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We study exchange coupling in Si double quantum dots, which have been proposed as suitable candidates
for spin qubits due to their long spin coherence times. We discuss in detail two alternative schemes which have
been proposed for implementing spin qubits in quantum dots. One scheme uses spin states in a single dot and
the interdot exchange coupling controls interactions between unbiased dots. The other scheme employs the
singlet and triplet states of a biased double dot as the two-level system making up the qubit and exchange
controls the energy splitting of the levels. Exchange in these two configurations depends differently on system
parameters. Our work relies on the Heitler-London approximation and the Hund-Mulliken molecular orbital
method. The results we obtain enable us to investigate the sensitivity of the system to background charge
fluctuations and determine the conditions under which optimal spots, at which the influence of the charge noise
is minimized, may exist in Si double quantum dot structures.

DOI: 10.1103/PhysRevB.81.085313 PACS number�s�: 03.67.Lx, 73.63.Kv, 73.40.Qv, 85.30.�z

I. INTRODUCTION

The use of quantum-mechanical two-level systems to con-
struct quantum bits, or qubits, for the storage and manipula-
tion of information has attracted considerable attention in the
past decade. Computational algorithms relying on the prin-
ciples of quantum mechanics such as unitary evolution, en-
tanglement, and coherent superposition are expected to offer
novel solutions to problems such as factoring, searching, and
simulating quantum-mechanical systems.1 Among the many
physical systems that have been proposed as candidates for
qubits, solid state systems are particularly promising because
of their potential for scalability, and spin-based qubits in
solid state systems are regarded as ideal candidates due to
their observed long coherence times.2,3

A common essential feature of the most prominent spin-
based quantum computing �QC� architectures is the employ-
ment of exchange interaction between localized electrons.
For example, in the original Loss-DiVincenzo �LDV�
proposal4 exchange interaction is pulsed on and off by elec-
trical control and produces two-qubit gates such as SWAP
and controlled-NOT gates. The Kane proposal5 of using
nuclear spins of 31P in Si as qubits employs donor electron
exchange to mediate nuclear spin interactions and produce
two-qubit gates. In the more recent singlet-triplet �ST� qubit
proposal,2,6–8 controlled exchange splitting between singlet
and triplet states leads to single-qubit gates. Exchange inter-
action is electrostatic in nature so that it can be strong and
can produce fast gates �on a time scale as short as tens of
picoseconds�, and it can be controlled electrically by chang-
ing voltages applied to the gates defining the quantum dots.
In other words, exchange gates are easy to control and allow
straightforward interface with existing microelectronic de-
vices. A potentially important shortcoming of an exchange-
based QC architecture is also related to its electrostatic char-
acter: turning on the exchange interaction could potentially
make the system vulnerable to electrical fluctuations in the

environment �background charge noise,9–11 gate noise,12

electron-phonon interaction,13,14 etc.�, which can lead to qu-
bit decoherence. Therefore, it is imperative that the exchange
interaction be characterized carefully, so that its magnitude is
known in a physical system, and possible ranges of control
parameters for which the influence of the external charge
noise is minimized �so-called optimal points� can be
identified.10,11,15

One of the most promising semiconducting materials to
host a spin quantum-information processor is silicon,16

which has outstanding spin coherence properties in the
bulk.17 Natural silicon contains only a small number of
nuclear spins �5% of 29Si, which has spin 1/2� and can be
further isotopically purified. The strength of the hyperfine
interaction between a conduction electron �or a donor-bound
electron� with each individual nucleus is also weak.18 As
such the hyperfine-interaction-induced electron-spin deco-
herence, dominant in III-V materials such as GaAs,19–27 is
suppressed in Si. Furthermore, Si has a small spin-orbit
interaction28 and no piezoelectric interaction, which together
means slower electron spin relaxation due to phonons.29 Sili-
con does have a drawback in its somewhat complicated con-
duction band structure with six equivalent minima. This or-
bital degeneracy could lead to difficulties such as the atomic-
scale position dependence of exchange interaction between
donor electrons.30 At present there are several proposed Si
quantum-computer architectures, including architectures
based on donor electron or nuclear spins in a Si:P
system,5,31,32 single electron spins in gate-defined quantum
dots in Si/SiGe �Ref. 33� or Si /SiO2 quantum dots,34–36 and
SiGe nanowires.37

The development of Si single-electron devices suitable for
quantum-information processing is a relatively recent phe-
nomenon because of the difficulty in identifying and growing
appropriately lattice-matched barrier materials �as compared
to Ga1−xAlxAs for GaAs�, which help minimize carrier scat-
tering near the interface of a heterojunction, and difficulties
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in fabricating and characterizing single-donor devices at the
atomic length scale. Nevertheless, exciting experimental
progress has been made in both donor-based devices38–43 and
gate-defined quantum dots.34–36,44–47

Motivated by the experimental attempts to realize spin
qubits in a Si metal-oxide-semiconductor field-effect transis-
tor �MOSFET�,34–36 here we consider the prospects for cre-
ating spin qubits in a lateral double quantum dot �DQD�
structure fabricated in a silicon MOSFET by lithographic
patterning. We calculate the exchange coupling and tunnel
coupling of electrons in DQD structures in a Si /SiO2 system
under the assumption of a reasonably large valley splitting.
We first analyze the applicability of the Heitler-London �HL�
and Hund-Mulliken �HM� models for calculating exchange
splitting in a Si double dot, then perform our calculations for
experimentally achievable sizes of dots. We study two types
of DQD configurations. One is a symmetric DQD, where the
single-electron levels of the two dots are on resonance and
are appropriate for the exchange gates of the original LDV
proposal. The other type is a biased DQD, where the two
dots are voltage-biased to the vicinity of the resonance be-
tween the two-dot singlet and one of the doubly occupied
singlet states. This is a configuration appropriate for the ST
qubit architecture.

Compared to the calculation of exchange coupling in
GaAs,9,12,15,48–50 there are some distinctive features for such
a calculation in Si. First of all, in a Si MOSFET structure the
Coulomb interaction is enhanced by the proximity of a
lower-� dielectric while the kinetic energy is reduced by the
larger effective mass. Therefore correlation effects should be
much stronger in a Si double dot as compared to a GaAs
structure, shrinking the range of validity for the simpler
models of exchange calculation �as we will discuss in Sec.
II C�. Indeed, identifying these ranges is one of the primary
aims of the present calculations. Another important distinc-
tion is the presence of conduction-band valleys in Si. Bulk Si
has six degenerate conduction-band minima. Confinement
and uniaxial strain in the ẑ direction split these six valleys
into a two-dimensional �2D� manifold of lower energy and a
four-dimensional manifold of higher energy that is separated
from the lower one by several tens of meV �Refs. 31 and 51�
and is typically neglected in discussions of the lowest-energy
states. Furthermore, the interface potential typically splits the
two lower-energy valleys by the energy on the order of a
fraction of an meV.52–54 The presence of the valley degree of
freedom complicates the energy spectrum and spin structure
of the two-electron states in silicon quantum dots,55–57 and
can potentially affect the effectiveness of Si as a host for
spin-based quantum-information processing.

In this paper we consider situations in which the valley
splitting � �between the ground and the first valley eigen-
states� is reasonably large so that consistent loading of the
nondegenerate ground valley-eigenstate in a quantum dot or
a double dot can be achieved. We also confine ourselves to
the situation where the valley composition of the ground
valley eigenstate is uniform throughout the DQD.57 Under
these conditions we can perform our calculation of exchange
within a single valley because the two-electron Hamiltonian
Eq. �1� does not have any intervalley matrix elements: all the
single-particle terms are slowly varying in space and all the

Coulomb matrix elements �except one exchange integral�
vanish exponentially �exp�−L2 /a0

2� where L is the
z-direction confinement and is on the order of 3 nm while a0
is the Si lattice constant of 5.43 Å so that the exponential
factor is extremely small. The lone exchange integral that
does not vanish exponentially is very small in any case
��0.2 �eV for reasonable QD sizes� so that we take it as
zero as well. Since the double-dot Hamiltonian does not lead
to any coupling to the higher-energy valley states even if an
excited valley is nearby, it will not produce any modification
in the single-valley exchange we calculate, and the basic
physics we consider here is the same as in a single-valley
system such as GaAs.

