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The reduced dynamics of a single qubit or two qubits coupled to an interacting quantum spin bath modeled
by an XXZ spin chain is investigated. By using the method of a time-dependent density matrix renormalization
group (--DMRG), we go beyond the uniform coupling central spin model and nonperturbatively evaluate the
induced decoherence and entanglement. It is shown that both the decoherence and the entanglement strongly
depend on the phase of the underlying spin bath. We show that in general, spin baths can induce entanglement
for an initially disentangled pair of qubits. Furthermore, when the spin bath is in the ferromagnetic phase
because the qubits directly couple to the order parameter, the reduced dynamics shows an oscillatory type
behavior. On the other hand, only for the paramagnetic and the antiferromagnetic phases do the initially
entangled states suffer from an entanglement sudden death. By calculating the concurrence, the finite disen-
tanglement time is mapped out for all of the phases in the phase diagram of the spin bath.
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I. INTRODUCTION

Spin qubits are promising candidates for quantum infor-
mation processing because of their long decoherence and re-
laxation time."> Some schemes, such as solid state spin qu-
bits, further enjoy a potential scalability via integration with
nanotechnology.> However, spin qubits are not totally im-
mune from the ubiquitous decoherence. To describe the bath
that causes the decoherence of spin qubits, it is known that in
some cases, the bath is better modeled by spins instead of
delocalized oscillators, resulting in the so-called spin baths.*
It has been argued that the influence of spin baths may be
qualitatively different from that of bosonic baths and that the
non-Markovian dynamics can easily emerge.>”’ Due to the
growing interest in spin baths, the decoherence behavior and
the entanglement dynamics of a few qubits coupled to spin
baths have been extensively studied in recent years. Early
works focus on the decoherence that is due to independent
spins.® Here, although the proposed model formally re-
sembles a spin boson model, the non-Markovian dynamics
already emerges even when the bath modes are not
interacting.” In real baths, however, spins are not indepen-
dent. It is therefore important to include the effects due to the
interactions of spins in the bath. Nonetheless, the inclusion
of the intraspin interaction in the bath complicates the prob-
lem and only for some limited models with high symmetry
can the exact reduced dynamics be identified.® Beyond mod-
els with exact solutions, the approximated dynamics was ob-
tained by using mean-field’ or perturbative approaches'® to
handle more generic models. For instance, within the context
of electron spin decoherence by interacting nuclear spins in a
quantum dot, the pair-correlation method,'"-'? as well as the
linked-cluster expansion method,'? have been developed to
study the single spin free-induction decay and ensemble
spin-echo behaviors in the strong magnetic field limit. The
most common model employed in these works is the “central
spin model,” wherein the qubits are uniformly coupled to all
of the spins of the bath. While analytical derivations are
possible in these models, they are less realistic and are more
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difficult to be experimentally implemented. A nonperturba-
tive approach that can capture the non-Markovian effects in-
duced by an interacting spin bath with a generic coupling to
qubits is, hence, highly desirable.

To overcome the difficulty associated with interacting
spins, we utilize the method of time-dependent density ma-
trix renormalization group (--DMRG) %15 to investigate the
reduced dynamics of a single qubit or two qubits coupled to
an interacting spin chain. Recently, --DMRG has been used
to study the single qubit pure dephasing induced by an XXZ
anisotropic spin chain.!® The advantage of +-DMRG is its
ability to calculate the reduced dynamics even when the spin
bath is not integrable and the coupling is not uniform. Due to
the accumulation of errors, --DMRG will eventually run
away at a large time!” but this does not impose any serious
limitation since for the study of quantum information, we are
mostly interested in some smaller time scale. In this work,
we apply the method of --DMRG to investigate both the pure
dephasing and the general decoherence model of qubits
coupled to spin baths. Single qubit decoherence, as well as
two qubit (dis)entanglement dynamics, is investigated. It is
shown that both the decoherence and the entanglement
strongly depend on the phase of the spin bath. In general, we
find that spin baths can induce entanglement for an initially
disentangled pair of qubits. However, when the spin bath is
in the ferromagnetic phase because the qubits directly couple
to the order parameter, the reduced dynamics shows an os-
cillatory type behavior. On the other hand, only for the
paramagnetic and the antiferromagnetic phases do initially
entangled states suffer from the entanglement sudden
death.'81°

