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We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504
(2007)] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson
model of decoherence, is in fact completely model independent and generically valid for arbitrary
dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit
fidelity versus number of applied pulses for sufficiently short delay times because the series, with each
additional pulse, cancels successive orders of a time expansion for the fidelity decay. The ‘“magical”
universality of this property, which was not appreciated earlier, requires that a linearly growing set of
“unknowns” (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear
equations that involve arbitrary dephasing Hamiltonian operators.
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Introduction.—The spin-boson (SB) model, where the
environment is modeled by a bosonic bath of simple har-
monic oscillator quanta, is a famous and extensively used
general technique for studying the quantum decoherence of
a system coupled to an environment [1]. The model is often
used in the context of quantum dissipation and decoher-
ence analyses of wide classes of couplings between a
system and its environment. Recently, Uhrig [2] discovered
a series of 7r-pulse sequences that optimally, with respect
to the number of pulses, decouple a qubit from a bosonic
bath in the SB model, thus protecting the qubit from
decoherence. Because errors are inherently introduced by
each pulse, the promise of optimal dynamical decoupling
(DD) is of great significance to the intense recent activity
in quantum information processing where minimizing qu-
bit decoherence and successfully carrying out quantum
error correction protocols are crucial.

A particularly important issue in view of the remarkable
power of the Uhrig DD (UDD) in fighting qubit decoher-
ence is its applicability in realistic situations beyond the
idealized SB model context of its discovery [2]. To under-
stand the general applicability of these sequences, we set
out to apply it to a drastically different model of decoher-
ence, the central spin decoherence problem; specifically,
we consider the spectral diffusion (SD) process, quantum
dephasing of an electron spin qubit coupled to a slowly
fluctuating nuclear spin environment (a spin bath). Our
investigations led us to discover that UDD transcends all
models and is an optimal decoupling sequence for any
dephasing Hamiltonian when delay times are sufficiently
short because, with each additional pulse, it kills succes-
sive orders of a time or Magnus [3,4] expansion [5]. The
applicability of the UDD sequence to the SD model, with
its extreme contrast to SB, already indicates its powerful
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generality. What we find is much more general —we show
that the Uhrig sequence is model independent.

How to preserve the state of a qubit in a bath is an
important theoretical and practical consideration in the
field of quantum information. A large energy splitting
between the qubit’s two logical states (e.g., through the
application of a magnetic field for a spin qubit) compared
with the temperature of the bath may result in long relaxa-
tion (7;) times; however, the relative phase of a superpo-
sition state may not be preserved by this strategy so that
dephasing (7,) decoherence ensues. As a strategy to com-
bat dephasing and an example of DD, a sequence of
pulses may be applied in order to rapidly, on the time scale
of the system dynamics, flip the qubit in between time
intervals of free evolution (this may be generalized for any
quantum system using inverting [6] pulses as a general-
ization of 7 pulses). In the simplest case, the Hahn spin
echo occurs after applying a single 7 pulse midway
through the system’s evolution. Concatenated DD (CDD)
[7] sequences can successively improve coherence times,
but at the considerable overhead expense of exponentially
increasing the number of applied pulses. UDD performs its
magic, not only in the SB model but whenever delay times
are sufficiently short, with a mere linear scaling in the
number of applied pulses.

Pulse sequence echoes.—Considering only dephasing
decoherence, the effective Hamiltonian (for any model)
may be written in the form H = S .|=)H (*| with
|+) and |—) as the two qubit ket states. For a given pulse
sequence with intervals 7; between successive pulses, the
evolution operator is then U = Zili)0i<i| (or U=
e F)U.(*| if there are an odd number of pulses) with

U. = ...exp(—iﬂ;rg)exp(—ij:[iﬁ)- (1
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In order to characterize the coherence decay, we consider
the transverse component of the qubit’s expectation value;
normalized to a maximum of one, the pulse sequence echo
v is defined in this way such that vy =|| (UL 0.) ||=
| (W) || where W = Ut 0., the (- -) denotes an appro-
priately weighted average over the bath states (we use
equal weights justified for temperatures large compared
to nuclear Zeeman energies), and || - - - || is the magnitude
of the resulting complex number.