In this study we also investigate the sensitivity of
exchange-coupled spin qubits to environmental electrical
fluctuations. As we mentioned above, finite-exchange cou-
pling makes spin qubits susceptible to electrical noises from
sources such as gate electrodes and background charge fluc-
tuations. Background charge fluctuations arise due to trapped
electrons in defect sites at semiconductor interfaces. Move-
ment of nearby trapped charges affects quantum dot systems
in two ways: rise or fall of the barrier between the dots and
fluctuations in the two confining potentials of the dots. Due
to the possible importance of charge noise �SiO2, the most
commonly employed barrier material for silicon heterojunc-
tions, is a well-known source of charge noise�, the conditions
for the existence of the so-called optimal points �in analogy
to the optimal point studied for superconducting charge qu-
bits, where charge-noise-induced dephasing is minimized58�,
where the exchange splitting for the two-electron states is the
least sensitive to environmental charge fluctuations, need to
be investigated. In this work we therefore also calculate the
sensitivity of the qubit to the charge noise and identify the
optimal points in the qubit parameter space in which the
qubit is less sensitive to fluctuations in gate voltages.10,11,15,59

The goal of this paper is a qualitative �and at best semi-
quantitative� description of the exchange-gate behavior in Si
DQD qubit architecture as a function of the relevant physical
parameters: dot separation, confinement potential, dot size,
interdot bias, and external magnetic field. Since the details of
the actual Si DQD confinement in real samples are unknown
and likely to be extremely complicated, we use a simple
physically motivated model potential to study the problem.
Given the simplicity of our model, our calculation of ex-
change also employs well-known approximation schemes
�i.e., Heitler-London and Hund-Mulliken� which should be
qualitatively valid in various limits. At this stage of the de-
velopment of Si spin qubits, it is not particularly meaningful
to carry out a fully numerical Schrödinger-Poisson-
configuration-interaction modeling of the exchange-gate en-
ergetics because the details of the structures are simply not
known and will probably remain unknown for some time at
the desired level of accuracy to justify a completely compu-
tational first principles approach. Our simpler approach with
relative computational ease enables us to provide a thorough
exploration of parameter dependence of the Si DQD
exchange-gate energetics, which should be helpful in this
early stage of experimental development. In this sense, our
work should be considered as the Si equivalent to the corre-
sponding GaAs qubit theories carried out in Refs. 9 and 12.
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The outline of this paper is as follows. Section II intro-
duces the formalism that will be used throughout the paper,
which includes the model potentials for double quantum
dots, the procedures followed in the determination of ex-
change coupling, and the discussion of their limits of valid-
ity. In Sec. III the two architectures employed to make spin
qubits in quantum dots are discussed. Section IV contains
our results on exchange coupling and sensitivity to noise.
Section V contains a summary and conclusions.

II. THEORETICAL FORMALISM

A. Hamiltonian and double-dot-model potentials

Consider a DQD at the Si /SiO2 interface with growth
direction along the z axis. The effective-mass Hamiltonian
for two electrons in a DQD is then

Ĥ = �
i=1,2

ĥi +
e2

�r12
= �

i=1,2
ĥi + Ĉ , �1�

where i=1,2 labels the two electrons, ĥi is the single-particle
Hamiltonian, �= ��Si+�SiO2

� /2 is the effective dielectric con-
stant including the image charge in the adjacent SiO2, and r12
is the distance between the two electrons. The single-electron
Hamiltonian is

ĥi = T̂i + V�ri� + eExi + geff�BBSiz, �2�

T̂i =
1

2m
�pi −

e

c
A�ri��2

, �3�

where m=0.191me is the transverse �isotropic in the xy
plane� effective mass for electrons in the ẑ and −ẑ valleys
�the valleys contributing to the lowest-energy valley eigen-
state� in Si, A=B�−y ,x ,0� /2 is the vector potential for mag-
netic field B applied along the ẑ direction, V�ri� is the con-
finement potential chosen to approximate the real potential
for two dots separated by a potential barrier, E is the electric
field applied in the x̂ direction �the interdot axis direction of
the DQD�, and the last term is the electron Zeeman energy
�here we have assumed that both electrons are experiencing
the same magnetic field�, where for Si we can take geff=2.

In the above ĥi we have omitted the spin-orbit coupling
terms60 since these are expected to be very small in
silicon28,61 compared to GaAs. The spin-orbit terms in gen-
eral induce an anisotropic �Dzyaloshinskii-Moriya-type� ex-
change interaction between the two spins,60,62–65 which could
affect the performance of two-qubit exchange gates.66 While
an experiment aiming at detecting this kind of anisotropic
exchange interaction was proposed,66 these effects have not
yet been clearly shown to be relevant to experiments on
GaAs �where they are expected to be much stronger than in
Si�. Thus, at this stage of research on Si DQDs we choose to
neglect them in this work.

The potential V�ri� describes the DQD system of two dots
located in the xy plane which are tightly confined in the ẑ
direction. The exact form of the confinement along the ẑ
direction is irrelevant here as long as the characteristic local-
ization length in the ẑ direction is much smaller than in the x̂

and ŷ directions. This is fulfilled in Si /SiO2 DQD where the
z-confinement length is on the order of 3 nm while the con-
finement length in the x̂ and ŷ directions is at least several
times larger. The strain at the Si /SiO2 interface and the con-
finement in the ẑ direction lifts the sixfold valley degeneracy
in bulk silicon and leaves the ground valleys doubly degen-
erate.

This ground-valley degeneracy is further split by an
amount � due to the interface potential,33,52,54,57,67,68 which
allows us to focus only on the lowest-energy valley eigen-
state. At this stage we take the 2D approximation in which
the finite confinement length in the ẑ direction is neglected.9

The reliability of this approximation will be ascertained in
Sec. II C. We will use three different models of the DQD
potential. The first is a quartic model9

V�r� =
1

2
m�0

2� 1

4d2 �x2 − d2�2 + y2� �4�

while the second is a biquadratic model50

V�r� =
1

2
m�0

2�Min���x − d�2,�x + d�2	
 + y2� . �5�

Note that both of these potentials provide infinite confine-
ment �i.e., we have V�r�→� as r goes to infinity
. A third,
more realistic potential, will be introduced in Sec. II C,
where we will use the comparison of calculations with all
three model potentials to gauge the limits of validity of our
theoretical approach.

For the quartic potential from Eq. �4� the two dots are
separated by a distance 2d and the central barrier height is
Vb= 1

8m�0
2d2. For the biquadratic potential from Eq. �5� the

distance between the dots is the same while the central bar-
rier height is Vb= 1

2m�0
2d2, four times larger than for the

quartic potential. Note that for these potentials the barrier
height and the interdot distance are not independent vari-
ables. On the other hand, in experiments there are typically
three independent voltages controlling the DQD potential
�two gates controlling the depth of the left and right dot
potentials, and an additional gate separately controlling the
barrier�. However, most often only two variables �the left-/
right-dot gate voltage� are changed simultaneously, which we
model with a nonzero in-plane electric field E in Eq. �1�.

Each of the model potentials is designed in such a way
that around the centers of the two dots at x= 	d �for E=0�
the confinement is approximately parabolic so that the
ground state single-particle wave-functions are harmonic os-
cillator states in the isolated dot limit. More precisely, near
the centers of the two dots we have

V�x � 	 d� �
1

2
m�0

2��x 
 d�2 + y2
 � VR/L�r� �6�

and the approximate single-dot lowest-energy eigenstates
�L/R�r� are solutions of the equation

�T̂i + VL/R�r�
�L/R�r� = ��0�L/R�r� �7�

with �L/R�r�= 
r �L /R� being the Fock-Darwin states centered
on the right/left dot9
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�L/R =
1

a
� b



exp�


iyd��b2 − 1�
a2 �

�exp�−
b��x 	 d�2 + y2


2a2 � , �8�

where the first exponential is the magnetic phase for a dis-
placed orbital, a��� /m�0 is the Fock-Darwin radius, and
b��1+�L

2 /�0
2 is a measure of the degree of magnetic con-

finement, where �L=eB /2mc is the electron Larmor fre-
quency. The overlap of the right and left single-particle or-
bitals is

l � 
L�R� = exp�d2

a2�1

b
− 2b�� . �9�

For example, at zero magnetic field the overlap is
l=exp�−d2 /a2�.