To quantify the single spin decoherence, we evaluate the
evolution of the Loschmidt echo.?’ We analyze the relation
between the short time Loschmidt echo decay parameter and
the quantum phases of the spin bath, as it has been pointed
out that these two are closely related, especially when a sym-
metry breaking occurs in the bath.” We use the temporal
evolution of concurrence?! to study the entanglement dynam-
ics. One important issue of the entanglement dynamics is the
possibility of creating entanglement through a common bath
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for originally disentangled qubits. It has been shown that an
induced entanglement via a common bath is possible for
bosonic and fermionic baths.???* For spin baths, such a pos-
sibility has been explored for a noninteracting spin bath,?* as
well as for interacting ones,>?>~27 but is restricted to uniform
coupling models. It will be shown later in this paper that
induced entanglement is possible for the local coupling
model considered in this work. We note that the induced
entanglement is also closely related to recent proposals of
quantum communication and teleportation via a spin
chain.?82°

Another important issue is the disentanglement dynamics
of an initially entangled state. It has attracted much attention
in recent years since Yu and Eberly'® and Jakébczyk and
Jamr6z'® predicted that two initially entangled states without
an interaction can become completely disentangled at a finite
time. This feature has been termed as entanglement sudden
death (ESD). ESD has been theoretically studied within vari-
ous models**-32 and has been experimentally demonstrated.*
These models, however, are restricted to the Markovian
bosonic bath or classical noise. In this work, we explore if
ESD-like phenomena can occur for spin baths in the non-
Markovian regime. In particular, we will show that only
when the spin baths are paramagnetic or antiferromagnetic
does the phenomenon of ESD occur, while when the spin
bath is in the ferromagnetic phase, the concurrence shows an
oscillatory behavior. As understanding the nature of the de-
coherence and the (dis)entanglement dynamics constitutes an
important step for quantum engineering these systems, our
results are of practical usage for future quantum information
processing.

This paper is organized as follows: In Sec. II, we present
our model Hamiltonian and briefly discuss how to apply
t-DMRG to analyze the model Hamiltonian. In Sec. III, we
present our results of single qubit decoherence, while in Sec.
IV, the results of the (dis)entanglement dynamics are pre-
sented. In Sec. V, we summarize and discuss the implication
of our results.

II. THEORETICAL FORMULATION

We consider a system-bath model that is described by the
total Hamiltonian H=H+Hy,pn+Hiy, where Hgy is the
Hamiltonian of the single or two qubit system, Hy,g, is the
Hamiltonian of the spin bath, and H;, represents the interac-
tion between the qubits and the bath. We shall set H,=0,
but our method can be applied to a generic H,y,,. We shall
assume that the spin bath is a spin chain characterized by the
XXZ Heisenberg model,

Hyun=J 20 (SIS}, + SIS%,; + AS3SE, ), (1)

where J>0. It is known that the XXZ Heisenberg model has
a very rich structure.>* The system is ferromagnetic for A
<1, antiferromagnetic (Ising type) for A>1, and critical
(XY type) for —1 <A < 1. It also encompasses the XY model,
where A=0. The most general linear coupling between a
qubit A(B) and the bath can be expressed as Hiy
:Ei,aef’sj(B)Sf‘, where a=x,y,z and i=1,...,N. Here, ¢
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characterizes the coupling of the spin qubit to the ith spin in
the spin chain. For most situations, the more interesting cases
are €<0 (Refs. 9 and 10) and, hence, we shall concentrate
on negative €. Our numerical method, however, can be ap-
plied equally well to cases with positive €. In our work, both
the Ising and the isotropic Heisenberg couplings will be con-
sidered. The Ising coupling (€ =€'=0) gives rise to a pure
dephasing model, while the isotropic Heisenberg coupling
(e;=€'=€ #0) induces both dephasing and energy relax-
ation. The range of the coupling is crucial for characterizing
the interaction of the qubits to the spin bath. For a uniform
coupling, €; is independent of i. This is unrealistic but for a
uniform coupling, the Loschmidt echo and the entanglement
dynamics can be exactly calculated by using the Jordan-
Wigner transformation when spin bath is of the type of the
XY model (A=0).2>% However, the more realistic coupling
model is the local coupling model, in which only the cou-
pling to the closest spin is nonvanishing. Nonetheless, there
are no analytic solutions known for this model. The reduced
dynamics is less studied but is more relevant to real experi-
ments. In this case, if the spin bath is ferromagnetic, the
qubit directly couples to the order parameter (the magnetiza-
tion); while if the spin bath is antiferromagnetic or paramag-
netic, the qubit does not couple to the order parameter.
Hence, the reduced dynamics exhibits completely different
behaviors in different phases. As the local coupling model is
more relevant to real experiments, in the following, we shall
concentrate on the local coupling model.