Uhrig series.—The UDD sequence with n pulses may be
defined by [2]

1 7(j— 1) T
= — ) - t, 2
T 2[005( pa— ) cos<n+ 1)} 2)
for 1 = j = n + 1 [corresponding to 7; in Eq. (1)] where ¢
is the total sequence time. This series was shown [2] to
optimally, with respect to number of pulses, suppress

decoherence in the SB model. We find, remarkably, that
for any form of dephasing Hamiltonian, with no assump-

tions about JH -, this sequence yields vy = 1 — O(t*"2).
Equivalently stated [4], n pulses in the UDD series remove
the first n orders of the Magnus expansion of vg. In
comparison with CDD, the number of required pulses
scales exponentially with respect to the orders of the
Magnus expansion that are cancelled [7]. (It is important
to note, however, that CDD can compete with UDD when
the Magnus expansion does not converge well.) We will
return to a discussion of the universality (Hamiltonian or
model independence) of the UDD series at the end of this
Letter after we demonstrate its consequence for a model
that is drastically different from SB.

Spin boson versus spin bath. —In the SB model, the spin
qubit interacts with a bath of noninteracting bosons: H =
Ziwil;;rlsi + S’ZZ,-)\,-(l;;f + ISi), where b represents boson
operators and S . 1s the z spin operator for the central spin.
In contrast, the spin-bath model treats interactions of
a central spin, such as a localized electron in a solid,
with interacting nuclear spins in a solid-state lattice.
Exemplifying the spin-bath model, SD is a dephasing of
the central spin as a result of fluctuations of the bath-
induced effective magnetic field caused by intrabath inter-
actions. In the limit of a large applied field, the polarization
of the central electron spin and the nuclear spins must be
individually preserved (the electron having a gyromagnetic
ratio that is typically 2000 times larger than those of the
nuclei), so that the Hamiltonian is

‘7—[— = ZAHSZiHZ + z (bnmjn*iva + Cnminzimz)- (3)

n#¥m

Spectral diffusion: Cluster expansion.—Despite the
mesoscopic size of the solid-state baths that typically
contribute to SD, often involving many millions of nuclear
spins, it is feasible to compute vy =|| (W) || with W =
U1 U, using a cluster expansion that breaks up the prob-
lem into manageable subproblems that each involve only a

few nuclei. (This expansion was successfully applied [8] to
the problem of Si:P donor electron SD yielding remarkable
agreement [9] with experiments [10].) Consider expanding
W such that W = fozo Wil where W™ contains contri-
butions to W that involve n separate clusters of ““opera-
tively” interacting nuclei. To be specific, the set of nuclei
involved in a term of W' must all be connected together
via factors of bilinear interaction operators to form a single
connected cluster. Clusters have spatial proximity when
interactions are local. If it is possible to approximate (Wiy
by only including clusters up to some small size that is
much less than the number of nuclei in the bath N, and if
the initial bath state is effectively uncorrelated (e.g., a
random bath), then (W) = (W) /n. In this “cluster
approximation,” vy =|| (W) [|= exp(Re{(W!')}). This ap-
proximation is extremely useful because it is possible to
treat (W) perturbatively in cases where the perturbation
would fail for (W) directly due to the vast numbers of
multiple clusters involved in (W) (by definition W'l in-
volves only single clusters). In our calculations, we ap-
proximate (Wil using a perturbation in cluster size (we
include contributions from successively increasing clusters
until convergence is achieved). The justification for this
perturbation in cluster size is that each additional nucleus
in the cluster requires an additional bilinear interaction
factor. An expansion in cluster size rather than a direct
expansion in orders of intrabath interaction factors (e.g.,
diagrammatically [11]) is simply more convenient.
Spectral diffusion: Time perturbation.—In addition to
the intrabath perturbation, it is also possible for (W) to
converge in a time expansion. The time perturbation ap-
plies when the 7; are small compared to all interactions
time scales of the system. The time perturbation is only
really relevant if it is applicable on the time scale of the
decay (e.g., T, observed in spin echo). Different clusters
operate, in the sense of contributing to SD decay, on very
different time scales depending largely upon differences in
the HF interactions (A,) among cluster nuclei, and these
interactions are inhomogeneous over the bath. When there
are enough clusters with enough influence operating on the
shortest time scales so that these clusters dominate the
decay, the decay time may be small compared to all
interaction time scales such that the time perturbation is
relevant. This, in turn, depends on the distribution of the A,
determined by the shape of the electron wave function.
With these considerations and assuming that intrabath
interactions are local (e.g., dipolar interactions), electrons
in quantum dots with Gaussian-shaped wave functions will
tend to, in general, exhibit short-time behavior SD on the
decay time scale while donor-bound electrons, with radi-
ally exponential wave functions, will not [12]. As an
example of a situation in which the time perturbation is
not appropriate, the Hahn echo decay of donor-bound
electrons in Si:P has the form exp(—7%?) [8], which cannot
be explained by any Magnus or time expansion. The Hahn
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echo decay of GaAs quantum dots, on the other hand,
exhibit exp(—7*) behavior [8] explained by the lowest
order of a time perturbation expansion.