A ST qubit is operated in the parameter regime where the
lowest-energy �1,1� singlet �one electron in each dot� is close
in energy to the lowest energy �2,0� singlet state �both elec-
trons in the left dot, as shown in Fig. 1�. For small quantum
dots the on-site Coulomb repulsion is quite strong so that the
DQD needs to be strongly biased and asymmetric. We model
such a biased DQD by adding an in-plane electric field
E=Ex̂ along the interdot axis to the Hamiltonian. While add-
ing E displaces the two minima of the potential correspond-
ing to the centers of the two dots for both model potentials,
other responses are significantly different for these models.
Specifically, when an electric field is added to the quartic
potential, the potential minima of V�x� are altered by E and
thus the curvatures of V�x� near the potential minima are also
changed, which in turn changes the single-dot confinement
energies of the L /R states �for example, in Fig. 1 we show a
case in which there is no minimum on the right side, only a
saddle point�. In addition, as shown in Fig. 1, the height of
the barrier between the two dots is strongly affected by E in
the quartic model. In short the quartic model of the DQD
becomes rather cumbersome when the two dots are biased.
These observations lead us to adopt the biquadratic model

for the calculations with finite bias field E. It is reasonable to
expect that the behavior of this model is closer to the experi-
mental situation, in which the primary effect of changing the
gate voltages is to introduce an offset between the ground-
state energies of the two dots. Changes in the barrier height
�i.e., the tunnel coupling between the dots� and in the con-
finement energy in each dot are secondary effects.

Using the biquadratic potential from Eq. �5� with an
added electric field E, the two minima of the potential �cor-
responding to the centers of the two dots� are shifted by the
same distance fa with f given by

f �
eEa

��0
. �10�

The single-dot orbitals are now given by Eq. �8� with d
replaced by d− fa for the right dot, and −d replaced by
−d− fa for the left dot.

In experiments on asymmetric DQDs the commonly used
parameter is the so-called detuning energy �. It parameterizes
the changes in the DQD potential along a specific line in the
experimentally obtained charge-stability diagram8 of the
DQD. A change in � corresponds to a change in the
difference between the single-particle ground states in the
two dots. Using the biquadratic potential model, we get
��2f��0�d /a�=2eEd.

B. Theoretical approaches for calculating the exchange
splitting

In a uniform magnetic field, if two electrons interact only
through the Coulomb interaction, the spin eigenstates are the
singlet ��S�= 1

�2
�↑↓−↓↑�, with total spin S=0� and triplet

��T0,+,−�= 1
�2

�↑↓+↓↑�, �↑↑�, and �↓↓�, which have total spin
S=1� states. The corresponding spatial parts of the wave
functions are symmetric and antisymmetric under exchange
of the two electrons, respectively. For quantum computing,
where orbital degrees of freedom are frozen out, the energy
splitting J�ET−ES between the unpolarized triplet state �T0�
and the ground singlet state is the key physical quantity and
we will refer to it as the exchange splitting or, in general,
exchange interaction.

To calculate the exchange splitting J, the two-electron
Hamiltonian should be diagonalized in the singlet and triplet
subspaces, respectively �with symmetric and antisymmetric
orbital-state bases�, which amounts to a full configuration
interaction �CI� calculation. Since there is an infinite number
of two-electron states, all practical CI calculations are trun-
cated. Depending on the degree of truncation, there is a hi-
erarchy of models for the calculation of exchange interaction
in a two-electron double quantum dot.

Interestingly, the reliability of a CI calculation is not com-
pletely determined by the size of the finite basis left after the
truncation.69 One particular test of validity of the given ap-
proach to calculating J is the Lieb-Mattis theorem,70 which
dictates that at zero magnetic field the singlet must always be
the ground state so that J�0. The condition for applicability
of this theorem in 2D and three-dimensional �3D� cases is for
the confinement potential to be separately symmetric, i.e.,
symmetric under exchange of each of the x, y, and z coordi-

24 meV

�60 �40 �20 0 20 40

�10

0
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20
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40

x �nm�

V
�x
�
�m

eV
�

FIG. 1. �Color online� The potential of an asymmetric double
quantum dot in the x̂ direction ���0=6 meV�. The solid line cor-
responds to the biquadratic potential while the dot-dashed line cor-
responds to the quartic potential. The ratio of the detuning to the
single-particle energy near the anticrossing �explained in the text� is
� /��0�4.
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nates of the two particles. This is the case here since we use
model confinement potentials which are separable. At finite
B either sign of J is possible.9,12,48,49

1. Heitler-London approximation

The simplest approach for calculating the exchange split-
ting J in a DQD is the HL method,9,12,70,71 where the ground
two-electron double-dot singlet and triplet states are built
from single-dot single-electron states in the simplest possible
combination. The spatial parts of the normalized singlet and
triplet states are then given by

�S/T� =
�L�1�R�2�� 	 �L�2�R�1��

�2�1 	 l2�
, �11�

where �L /R�i�� are the single-dot ground state orbitals for the
ith electron, given by Eq. �8� for the symmetric DQD case,
and l�
L �R� is the overlap between the left and right orbit-
als given in Eq. �9�. Heitler-London wave functions are es-
sentially educated guesses of the two-electron ground states.
They are reasonable wave functions for quantum dot states at
large interdot separations.

In the HL basis the exchange splitting is the energy dif-
ference between the unpolarized T0 triplet and the singlet
states

JHL = 
T0�Ĥ�T0� − 
S�Ĥ�S� , �12�

which can be written as

JHL =
2l2

1 − l4�Wv + D0 −
1

l2E0� , �13�

where Wv is the single-particle contribution due to the con-
finement potential

Wv = 
 L�1�R�2��v̂�L�1�R�2� −
1

l2L�2�R�1� � �14�

with v�1,2��V�1�+V�2�−VR�2�−VL�1�. The analytical ex-
pressions for Wv for quartic and biquadratic potentials are
given in Appendix. Physically, Wv represents the gain in ki-
netic energy for the singlet state arising from the fact that
electrons in this state are spread out more evenly across the
two dots. D0 is the direct Coulomb interaction contribution

D0 = 
L�1�R�2��Ĉ�L�1�R�2�� �15�

and E0 is the exchange integral

E0 = 
L�1�R�2��Ĉ�L�2�R�1�� . �16�

Both Coulomb terms are positive. Together they favor the
triplet state since in an antisymmetric state the two electrons
avoid each other to minimize their interaction. Both Cou-
lomb integrals D0 and E0 can be done analytically in 2D
�Ref. 9� using the states given in Eq. �8�. In units of the
effective Rydberg Ry��me4 /2�2�2 �approximately 44.76
meV in a Si /SiO2 system� we obtain

D̃0 =
�2
b

ã
I0�bd̃2

ã2 �e−bd̃2/ã2
, �17�

Ẽ0 = l2
�2
b

ã
ed̃2/ã2�b−1/b�I0� d̃2

ã2�b −
1

b
�� , �18�

where I0 is the zeroth-order-modified Bessel function.

ã�a /aB
� and d̃�d /aB

� are the Fock-Darwin radius and the
half-interdot distance expressed in units of the effective Bohr
radius aB

� ��2� /me2 �approximately 2.11 nm in a Si /SiO2

system�. Since ã / d̃=a /d, we can drop the tildes when the
ratio appears in Eqs. �17� and �18�. The contributions of D0
and E0 to J can be of comparable magnitude. For example, at

large distances �d�a�, we have Ẽ0� l2D̃0d̃ / ã at B=0, and

Ẽ0� lD̃0 at high B fields �when b�1�. The 1 / l2 factor in
front of E0 in Eq. �13� makes the negative contribution of the
exchange integral E0 significant and possibly larger in abso-
lute magnitude than the direct term D0 �this clearly occurs at
high B, when J can become negative�.

2. Hund-Mulliken approximation

The HL approximation neglects both the contribution of
the higher-energy orbitals from the two dots and the possi-
bility of double electron occupation on either of the dots. The
latter restriction is removed in the HM method,9,12,49,50,70,72

in which the doubly occupied states �built out of the ground-
state single-dot orbitals� are included in the basis set. This is
of particular importance when we consider the asymmetric
case of a biased DQD, which is relevant for the experiments
on singlet-triplet qubits. In that system the mixing between
the delocalized singlet S�1,1� and one of the doubly occu-
pied states �e.g., S�2,0�
 by the tunneling of an electron be-
tween the two dots is the main mechanism that brings about
the singlet-triplet splitting J ��nL ,nR� denotes the number of
electrons in each dot
.