We now briefly outline the procedure to evaluate the re-
duced dynamics of the qubits and other derived quantities.
For a given set of parameters, we first employ the static
DMRG?® to find the ground state |G) of the spin chain,
wherein the open boundary condition is used. We assume
that at #=0, the initial total state is a product state of the form
|D(0))=[thys(0))|G), where [if(0)) is some particular sys-
tem state that we are interested in. Formally, the evolution of
the reduced density matrix can be obtained by first evolving
the total state,

|D(0)) = e™|hy5(0))|G). 2)
then tracing off the spin bath,
Pays(1) = Tri| P(OND(1)]. 3)

The Loschmidt echo and concurrence can then be evaluated
from pyy (7). In general, evolving such a state is a formidable
task. --DMRG, however, provides a way to efficiently evolve
such a state with a high accuracy for a quasi-one-
dimensional system. We note that the degrees of freedom of
the qubits are exactly kept during the --DMRG calculation by
targeting an appropriate state. The dimension of the truncated
Hilbert space is set to be D=100. For the short time decay
simulation, we set J&r=1072 in the Trotter slicing; while for
the entanglement dynamics, we set Jor=0.1-0.5 to balance
the Trotter error and truncation error.

III. SINGLE QUBIT DECOHERENCE

In this section, we present our results for the single qubit
decoherence, which is characterized by the Loschmidt echo.
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The Loschmidt echo has been extensively used to quantify
single qubit decoherence, especially its connection to the
quantum criticality of the spin baths.!®373% The Loschmidt
echo can be intuitively understood as follows: Consider an
initially disentangled total state (C,|+)+C_|-))®|G). At
some later time ¢, it will evolve into an entangled state
C.(0)|+)®|¥,(1))+C_(1)|-)®|P_(£)). The Loschmidt echo,
which is defined as £(1) = (W, (1) | W_(1))|?, clearly measures
the coherence between |+) and |-). When £=1, the qubit is
disentangled from the bath; while when £=0, the qubit is
totally entangled with the bath.

We start by noting that for a numerical calculation on
finite length, all dynamics will show quasiperiodic behavior.
The quasiperiod is known as the revival time. Since in our
numerical calculation the spin bath is a chain of finite length,

it is essential to identify the revival time for each length to
avoid unphysical results due to the revival. As a zeroth order
approximation, the revival time is proportional to the length
and inversely proportional to the maximum phase velocity of
the spin chain. In Figs. 1 and 2, we plot the Loschmidt echo
as a function of time for the case of the Ising and the Heisen-
berg couplings by using various lengths and A, from which
the revival time of the echo can be easily identified. We also
plot the revival time as a function of the length. One clearly
observes the linear dependence of the revival time on the
length. We find that for the Ising coupling, the minimal value
the Loschmidt echo reaches is nonzero unless a very strong
coupling strength is taken (not shown here), while for the
Heisenberg coupling, the Loschmidt echo reaches zero if the
length is longer than some A dependent critical length.
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FIG. 3. (Color online) Decay parameter as a function of A for
the case of the Ising coupling. Here, e=-0.3, and length N=80.

To compute the single qubit decoherence, we couple the
qubit to a single site of the spin chain, which is taken to be
the middle site of the chain to suppress boundary effects. We
tune the spin bath to different quantum phases by changing
the parameter A. In the ferromagnetic regime, a small uni-
form external field is introduced during the static-DMRG
calculation but is turned off during the time evolution. It is
numerically checked that the numerical results reported be-
low are insensitive to the magnitude of the applied external
field. Similarly, when the bath is in the Ising antiferromag-
netic ground state of the XXZ model, a small staggered ex-
ternal field is applied to lift the twofold degeneracy in the
ground state.>”

When the spin is in the Ising antiferromagnetic regime
or the XY critical regime, we find that in a short time, the
behavior of the Loschmidt echo decay is Gaussian, L(¢)
~e~ where « is the decay parameter.*’ In Fig. 3, we plot
the decay parameter as a function of A for the case of the
Ising coupling. In the ferromagnetic regime (A<-1), the
qubit decay is completely suppressed (w=0). This is a con-
sequence of the Ising coupling in which both |+)®|G) and
|-)®|G) are eigenstates to the system and, hence, £(f)=1.

