs. (A15)

18 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
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and (A16) with (A14) and (A12) yields

@ =39 S0 Z |1t (1)

4Eiinv* ( Tc, )
+ 1T (ay—an)?(0)?

Te
F2CCo* (1+w02n2>]' (A17)

The computation of the spin-lattice relaxation time
Ty, for magnetization lying along a rotating magnetic
field that rotates at the Larmor frequency in the x-y
plane is similar to the one just carried out. The Hamil-
tonian for the ith nuclear spin is now given by

3C= 3o+ 3Cer+3Cs, (A18)
where
3Cee=Tiwy (1 4z coswot— Ly sSinwyt)
w1= 'YnBI- (A19)

By is the magnitude of the rotating magnetic field.
Since we now wish to compute the time rate of change
of the transverse magnetization as viewed from the
rotating Larmor reference frame, we shall transform
3C into the rotating Larmor reference frame, and denote
it by gcr.

C‘Cr=3€07+3€1'(t), (AZO)

JC()T: _wlhlix,
() =LV () LiatUsyr (D L™+ Ui r () 1],

(A21)
where the operators I;;" and I, " are defined as

Ii+r= Ii1/+iliz,

Ii_"=I,'y-—’l:I,',,. (A22)
The Ui, (t) are related to the U (f) in the following
way:

i’ (8) = Us— () exp(iwot) + Uiy (1) exp(—iwet), (A23)
Ui (t) = —5i[U:(2) exp(iwdt) — U (2)

Xexp(—iwt)+Ui(1)], (A24)

Uer()=[Uar () I* (A25)

Jcr in Egs. (A20) through (A25) has the same form
as in Eqgs. (A1) through (AS) and the formalism for
calculating T',,"is identical to the one just used to calcu-
late T'ipi. In carrying out this calculation, the effects
of nuclear spin-spin interaction on the equation of
motion of the transverse magnetization are ignored.
This is permissible, provided that By is large in com-
parison to the nuclear spin-spin interaction. Carrying
out the formalism listed in Eqs. (A8) through (A17),
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with 3C" instead of JC, yields

’
Te

K § 1
Tipi=5S5(S4+1) >; [ZA,,? <1+ (wp—wo—w1)%(7c")?

7'
2Eiinv*
ST e

I4

e | Te
X <1+ (wptantwn)?(r)? " 1+ (wptw—wr) 2(1.;’)2)

Te y Te

14 (wotwn)2(re)? | 14 (wo—w1)?(7c)?

+C'ivciv* (

2rs

27
1+ (wptan)¥(r)? ' 1+ (wp—wl)z(”'c,V)

+B:* (1+ o )] (A26)

Under normal experimental conditions, wp>wi>>w;.
This condition permits considerable simplification of
Egs. (A17) and (A26). For the calculations carried
out in this paper, it is further assumed that woreKw,r.’
so that Eqs. (A17) and (A26) can be further simplified
to the following results:

(Tipi) 1= 4S(S+1) D Ci,Ci*[ro/ (1+wir2) ],

+

= 37,2212 S (S+1) [re/ (14-wi?re?) ]

X D 7478 sin%;, cos¥i,,  (A27)

(Tip") 1= 3S(S+1) 2o {Bau're/ (1+arrd) ]

+2CoCo* 7o/ (14 wi?rd) ]},
=1y, 2y 2h2S (S+1) D {(1—3 cos¥s,)?

X 1’;,{—6[1',;/ ( 1 +O)12T¢;2) ]+ % Sin201'v cos®d;,
X ra‘v-G[ Tc/ ( 1+w027'c2) :] } .

APPENDIX B: EXPANSION OF THE INVERSE
SPIN-LATTICE RELAXATION TIMES T;;!
AND (T,,7)! ABOUT MINIMUM POINTS

(A28)

Using Egs. (2b), (3), and (9), the formula for 7,

can be written as
- | R— 2 si %0; cos®0;
[Tip(n) =30 5 =2
(Zi—2)L (Xj— )+ (Vi—9)"]
=0 Xt Uyt Gt
(B1)

’

where
R;=X;z+ Y+ 2. (B2)

A power-series expansion of T3, about a point where
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it is a minimum will not have any terms linear in
x, ¥, and 2. It will be assumed that it doesn’t have any
terms in wxy, xz, and yz, which is true for many sym-
metries. Keeping terms only through #? 3?% and 2%, the
power-series expansion of 7', is

N [T, (1) I = ttot thea®+ 1ty Y+ 100222, (B3)
where
m=C 3 [ZAH( XY /R, (B4)
J

ZP (_25X4SVP 60VR(X Yﬁ)
——C Z R 10 ( Rj2 Rj4 ’
(BS)