In the HM method we take into account the doubly occu-
pied �2,0� and �0,2� states. We still employ only the lowest-
energy single-dot orbitals so that the doubly occupied states
must be spin singlets �their spatial parts being symmetric�.
These two doubly occupied states, together with the �1,1�
spin-singlet state, form the basis of three singlet states in the
HM method, which have an antisymmetric spin part but a
symmetric spatial wave function. Conversely, the spin-triplet
state, with a symmetric spin part, has only one possible spa-
tial configuration since the electrons cannot occupy any
higher-energy orbital states. It is convenient to use the basis
of orthonormalized single-dot states, which we define
following Ref. 9 as �L/R= ��L/R−g�R/L� /�1−2lg+g2, where
g= �1−�1− l2� / l. Then the spatial wave functions of the three
singlets and the �1,1� triplet are given by

�L/R
d �r1,r2� = �L/R�r1��L/R�r2� , �19�
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�S/T
�1,1��r1,r2� =

1
�2

��L�r1��R�r2� 	 �R�r1��L�r2�
 ,

�20�

where the superscript d denotes the doubly occupied states.
The Hamiltonian written in the S�2,0�, S�0,2�, S�1,1�, and
T�1,1� basis takes the form

H = �R + �L + �
U − � X �2t 0

X U + � �2t 0

�2t �2t VS 0

0 0 0 VT

� , �21�

where

� = �R − �L,

�R = 
�R�ĥ��R� �L = 
�L�ĥ��L� ,

X = 
�L/R
d �Ĉ��R/L

d � U = 
�L/R
d �Ĉ��L/R

d � ,

VS = 
�S�Ĉ��S� VT = 
�T�Ĉ��T� ,

t = 
�L/R�ĥ��R/L� +
1
�2


�S�Ĉ��L/R
d � = t� + w , �22�

In the above, �L and �R are the single-particle energies in the
left and right dots, � is the detuning parameter, X is similar to
a interdot Coulomb exchange integral, U is the on-site
�Hubbard� Coulomb repulsion, VS and VT are the Coulomb
energies for the �1,1� singlet and triplet states, with �S/T

�1,1�

built out of orthogonalized single-electron orbitals, and t is
the interdot tunneling matrix element modified by the Cou-
lomb matrix element w �t� is the bare tunneling�. All these
can be expressed in terms of the analogous matrix elements
between the original, nonorthogonal, left and right orbitals
�L/R �these bare-orbital matrix elements are termed D0, E0,
U0, etc�. Explicit formulas are given in Appendix.

Diagonalizing the Hamiltonian given in Eq. �21� can then
give the exchange interaction which is the energy difference
between the two lowest eigenvalues �one corresponds to a
singlet, the other the �1,1� triplet
. For the symmetric case in
zero B field, the lowest eigenvalue �S−

is dominated by the
energy of the S�1,1� spin singlet state while modified by the
two doubly occupied states. On the other hand, for the asym-
metric �biased� DQD, �S−

is dominated by a mixture of the
S�2,0� and S�1,1� singlet states �we assumed here that the
bias is such that S�2,0� state is the lower-energy doubly
occupied state, i.e., the potential of the left dot is lowered to
attract an additional electron
. The S�0,2� state can then be
dropped from our consideration.

We define the critical bias detuning �c as the bias at which
the S�1,1� state is on resonance with the doubly occupied
S�2,0� state when tunneling t is neglected. Then from Eq.
�21�, the energy of S�1,1� is

�S�1,1� � �R + �L + VS �23�

and the energy of the S�2,0� state is

�S�2,0� � 2�L + U . �24�

Therefore the critical bias detuning �c corresponds to the
energy difference �c=U−VS, at which �S�1,1�=�S�2,0�. When
���c, the ground state is composed mostly of S�1,1�; when
���c the S�2,0� state becomes the ground state. Around the
anticrossing region where ���c the �1,1� singlet and �2,0�
singlet states are strongly mixed.

We note here that the bias regime in which we are inter-
ested in our HM calculations is where the S�1,1� singlet is
the dominant component of the ground singlet state. This is
the regime where single-qubit gates are performed for an ST
qubit. The high-bias regime, where S�2,0� is the dominant
component of the ground state, is important for initialization
of an ST qubit, but is not considered in this study.

3. Beyond the Hund-Mulliken model

Beyond the Hund-Mulliken model one can build CI cal-
culations with various degrees of truncation. For example, by
including the single-electron p orbitals, one can introduce
anisotropy into the electronic states,12 which allows the elec-
trons to spread their wave functions better in order to mini-
mize the total energy �therefore a better chemical bond�, as
compared to the HL and HM models, which are based solely
on s orbitals. The inclusion of higher orbital states also al-
lows a better account of the correlations between the two
electrons, leading again to lower total energy. On the other
hand, it is also important to note again that a finite-basis CI
calculation is not necessarily always better than the simple
HL and HM calculations.69 Furthermore, the simple and ana-
lytical HL and HM models have the advantage of providing
transparent physical pictures. Therefore in the present calcu-
lation we use only the HL and HM models, with particular
emphasis on identifying the range of validity of these models
under various circumstances. We note here that a CI calcu-
lation was recently done to explore the highly biased regime
where the doubly occupied S�2,0� is the ground state.73 This
is a complementary study to what we explore in this work, in
analogy to the case of a helium atom versus a �biased� hy-
drogen molecule.

C. Reliability of exchange calculations

The HL and HM methods used in this paper generally
underestimate the electron correlations in the double dot and
results obtained using these approaches are more appropri-
ately thought of as order-of-magnitude estimates. However,
these methods do capture the basic physics of exchange cou-
pling in DQD systems and calculations performed under
these approximations can serve as guidelines for initial de-
velopment of silicon-based DQD structures. In this section
we discuss the expected regime of applicability of these
methods.

We first clarify the relationship between the valley split-
ting � and the other energy scales in the problem as we work
within a single-valley approximation. To have reliable con-
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trol over the initialization process, when the electrons tunnel
into the quantum dot from an outside reservoir, it is neces-
sary for � to exceed the thermal broadening of the reservoir
Fermi level: ��kBT. If Coulomb interaction can couple dif-
ferent valleys, it could pose additional requirements on �.
Indeed, Coulomb interaction can connect charge densities
from different valleys whether on the same dot or on differ-
ent dots. However, Coulomb matrix elements involving over-
laps of states from different valleys are strongly suppressed57

due to the large wave vectors kz= 	0.85�2
 /a0� that sepa-
rate the valleys, where a0=5.43 Å is the lattice constant of
silicon. Therefore, as long as the two-electron system is pre-
pared in the ground valley eigenstate, neither changes in
quantum dot potential �which is slowly varying in space� nor
Coulomb interaction can couple the electrons to the higher-
energy valley states. In other words, the only requirement on
� in our calculation is ��kBT for initialization.

One of the main sources of problems in HL and HM cal-
culations is the fact that the single-dot states used to build the
two-electron bases can be unreliable, especially for small
interdot distances and/or for small barrier heights. This is
related to the well-known failure of the HL method when the
overlap l between the L and R states becomes too large. It
was shown9 that when the parameter c��
 /2e2 / ��a��0�
=�
 /2ã �proportional to the ratio of the single-dot Coulomb
energy to the confinement energy� becomes larger than 2.8 in
2D, the HL method gives the unphysical result of J�0 at
zero B for small d. This occurs also in 3D case with isotropic
mass,71 only at higher values of c�5.8. Thus, above a cer-
tain size for the quantum dots �as measured in terms of ã and
determined by the ratio between Coulomb and confinement
energy�, the HL and HM approaches will surely fail qualita-
tively below a threshold in d. Compared to a GaAs double
dot with the same d and a, in a Si /SiO2 system the Coulomb
energy is larger due to the reduced screening caused by the
adjacent SiO2 layer while the kinetic energy is smaller due to
the larger effective mass. Both these changes lead to smaller
aB

� . Consequently, the critical value of c is reached in smaller
dots in Si /SiO2 �larger ��0 to compensate for smaller �,
from a different perspective� compared to those in GaAs,
reducing the range of dot sizes that can be accurately mod-
eled by the HL and HM methods.

Clearly, the case of closely spaced dots can only be ad-
dressed by more sophisticated quantum-chemical approaches
where a larger basis of single-particle orbitals is used.12,50,73

Here we choose to perform HL and HM calculations for
weakly coupled dots. The criterion used to ascertain the
qualitative applicability of these simple approaches is for the
exchange splitting J to increase monotonically with decreas-
ing d at zero magnetic field. We define the critical distance
2dc as the interdot separation at which the sign of the deriva-
tive �J /�d changes and J starts to decrease toward zero and
negative values at even smaller d. In Fig. 2�a� one can see
that the HL and HM methods fail at values of dc which are in
the range of possible interdot separations in experiments.
The critical dc as a function of confinement energy is
shown in Fig. 2�b�, from which we can see that for interdot
distance of 2d�50 nm we can only consider dots with
��0�5 meV, which corresponds to Fock-Darwin radii
a�9 nm for Si /SiO2.