Spectral diffusion: Pulse sequences.—Using the cluster
expansion technique, we are able to test the effectiveness
of DD strategies that use 7-pulse sequences in the real-
world SD problem. We have previously theoretically veri-
fied [13] the powerful effect of SD suppression when
applying concatenations of the Hahn echo sequence de-
fined recursively by p,:= p,_y — 7 — p,—; — 7 with
po ‘= 7. These CDD sequences cancel successive pertur-
bative orders of both the intrabath [13] and Magnus or time
[4,7,14] expansions with each concatenation. The main
advantage of this sequence compared with UDD is that it
operates on the intrabath perturbation which can be appli-
cable on a much longer time scale, for the time between
pulses, than a time expansion (intrabath coupling is on the
order of milliseconds while HF interactions limits the time
expansion on the order of microseconds). Each concate-
nation, however, essentially doubles the number of applied
pulses, leading to exponential overhead. The main advan-
tage of the UDD series [Eq. (2)] is that it yields successive
time expansion cancellations with each added pulse for the
SB model, a linear overhead. Figure 1 shows a side-by-side
comparison of UDD and CDD sequences.

Spectral diffusion: Results.—We show cluster expansion
results (to the lowest nontrivial order in the intrabath
perturbation), with coupling constants of Eq. (3) obtained
using models described in Ref. [8]. We compare the effects
of CDD and UDD sequences on the coherence of both an
electron bound to a P donor in natural Si [Fig. 2] and a
quantum dot electron in GaAs [Fig. 3], plotted as a func-
tion of the total time ¢ of one iteration of the pulse se-
quence. In Si:P, where only the intrabath perturbation (and
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FIG. 1 (color online). Various UDD (left) and CDD (right)
pulse sequences in side-by-side comparison where gray (red)
lines mark the time of each applied 7 pulse. The sequences are
numbered by their order which corresponds, respectively, to the
number of pulses (UDD) or the level of concatenation (CDD).
Orders of UDD and CDD with the same number of pulses are
lined up horizontally.

not the time perturbation) is applicable, CDD maintains
high fidelity (e.g., 10~* decay) for a longer time than UDD.
The CDD sequences cancel out perturbative orders of the
intrabath coupling with each concatenation [13]; however,
UDD sequences cancel only the first and, if there are an
even number of pulses, second orders. In the GaAs quan-
tum dot, in which time perturbation is valid, CDD still does
better (maintains high fidelity longer) than UDD for equal
cancellations of order [Fig. 3(a)]. However, for equal num-
bers of pulses, UDD preserves coherence far better than
CDD [Fig. 3(b)]. In this case, UDD cancels out perturba-
tive orders of a time expansion (exhibited by the succes-
sively increasing slopes of the curves) with each extra
pulse, exactly what it was shown to do in the SB model.
The only significant difference between Si:P and the GaAs
quantum dot is the applicability of time perturbation ex-
pansion due to their respective electron wave function
shapes. Despite the stark, qualitative difference between
SB and SD models, UDD proves to be optimal, in the short-
time limit (where accessible), for both.
Universality.—What is most striking, however, is that
UDD is generically optimal for cancelling orders of a time
perturbation for any dephasing decoherence. With full