Zi 25V 245X72 60V (X 24V )
u]f!/___ 1_0 Z R 10 < Rj2 Rj4 ))
(B6)

< (XY ( 2572 602,-4)

=-1.—51 — 1 . ]

’ C; R : R? ' R (B7)

The parameters %o, %y, 2%y, and #., are evaluated for
the cases of paramagnetic centers arranged in a simple
cubic lattice, a face-centered cubic lattice, and a body-
centered cubic lattice. The edge dimension of the cubic
unit cell is 2Z. The summations are carried out over
the paramagnetic centers nearest and next nearest to
the points where 73, are minima. This is considered
adequate since the sums converge very rapidly. The
results are listed in Table II in terms of ’s, which are
defined as

u=n,C/ L, (B8)
uaa=7luaé/L87 (Bg)
77:7]"1/2_’_,7”1/1/2_*_77"1/2. (BlO)

A similar expansion will now be carried out for
(T1,7) 1 listed in Eqgs. (64) and (65). It will be assumed
that wer>>1, so that the second term in Eq. (65) may
be dropped. Then

[Ty (1) T'=4Cr 2 [(1—3cos®;)?/| r—R;I¢], (B11)

where _

Cr=15v"v" S (S+ 1) [re/ (1+wir?) ] (B12)
Carrying out the power-series expansion and dropping
terms higher order than the second yields

1/ Ty (1) = s+ thos” 2+ 1y 11,.722,  (B13)
where

ur=4Cr S (Q#/RY), (B14)

- 1
Uge? = 2Cy" ZRIO[(6X2+6Y2 472
7
X202
—40 ———-;3’ &+60X % ] (B15)
7



1
Uyy =% [(2Xj2+()Yj2"""4Zj2)
Y70/ Q] Y70
—40 Ri’_ +6O R D (B16)
4 1 2 2 2
=3C R_ 4(—X7—Y/+6Z7)
Z7Q? . O} ZﬁQf‘]
80 —=1—5 =460 B17
+ 0 Rjz _R]z T RJ'4 ’ ( )
and where
QP =X+Y2-2Z2 (B18)

The parameters #", %", %", and u.," are evaluated
under the same conditions as for #y, %y, %, and u..,
except that the body-centered cubic lattice was left
out because we could not locate the T4,"(r) minimum.
The results are listed in Table II in terms of #™’s, which
are defined as

uy' = 770"01'/ LS, (B19)
uaar': naarélr/Ls, ( B 20)
n'= (ﬂxxr) 124 (ﬂwr)]ﬂ'{’ (")zzr) 12, (BZI)

APPENDIX C: EVALUATION OF THE SPIN-
DIFFUSION CONSTANT IN THE ROTATING
REFERENCE FRAME

It has been shown® that for spin diffusion in the
laboratory reference frame the secular terms of the
dipole-dipole interaction Hamiltonian make the domi-
nant contribution to the spin-diffusion process. The
listed secular terms were

Ra=h D [3Ay(Tepd;+1i 1) +Bil ], (C1)

%]
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where

—2A5;=3v i3 (1—3 cos¥y;). (C2)

r;; is the vector connecting nuclei 7 and 7, and 6;; is
the angle between the vector r;; and the applied mag-
netic field Bo2. The spin-diffusion constant, computed
to first order from 3C4, Was

DyB=1q112 Z AaXr X ( E B2,
#(i7k) 3G, k)

(C3)

The same argument used in Ref. 9 to derive the
spin-diffusion equation in the laboratory reference
frame, may also be used to derive a spin-diffusion
equation for magnetization lying along the rotating
magnetic field listed in Appendix A, except that only
those terms that commute with 3¢ of Eq. (A20) will
make a significant contribution to D*r. These terms
may be found by making a transformation to the
coordinate system that rotates with angular speed w;
about & of the Larmor rotating coordinate system, and
then choosing only those terms that are time-inde-
pendent. These terms, denoted by 3Cq4" are

JCas'=—%N Z[‘%A (LT T 1 T3 ") + Bl inl 2.
i
(C4)
The relationship between operators I;.", I;_", and Iy,

is the same as Iy, I;, and I;,. 3C4" is thus identical
in form to 3Cg, with each coefficient multiplied by —%.
Thus to find D**", we need only take the formula for
Dy in Eq. (C3) and multiply each 4 and By, by —3%.
This leads to the result that

Dybr=3Dyeb. (Cs)

The second-order correction to the diffusion tensor
calculated in Ref. 9 also must be multiplied by a factor
of 3 when transformed into the rotating reference frame.