While for d�dc the exchange splitting changes according
to the expected trend, we still need to establish the reliability
of HL and HM calculations quantitatively. For this purpose
we have adopted an approach proposed in Ref. 74, in which
the reliability of the HL approach was significantly improved
by employing a more realistic DQD potential and choosing
an appropriate variational form of the single-electron orbitals
for this potential. The modified potential is illustrated in the
inset of Fig. 2�a�. Analytically it is given by

V = �
1

2
m�0

2�Min��x − d�2,�x + d�2	 + y2 − r2�

if Min��x − d�2,�x + d�2	 + y2 � r2

0, if Min��x − d�2,�x + d�2	 + y2 � r2,
� �25�

where r is the radius at which the confinement potentials on
both dots are truncated, different from the Fock-Darwin ra-
dius of the dot. In our calculations we choose d /r in the
range of 0.48–1.6. The depth of the dot potential that we

20 25 30 35 40 45 50

10�5

0.001

0.1

10

1000

Interdot Distance �nm�

J
�Μ

eV
�

MV�HL
3DHL�quartic
HM�quartic
HM�biquadratic
HM�GaAs�quartic

5 10 15

100

50

20

30

15

150

70

Confinement �meV�
C

ri
tic

al
In

te
rd

ot
di

st
an

ce
�n

m
�

HM
HL

(a)

(b)

FIG. 2. �Color online� �a� Exchange energy as a function
of interdot distance at confinement energy 8 meV
�c�4.18, a�7.1 nm�. The solid line corresponds to the
Heitler-London calculation with the MV wave functions as in Ref.
74 �r�24 nm and ��0.089�. The dotted line is HM calculation in
2D GaAs system with the same size of dot. The long-dashed line is
a 3D calculation using the HL method with confinement radius 3
nm in the ẑ direction. The short-dashed line corresponds to the 2D
HM method with the quartic potential model while the dot-dashed
one is the 2D HM approach with the biquadratic potential model.
The inset shows the modified double quantum dot potential V from
Eq. �25�. �b� Critical interdot distance �2dc� as a function of con-
finement energy using the quartic potential model. The solid line
corresponds to the HM method while the dashed line corresponds to
the HL method.
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choose in the calculations below allows at least three single-
particle energy levels to exist in each dot. Figure 2�a� shows
that the potential function in Eq. �25� yields exact harmonic
confinement around the quantum dot centers and becomes
zero at larger distances from the centers. The single-particle
wave functions have to be modified in order to reflect the
fact that the potential barrier around the double dot is not
infinite. We consider single-particle wave functions that are
centered at the minimum of each dot to take the following
variational form:

���� = �A1 exp�−
��2

2aB
�2� � � �

A2 exp�−
��

2aB
� � � � � ,� �26�

where � denotes the distance from the center of the single
dot. This piece-wise wave function involves new parameters
A1, A2, �, �, and �. However, the normalization condition
and the boundary conditions �continuity of the wave function
and its derivative� at �x
d�2+y2=�2 would leave us two
independent parameters, which we choose to be � and �, the
first of them related to the radius of the electron wave func-
tion in the dot and the second being the radius at which the
change in decay behavior of the wave function occurs. The
parameters � and � are obtained variationally by minimizing
the single-particle energy in a single dot, the potential of
which is given by

V��� = �1

2
m�0

2��2 − r2� � � r

0 � � r ,
� �27�

This matched variational �MV� wave function adopted here
gives a larger overlap compared to the Gaussian orbitals used
previously since the wave function has an exponential tail.
The variational procedure also allows the MV orbitals to be
better matched to the potentials of the two dots. Furthermore,
the total potential at large interdot distances is now simply a
sum of the two potentials corresponding to the two dots, in
analogy to the potentials of two atoms that make up a mol-
ecule, which suggests that the single-dot MV wave functions
are a better starting point for HL and HM calculations.

The same approach can be used in the case of nonzero B
field. For a single dot we use the gauge in which
A=B�−y ,x ,0� /2, which produces an effective parabolic po-

tential 1
2m�L

2�2 and a term proportional to the L̂z, the projec-
tion of the angular momentum on the z axis. Since we use a
trial wave function ���� given above which depends only on
�, only the B-induced harmonic confinement needs to be
taken into account. The calculation is analogous to the pre-
vious one.

The improvement of the results in the MV approach over
the HL calculation with Gaussian orbitals obtained in Ref. 74
is consistent with the results from Ref. 50, where HL results
for a biquadratic DQD potential were compared with a mul-
tiorbital calculation. The MV approach was also shown to be
in qualitative agreement with the analytically interpolated

expressions for J in the double-donor potential,74,75 where
one can use the exact results for J obtained using the
Gorkov-Pitaevskii method.76

These results indicate that the MV calculation should be a
good approximation to the exact result for exchange split-
ting, at least for larger d. In Fig. 2�a� we show that using the
MV approach we can calculate J for more closely spaced
dots than in the case of HL or HM approximation with
Gaussian orbitals. The dip in J�d� calculated by the MV
method at d�26 nm is most probably an artifact due to
using the HL method with the confinement potential having a
kink between the dots—a similar feature was seen in HL
calculation with a biquadratic potential in GaAs.50 Further-
more, the values of J obtained using the different methods
and potentials exhibit the same behavior at d�dc. The
spread in values of J obtained with different potentials and
wave functions is about an order of magnitude but since J
itself changes by orders of magnitude with quite small rela-
tive change in d, this feature does not affect the qualitative
information which we can gain from our calculations. The
main point here is that at d�dc various methods of calculat-
ing J agree, strengthening our assertion than at these interdot
distances the results of HL and HM approaches are semi-
quantitatively reliable. In Sec. IV we will present the results
of calculations for symmetric and asymmetric �biased�
DQDs using these methods, with the quartic potential and
the modified MV potential for a symmetric DQD, and the
biquadratic potential for the asymmetric DQD. We do not
use the biquadratic potential for the symmetric DQD because
the unrealistic kink in the central barrier overly suppresses
the interdot overlap and biases the result in favor of the trip-
let state, resulting in the failure of the HM calculation at
much larger value of dc.

In Fig. 2�a� we also show the result of the HL calculation
with 3D Gaussian orbitals, i.e., the wave functions from Eq.
�8� multiplied by the Gaussian envelope exp�−z2 /2a�

2 � in the
ẑ direction. Here a� is the Fock-Darwin radius in the ẑ di-
rection, which in our calculation is a�=3 nm. As expected
from the lowering of the Coulomb energy in the 3D calcula-
tion due to the increased spread of the wave functions, the
critical interdot distance dc is smaller in the 3D case, thus
increasing somewhat the range of validity of the HL and HM
approaches.71 However, since the confinement in the ẑ direc-
tion is generally stronger than in the xy plane and the Fock-
Darwin radius associated with it smaller, making the spatial
integrals anisotropic, we cannot obtain a closed-form expres-
sion for the Coulomb contribution to the exchange interac-
tion.

For comparison we have also performed the calculations
for GaAs using the same interdot distance and the same
Fock-Darwin radii a as the corresponding Si dots �an ex-
ample is shown in Fig. 2�. The resulting exchange splittings
are typically an order of magnitude larger than the ones ob-
tained in Si. However, since decreasing d by about 10% al-
lows one to gain an order of magnitude in J, there is no
practical obstacle in obtaining the same values of J in Si and
GaAs.

In summary, in this section we have shown that the HL
and HM methods are valid in smaller parameter regimes in a
Si /SiO2 system as compared to GaAs DQDs due to the en-
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hanced Coulomb interaction and larger effective mass in
Si /SiO2. These are facts one needs to be aware of when
calculating electronic states in Si. One consequence for ex-
periment is that the QDs in Si have to be made smaller and
closer in order to have large exchange splittings. From com-
parison of calculations with different methods and different
model potentials we draw the conclusion that the HL and
HM calculations are semiquantitatively accurate at moder-
ately large interdot distances.

III. SPIN QUBIT ARCHITECTURES IN QUANTUM DOTS

Our study of electron exchange in a DQD is mainly mo-
tivated by two approaches to spin quantum computation us-
ing quantum dots. In the original spin QC proposal, which
we refer to as LDV architecture,4 an array of quantum dots is
used as a set of spin qubits. Each dot is singly occupied and
the spin of the electron in each dot constitutes the qubit.
Single-qubit operations can be implemented by rotating the
single spins using a magnetic field. Two-qubit operations,
which are needed in order to implement logical gates, can be
realized by means of a pulsed �gate-controlled� exchange in-
teraction between neighboring dots by lowering the interdot
potential barrier and allowing the electron wave functions to
overlap. Remote two-qubit operations can be realized by
swapping the two qubits next to each other, again assisted by
pulsing on and off exchange interaction between neighboring
quantum dots.