generality, let H . = X, = X, without making any as-
sumption about the commutation properties of X, and
X,. This Hamiltonian, along with the pulse time intervals
7; for a given pulse sequence will determine the U.
operators that go into vy =|| (W) || with W = [0~ ]t U™.
Taking the real part of W yields a more convenient ex-
pression, Re{{W)} =1 — (ATAY/2 with A=0U" —U".
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FIG. 2 (color online). Numerical results showing the natural
logarithm of echoes from CDD and UDD sequences for Si:P
donor electrons in natural Si. Dark gray (red) curves [light gray
(green) curves] denote UDD [CDD] sequence results; the Hahn
echo decay is shown as a solid black curve for reference.
Sequences with the same number of pulses have the same line
pattern. UDD has no particular advantage (in the high fidelity
regime) to CDD in Si:P, but UDD with an even number of pulses
performs better than those with an odd number.
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FIG. 3 (color online). Numerical results showing the natural
logarithm of echoes from CDD and UDD sequences for quantum
dots in GaAs with a 25 nm Fock-Darwin radius, 8.5 nm quantum
well thickness. Dark gray (red) curves [light gray (green) curves]
denote UDD [CDD] sequence results; the Hahn echo decay is
shown as a solid black curve for reference. (a) Sequences of the
same order, having the same initial slope, use the same line
pattern. (b) Sequences with the same number of pulses have the
same line pattern. Note that the Hahn (black) and CDD [light
gray (green)] curves in (a) and (b) are the same, shown for
comparison with UDD curves.

Since v > Re{(W)}, it only serves to make a more pessi-
mistic estimate to ignore the imaginary part of (W); we
may therefore restrict our attention to the real part in our
perturbative analysis.

Expanding the exponentials of U [Eq. (1)] and collect-
ing terms with common sequences of )A(O,l operators, we
define C; ;,  as the coefficient of a term in A= U, -U_
for a corresponding sequence of operators such that

A had 1 A A A
A= Z Z (=)"Cy i Xi Xpy oo X o (D)
m=01iy,i,

1,09,y by =0

These C... coefficients may be written as a sum of prod-
ucts of the 7; pulse delay times, defined by Eq. (2) for a
sequence of n pulses, by expanding Eq. (1). It so happens
that for any m < n, all C; ;, ; ~ O(t") coefficients are
identically zero. We have explicitly proven this for (up to)
n = 9 using computer integer arithmetic by representing
each C... as a polynomial of a = exp(i7/(n + 1)), ex-
ploiting the fact that " ! = a"~! = —1, and noting that
two or more points placed symmetrically (i.e., equally
spaced) around a circle in the complex plane sum identi-
cally to zero. We conjecture that this result is generically
true for all integer n, and numerical calculations (up to n =
14) are consistent with this assertion. This finding is re-
markable. The UDD series satisfies an exponentially grow-

ing set of C... = 0 nonlinear equations with degrees of
freedom (7;) that merely grow linearly (one for each
pulse).

Conclusion.—We conclude by emphasizing our key
finding that the UDD [2] sequences restore coherence
optimally and generically in a model-independent manner
through successive cancellations in orders of a time or
Magnus [4] perturbation expansion with a low overhead
of a single pulse for each order of cancellation. While we
assume ideal, instantaneous pulses in our analysis, careful
pulse shaping can theoretically [15] mitigate effects of the
finite width in experimentally applied pulses. The universal
Hamiltonian-independent applicability of this series of
pulse sequences, originally proposed within the narrow
constraint of a spin-boson model, is simply miraculous.
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