The LDV scheme involves a system of symmetric dots
since, in general, no electrical bias is applied between the
adjacent dots at any time. Indeed small bias about the sym-
metric point will only reduce the exchange splitting J.9 The
model potential is symmetric and the best choice for the
two-dot scenario is the quartic potential introduced in Sec. II.

The simplicity and elegance of the LDV architecture have
motivated extensive experimental studies of single spin prop-
erties such as coherent control, coherence, and
measurement.3,8,37,46,77–81 The experimental problems en-
countered in these explorations, such as difficulties in reli-
able and fast spin initialization and single spin electron spin
resonance control, have led to theoretical proposals where
pure electrical control of encoded spin states can be used for
universal quantum computation.82,83 In particular, a series of
experiments2,79,84,85 have shown the viability of two-spin en-
coding using spin singlet and unpolarized triplet states.

For a singlet-triplet qubit, the exchange splitting J plays
the same role as the Zeeman splitting does for a single-spin
qubit. Turning it on produces a phase difference between the
singlet and triplet states so that different superposition states
can be realized. For the experimentally realized ST qubit,2,7

the double dot is in a strongly biased regime so that �1,1� and
�2,0� singlet states are close to resonance in the absence of
tunneling. The exchange splitting is turned on by starting
deep in the �1,1� regime �where �1,1� singlet and triplet states
are nearly degenerate ground states of the DQD, indicating
that the interdot tunnel coupling is small
 and increasing the
mixing between the �1,1� and �2,0� singlet states due to
tunneling.2,7 In other words, the exchange splitting here is
dominated not by the Coulomb interaction but by tunneling-

induced mixing between the levels detuned by �.
One of the potential drawbacks of working with a highly

biased double dot is that charge noise affects the bias lin-
early, which in turn leads to fluctuations in the exchange
splitting J.86 This amounts to a dephasing mechanism for the
singlet-triplet qubit if J is finite. Therefore in the current
study we also investigate whether it is possible to reduce the
sensitivity of this system to charge fluctuations.

IV. RESULTS

Based on the above discussions of the reliability of the
HL and HM approaches within the specific regime we are
considering, we calculate the exchange splitting between the
triplet and singlet states in a coupled DQD near a Si /SiO2
interface. Our calculations are done for experimentally
achievable sizes of dots. We investigate the dependence of
exchange on the confinement energy, interdot distance, and
the magnetic field in the symmetric �Loss-DiVincenzo� case,
and the sensitivity of the exchange coupling of the two LDV
qubit to charge noise. For the asymmetric case �singlet-triplet
qubit�, we determine the dependence of the exchange cou-
pling on the interdot detuning within the Hund-Mulliken
model, and we discuss the presence of the optimal points
with respect to different kinds of charge noise.

A. Loss-DiVincenzo architecture

Our discussion of the Loss-DiVincenzo architecture relies
on the quartic model potential for reasons discussed in Sec.
II C, where we showed that this potential gives physical re-
sults for J in a wider range of interdot distances compared to
the biquadratic model.

In Fig. 3 we plot J as a function of d2

a2 at zero
magnetic field. The results here are straightforward to
understand. As the interdot separation increases, the overlap
l=exp�−d2 /a2� decreases as a Gaussian. Correspondingly the
exchange coupling J decreases according to Eq. �13� and the
decrease is dominated by the l2 prefactor for J. Figure 3
shows that with a confinement energy of 8–10 meV, ex-
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FIG. 3. �Color online� Exchange coupling as a function of d2
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using the quartic model potential. The solid and dashed lines corre-
spond to HM and HL with ��0=8 meV �a�7.1 nm�, respectively,
while the dot-dashed line corresponds to HM with ��0=10 meV
�a�6.3 nm�.
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change can reach 1 �eV in the range of interdot distance of
about 30 nm. In experiment, the confinement energy will
typically be smaller than 8 meV, which implies that the ac-
tual exchange coupling at the Si /SiO2 interface could be
orders of magnitude larger. We note that J�1 �eV is al-
ready well within energy resolution of current generation
experiments.2 It corresponds to a gating time of about a
nanosecond. The coherence time of a single spin in a GaAs
quantum dot has been measured in a spin echo experiment to
be about 300 ns at low magnetic field �B�0.1 T�,3 and
longer coherence times are expected at higher B
fields.20,21,23–27 Consequently, even a J of 1 �eV magnitude
should be enough for quantum-computation purposes within
the LDV and ST architectures.

Figure 4 shows J as a function of confinement energy
��0. Increasing the confinement energy changes the central
barrier height �Vb= 1

8m�0
2d2� between the two dots but more

importantly it squeezes the Fock-Darwin radius since
a=�� /m�0, which has a similar effect on the exchange cou-
pling as varying the interdot distance. When the confinement
energy is larger than 10 meV �with a�6.5 nm�, the ex-
change coupling becomes extremely small at interdot dis-
tances above 30 nm since l2 now is smaller than 10−10. On
the other hand, when the confinement energy is smaller than
6 meV �with a�8 nm�, we obtain an unphysical triplet
ground state for interdot distances smaller than 32 nm. The
reason for this unphysical behavior, which has also been ob-
served for interatomic calculations before, lies in the failure
of HL and HM models to properly account for electron
correlations.69

In Fig. 5 we plot J as a function of a uniform applied
magnetic field B in the ẑ direction. The DQD system shows a
clear transition from an antiferromagnetic �singlet� ground
state at low field to a ferromagnetic �triplet� ground state at
high field. This trend, which appears here in �single-valley�
Si DQDs, is consistent with previous results obtained for
GaAs DQDs.9,12,48,50 In essence, as the external field in-
creases, the interdot overlap decreases so that the overall
magnitude of J goes down. However, the quantum interfer-
ence brought about by the magnetic phases in Eq. �8� causes
the magnitude of the exchange Coulomb term to increase
relative to the direct Coulomb term �as shown in the inset of

Fig. 5 for the HL and MV-HL calculations, where
E0 / l2−D0 increases monotonically with the applied magnetic
field—the singlet-triplet crossing occurs at the field where
the quantity plotted in the inset reaches the value of −1� so
that at larger fields the triplet configuration is favored ener-
getically, as shown in Fig. 5. More involved numerical cal-
culations performed for GaAs DQD have shown that further
changes in the two-electron ground state are possible at
higher fields.48 However, whether the triplet will remain the
ground state at even higher magnetic fields cannot be deter-
mined by our simple model calculation—indeed the inset of
Fig. 5 seems to indicate that there will be no further singlet-
triplet crossings at higher fields. The exchange coupling will
go to zero asymptotically with increasing B since the interdot
overlap becomes so small at large B that the two dots are
effectively fully separated.

Figure 6 shows J as a function of the interdot distance d at
finite B. The top panel shows the results obtained using the
quartic model potential and HM method while the bottom
panel shows the results obtained using the MV approach. As
shown in Fig. 5, for a given d the exchange coupling J
changes its sign with increasing B at specific interdot dis-
tances. Changing d while keeping B fixed again changes the
magnetic phase factor, leading to possibly nonmonotonic de-
pendence of J on d. Interestingly, the behavior of J as a
function of d is different in these two models. When the MV
approach is used, the magnitude of J is monotonically de-
creasing with increasing dot separation with the exception of
a small range of B around 6.5T �shown in the inset�. Within
this range the curve of J versus d is at first positive then
drops below zero and goes through a minimum. For these
few values of B there is thus a point on the curve where
�J /�d=0. On the other hand, when the quartic model poten-
tial is used, J is negative at smaller d and relatively low B,
and it has a maximum over a wide range of B. Since the
negative J at smaller d in the quartic potential calculation can
actually be due to the failure of the HM method at small
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FIG. 4. �Color online� Exchange coupling as a function of con-
finement energy using the quartic model potential for two dots sepa-
rated by 40 nm. The solid line corresponds to the HM approach
while the dot-dashed line corresponds to the HL method.
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interdot distances and in view of the wider range of applica-
bility of the MV method �see Fig. 2�, we expect that the trend
shown by the J�d� curve produced by the MV method as the
magnetic field increases is more likely to match realistic ex-
perimental situations, while caution must be exercised in in-
terpreting results obtained using the quartic model potential.

When two electron spins are exchange coupled, the spins
are exposed to the electrostatic environment. Fluctuations in
the electrostatic potential will lead to fluctuations in the ex-
change splitting J, which in turn leads to gate errors.11 In
general we can write �J=�i��J /�Vi��Vi, where the partial
differentiations reflect the sensitivity of the double dot sys-
tem to the particular fluctuation, and the Vi are different
sources that contribute to the barrier or the interdot bias.86

For example, �J /�Vb, with Vb being the barrier in the model
potential, should tell us how much voltage fluctuations in
gate electrodes that define the DQD could affect the ex-
change, and it is important to study �J /�Vb and ways to
minimize it.

While the interdot distance in the model quartic potential
is directly related to the central barrier height Vb=m�0

2d2 /8,
such a simple relation generally cannot be established for
more realistic potentials. It certainly does not hold for the
truncated potential used in the MV calculation, the results of
which should be more reliable. We would like to point out
that the derivative �J /�d quantifies the response of J to fluc-
tuations of the external potential which predominantly cause

the change in the interdot distance, i.e., they are even with
respect to the yz plane. The inset of Fig. 5 indicates that there
is an optimal point �at which �J /�d=0� with respect to such
fluctuations predicted by the MV calculation at B=6.5 T.
The corresponding plot of �J /�d is shown in Fig. 7. Outside
the small range of magnetic field around 6.5 T, the magni-
tude ��J /�d� is simply monotonically decreasing with in-
creasing d. We note that �J /�d in the absence of a magnetic
field shows a qualitatively similar behavior as those with
B�6.5 T and there is no optimal point in that case.

B. Singlet-triplet qubit

The description of the ST qubit necessarily requires tak-
ing into account the doubly occupied state in one dot since
tunneling between �1,1� and �2,0� singlet states is the physi-
cal process that lowers the energy of the singlet relative to
the triplet state, as we discussed in Sec. III. Therefore this
problem can only be tackled using the HM approximation. In
modeling a biased DQD we make use of the biquadratic
potential with an electric field added along the x̂ direction.
This choice is due to the fact that the curvature of the quartic
potential is altered considerably by the addition of the elec-
tric field, and the minima at the centers of the two dots have
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FIG. 6. �Color online� Exchange coupling as a function of in-
terdot distance at confinement energy 8 meV with different mag-
netic field. Figure 6�a� shows the result of quartic model. Figure
6�b� shows the result of MV model �r�24 nm� The inset shows
the result of exchange coupling as a function of interdot distance at
B=6.5 T.
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rather different shapes, as can be seen in Fig. 1. On the other
hand, the problems with the biquadratic potential in the sym-
metric case �i.e., the failure to obtain J�0 occurring at in-
terdot distances larger than when using the quartic potential�
are not as severe in the biased case: the physics which con-
trols J in the regime of parameters relevant for the operation
of the ST qubit is not qualitively sensitive to the details of
the potential shape.

The exchange coupling in a biased DQD is the energy
difference between the two lowest eigenvalues of the HM
Hamiltonian in Eq. �21�. In Fig. 8 we show the three
lowest eigenvalues of the HM Hamiltonian as a function of
the detuning energy near the �1,1�-singlet to �2,0�-singlet an-
ticrossing. The evolution of the DQD spectrum near this
charge transition is parametrized by the detuning
�=2�d /a�f��0=2eEd �see Sec. II A and Eq. �10�
, which is
a linear function of both the interdot distance and the electric
field. For relevant experimental manipulations it is natural to
assume that the change in electric field is the main driving
force behind changes in detuning. However, one could also
keep f �E fixed and vary d in order to vary the detuning. As
� increases in Fig. 8, the ground state of the DQD changes
gradually from the �1,1� spin-singlet state to the �2,0� spin-
singlet state. The anticrossing point at which �=�c can be
viewed, approximately, as the point where the composition
of the ground state changes from predominantly �1,1� to
mostly �2,0�. We focus on the spectrum near this anticross-
ing, specifically for ���c, which is the range of detuning
used in qubit manipulations �the regime where S�2,0� is the
ground state is used only for initialization of the ST qubit
.

For these values of � we calculate the exchange coupling,
tunnel coupling, and we investigate the sensitivity to charge
noise of the asymmetric DQD. In the following we use a
confinement energy of 6 meV, where c=4.84, the Fock-
Darwin radius a=8.16 nm and d /a�2. The exchange cou-
pling in the biased DQD can be then tuned in a wide range
�0�100 �eV� near the anticrossing point.

Figure 9 shows the exchange splitting J and tunnel cou-
pling t as functions of � near the anticrossing point. The
exchange splitting depends on both tunnel coupling and de-
tuning, and it becomes very large near the anticrossing �reso-
nant� point between the S�1,1� singlet and the S�2,0� states.
In the upper �lower� panel we show the results when detun-
ing is changed via variation in applied electric field �interdot
distance�. Comparison of the two panels shows that the elec-
tric field and the interdot distance have quite different effects
on J and t. As the electric field increases �upper panel�, the
tunnel coupling increases slightly �less than 5% in the given
range of detuning� because the barrier height relative to one
of the dots decreases slightly. In addition, the overlap
between neighboring orbitals does not depend on the
electric field so that the Coulomb terms do not change at all
and t is only affected by slightly different barrier height.
Therefore, the change in J in this case �varying by a factor of
7� is dominated by the change in the detuning since
J�2t2 / ��c−�� in the regime where S�1,1� is the dominant
component of the ground state, away from the anticrossing
point. Conversely, while increasing the interdot distance
leads to a larger � as well �lower panel�, it also lowers the
overlap between the left and right orbitals and exponentially
reduces the tunnel coupling. The exchange coupling in this
case is determined by the competition between the energy
level detuning and the tunnel coupling. The curve of J as a
function of bias is no longer monotonous but decreases first
and then rises as shown in the lower panel of Fig. 9. The
presence of this extremum in J�d� dependence leads to the
existence of an optimal point which we discuss below.

Figure 10 shows J as a function of B at different detun-
ings. The overall decrease in J is again due to the magnetic
squeezing of the orbital states and suppression of interdot

J
t

(a)

(b)

FIG. 9. �Color online� Exchange coupling �solid line� and tunnel
coupling �dashed line� versus the bias near the �1,1�-�2,0�-singlet
resonant point. The upper panel �a� presents the results when
change of bias is by varying the electric field with the interdot
distance fixed at 40 nm and confinement energy ��0=6 meV. The
lower panel �b� presents the results when change in bias is by vary-
ing the interdot distance d with the electric field fixed at
E=0.6 V /�m and confinement energy ��0=6 meV.
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�=23 meV. The inset gives an enlarged version of J�B� at large
magnetic field.
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overlap, as in the symmetric dot case. There is also a transi-
tion from antiferromagnetic �singlet� to ferromagnetic �trip-
let� spin coupling for the ground state, yet this feature is far
less dramatic than in the symmetric case. The expanded view
in the inset shows that the exchange splitting switches sign
from positive to negative when the magnetic field exceeds 9
T although the negative J is very small in magnitude. A
possible reason for this suppressed singlet-triplet crossing is
that in a biased DQD the exchange is dominated by the
variations in detuning and tunnel coupling. While Coulomb
interaction modifies these factors, it is not as important as in
a symmetric DQD. Therefore, the effect of competition be-
tween direct and exchange Coulomb integrals is also less
prominent.

In an asymmetric DQD the effect of background charge
noise on J is governed by the �J /�d and �J /�E derivatives.
The first of them parameterizes the influence of fluctuations
in the DQD potential that are even with respect to yz plane
while the second controls the influence of the odd changes.
In Fig. 11 �J /�d is plotted at relatively low and relatively
high magnetic fields as a function of bias � �the interdot
distance 2d is varied�. Panel �a� shows �J /�d versus the bias
detuning at small magnetic fields. There is a sweet spot on
this graph at which �J /�d=0, which is also seen in the ab-
sence of a magnetic field.15 This is a point where exchange
splitting has a local minimum and the reason is the compe-
tition between a decreasing tunnel coupling and a detuning
that is approaching �1,1�-�2,0� resonant point which we dis-
cussed before �see also the lower panel of Fig. 9�. On the

other hand, in panel �b� we show the results at higher B
fields. At B�8 T a second optimal point appears. The ex-
change splitting has its local maximum at this point, which is
due to the contribution of magnetic phase. If the magnetic
field is larger than 10 T, �J /�d is always positive and has its
minimum value near the anticrossing.

In Fig. 12 we show �J /�E as a function of detuning at an
interdot distance of 40 nm. The sensitivity to charge noise,
encapsulated by �J /�E, increases monotonically as the bias
increases, and there is no optimal point. The physical reason
for this monotonic dependence is straightforward: as bias
increases, the charge-distribution difference between the sin-
glet and triplet states acquires a stronger dipolar characteris-
tic �in the �1,1� configuration this difference is electric qua-
drupolar
 so that the DQD system becomes more susceptible
to environmental charge fluctuations.59

We note here that while clear separation of physical effect
that changing E and d have on J is a feature specific to the
model biquadratic potential, in which the applied electric
field does not change the interdot distance, our result high-
lights the fact that the dependence of J on the potential fluc-
tuations can exhibit local extrema if the relevant potential
fluctuation influences the effective interdot distance.

V. SUMMARY AND CONCLUSIONS

We have calculated exchange coupling of two electrons in
double quantum dot structures in a Si /SiO2 heterostructure
within the single-valley approximation. This approximation
is valid as long as the valley splitting ��kBT, which is
necessary for reliable initialization of electron-spin states for
the purpose of quantum computation. Having analyzed the
reliability of Heitler-London and Hund-Mulliken models for
calculating exchange splitting in a Si double dot, we inves-
tigated symmetric and asymmetric double quantum dots of
experimentally achievable sizes, with our focus on two-
electron exchange splitting and its sensitivity to charge noise.
Throughout this work we have also used a matched varia-
tional approach74 to extend the range of applicability of our
results.

For the Loss-DiVincenzo architecture we find that, for the
same interdot separation as in GaAs, exchange is generally
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FIG. 11. �Color online� �J /�d as a function of the bias � by
varying interdot distance with a fixed electric field of
E=0.6 V /�m and a single-dot confinement energy of
��0=6 meV. Panel �a� shows one sweet point �J /�d�0 at small
magnetic field �B�6 T�. While Panel �b� shows that there are two
sweet spots around B=8 T but no sweet point for B�10 T.
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smaller because of the larger effective mass and the resulting
smaller wave-function overlap. In the presence of a magnetic
field, we find that for different confinement potentials the
trend exhibited by J as a function of d as the magnetic field
increases, and thus the existence and location of sweet spots,
is different. Modeling symmetric double quantum dots in a
magnetic field with HL and HM methods requires a thought-
ful choice of model potential so as to avoid unphysical re-
sults. We find that optimal point �at which the sensitivity to
charge noise is reduced� exists for J as a function of d for a
small range of magnetic fields.

For singlet-triplet qubits, we find that the behavior of the
exchange as a function of electrical bias and of magnetic
field is qualitatively similar to GaAs. We identify an optimal
point at B=0. We find that the sensitivity to the noise de-
pends on whether the potential fluctuations are changing the
interdot distance d or not, i.e., whether they are odd or even
with respect to the yz planes

Future work ought to include a Poisson-Schrödinger mod-
eling of the actual Si DQD structures, yet this must await the
successful fabrication of Si DQD structures so that more de-
tails of the gate-induced electrostatic confinement associated
with the lithographic processing become known quantita-
tively. It will also be useful to go beyond our simple Heitler-
London and Hund-Mulliken theories of the exchange cou-
pling using quantum-chemical configuration interaction
corrections �Ref. 73 is an example along that line� although
we do not expect any qualitative modifications in our results
with more sophisticated numerical computations. One might
also consider the possibility, as was done for GaAs DQD
structures,87 that the individual dots in the Si DQD structure
may have more than one electron each to determine whether
the limit of one-electron per dot is essential in Si qubit ar-
chitectures or any small odd number of electrons per dot
could work under experimental conditions. Finally, the ques-

tion of what happens if the valley splitting is not large �i.e.,
compared to the temperature� is an important issue as dis-
cussed recently in Ref. 57 and must also be dealt with in a
fully quantitative manner.
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APPENDIX: MATRIX ELEMENTS IN THE HUND-
MULLIKEN APPROACH

In the following, we list the matrix elements in Eqs. �21�
and �22� in units in which the energy is measured in ��0 and
length is measured in Fock-Darwin radius a=�� /m�0. The
single-dot harmonic well-ground eigenstates �L/R for dots
centered at 	d are given by Eq. �8�. The dimensionless
parameters are then: b=�1+�L

2 /�0
2 �related to relative

strength of magnetic confinement versus harmonic confine-
ment�, where �L is the Larmor frequency �L=eB /2mc;
c��
 /2e2 / ��a��0� �the ratio of Coulomb to confinement
energy�; and d0=d /a �the ratio of half interdot distance to
Fock-Darwin radius�. In addition, the overlap is given by
l�
L �R�=exp�d0

2�1 /b−2b�
; and the parameter associated
with the applied electric field is f =eEa /��0.

In order to convert the expressions below into the units of
Ry� and aB

� one has to multiply all the matrix elements by
��0=2 / ã2 �note also that c=�
 /2ã�.

The matrix elements in Eq. �21� are as follows:

�L/R =
d0

2�1 − l2��	
1

�b

�e−b�d0 + f�2

�− 1 + e4bd0f�
 
 �d0 + f�erf��b�d0 + f�
 	 �d0 − f�erf��b�d0 − f�
�
+

1

�1 − l2��b + d0
2 −

f2

2
−

d0e−b�d0 + f�2

�b

+

1

2
l2�− 2b + f2 +

2d0e−bf2

�b

+ 2d0f erf��bf�� − d0�d0 
 f�erf��b�d0 + f�
�

+
d0

2��1 − l2�
�	

1
�b


�e−b�d0 + f�2
�− 1 + e4bd0f�
 	 �d0 − f�erf��b�d0 − f�
 
 �d0 + f�erf��b�d0 + f�
� , �A1�

where erf�z� is the error function given by erf�z�
= 2

�

�0

ze−t2dt. The detuning is given by �=�R−�L

� =
d0

�b
�1 − l2�
ˆe−b�d0 + f�2

− e−b�d0 − f�2

+ �b
��− d0 + f�erf��b�d0 − f�


+ �d0 + f�erf��b�d0 + f�
	‰ , �A2�

All the matrix elements of Coulomb interaction in the or-
thogonalized �Wannier� basis can be expressed using four
integrals involving the original �	 states �we use the 	 no-
tation interchangeably with R /L�. The confinement potential-
related contribution Wv defined in Eq. �14� in quartic and
biquadratic models are given by the following formulas, re-
spectively:
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Wv =
3

4b
�1 + bd0

2� , �A3�

Wv =
2d0

�b

�1 − e−bd0

2
� + 2d0

2�1 − erf��bd0
� . �A4�

Apart from the direct and exchange integrals D0 and E0 from
Eqs. �15�–�18�

D0 = c�be−bd0
2
I0�bd0

2� , �A5�

E0 = l2c�bed0
2�b−1/b�I0�d0

2�b −
1

b
�� �A6�

we have the on-site Coulomb repulsion term

U0 = 
L�1�L�2��Ĉ�L�1�L�2�� = 
R�1�R�2��Ĉ�R�1�R�2�� = c�b

�A7�

to which we can relate the interdot Coulomb exchange inter-
action

X0 = 
L�1�L�2��Ĉ�R�1�R�2�� = l2U0 �A8�

and finally there is the matrix element

w0 = 
R�1�L�2��Ĉ�L/R�1�L/R�2��

=
1
�2


S�1,1��Ĉ�S�2,0�/S�0,2�� = lc�be−d0
2/4bI0� d0

2

4b
� .

�A9�

In the basis built of the orthogonalized �L/R states we have
then the bare tunneling

t� = −
d0l

2�1 − l2��2d0 − �d0 − f�erf��b�d0 − f�
 + 2f erf��bf


− �d0 + f�erf��b�d0 + f�


−
e−b�d0 + f�2

�1 + e4bd0f − 2ebd0�d0+2f��
�b


� . �A10�

The matrix elements of the Coulomb interaction in this basis
are given by

w =
2w0 − l��1 + l2�U0 + D0 + E0 − 2lw0


2�1 − l2�2 , �A11�

VS =
�l2 + l4�U0 + D0 + E0 − 4lw0

�1 − l2�2 , �A12�

VT =
D0 − E0

1 − l2 , �A13�

U =
�2 − l2 + l4�U0 + l2�D0 + E0 − 4w0/l�

2�1 − l2�2 , �A14�

X = −
l2��− 3 + l2�U0 − D0 − E0 + 4w0/l


2�1 − l2�2 . �A15�
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