Clearly, the decay parameter is largest in the critical re-
gime (-1 <A<1) and it gradually decreases to zero as one
moves into the antiferromagnetic regime (A>1). For the
single link scenario, the decay parameter is almost feature-
less within the critical regime. Our numerical results also
show that if the qubit is coupled to multiple sites, the decay
parameter acquires a weak dependence on A and the transi-
tion near A=1 becomes less sharp (not plotted). Note that the
decay parameter becomes sensitive to the magnitude of the
small staggered field applied when the spin bath is close to
the phase boundary (A~ 1). This is due to the fact that for
finite N, the barrier between two degenerate ground states is
finite and approaches zero as A approaches 1. The ground
state obtained by static DMRG includes a small mixture of
the degenerate state, which is sensitive to the strength of the
staggered field. For larger A, the barrier between two degen-
erate ground states increases as one moves deeper into the
antiferromagnetic regime. As a result, the decay parameter
becomes less sensitive to the strength of the stagger field for
A>1.
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FIG. 4. (Color online) £(r) as a function of time when the spin
bath is in the ferromagnetic phase for the case of the Heisenberg
coupling. Here, the length N=80 and the coupling strength e=
—0.3 (upper) or €=0.3 (lower). Clear oscillatory behaviors are seen
for both positive and negative e.

We now turn to the case of the Heisenberg coupling. We
first note that in the ferromagnetic regime, the qubit couples
to the order parameter. Therefore, the qubit is effectively in

an average magnetic field (§,~). As a consequence of the

Heisenberg coupling, the qubit will precess about (5}). Since
magnons are generated at the same time when the qubit

evolves, (§ ;) starts to deviate from 1/2 and results in oscilla-
tions in the reduced dynamics. Figure 4 shows some typical
oscillating behaviors of £(z) in this scenario. Clearly, the
reduced dynamics is no longer Gaussian. Therefore, we shall
not mark the ferromagnetic regime in the following.

In Fig. 5, we plot the decay parameter as a function of A
for the case of the Heisenberg coupling. The overall behavior
is very similar to the case of the Ising coupling except that
the decay parameter weakly depends on A in the critical
regime. This is different from the Ising coupling case shown
above but is similar to the multiple sites in the Ising coupling
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FIG. 5. (Color online) Decay parameter as a function of A for
the case of the Heisenberg coupling; e=-0.3, and length N=80.
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case. For both the Ising and the Heisenberg couplings, we
find a discontinuity in the behavior of £(r) at A=—1 and a
first derivative discontinuity at A=1. These discontinuities
coincide with the phase boundary of the underlying spin
chain. The different behavior at A= * 1 can be traced back to
the different natures of the ferromagnetic and antiferromag-
netic transitions, and the close relation between the decoher-
ence and the quantum criticality of the bath is clearly dem-
onstrated.

IV. ENTANGLEMENT DYNAMICS

In this section, we investigate the entanglement dynamics
of two qubits that couple to the spin bath. There are two
central issues to be addressed. The first issue is the possibil-
ity of entanglement creation via the common spin bath for a
pair of initially disentangled qubits without a direct interac-
tion. The second issue is the disentanglement dynamics of an
initially entangled state. In particular, we would like to ad-
dress the issue if qubits influenced by spin baths also suffer
from entanglement sudden death and if the entanglement
sudden death depends on the quantum phase that the qubits
couple to.!® To characterize the entanglement, we shall use
concurrence as a measurement of the entanglement.?! For a
given reduced density matrix p(z), the concurrence is defined
as C=max{\;—N,—N3—A4,0}, where N\ =N, =N;=\, are
the square roots of the eigenvalues of the operator p(c”
® 0”)p* (0¥ ® ¢”) and p* is the complex conjugation of p.

A. Entanglement creation

It has been shown that entanglement can be created with-
out a direct interaction if two qubits interact with a common
bosonic bath?? or a fermionic bath.?* Of particular interest to
us is the onset time of the entanglement, the strength of the
induced entanglement, and the time scale wherein the in-
duced decoherence eventually takes over. These consider-
ations are important in determining if such an induced en-

tanglement is useful in a real quantum computation. The
issue is also closely related to the proposals of induced in-
teraction via a common bath,*'*2 wherein the effect of the
induced decoherence from the same bath is usually neglected
during the derivation.

In Fig. 6, we plot the concurrence as a function of time by
using various coupling strengths and interqubit distances.
The coupling between qubits and the spin bath is of the Ising
type, which gives rise to a pure dephasing model. We assume
that the coupling strength is the same for two qubits (e
=¢,) and the initial state is taken to be é(|00)+|01)+|10>
+|11)). We shall set A=0 but similar results can be obtained
for A # 0. Before we discuss our findings in more details, we
would like to comment that if the Markovian approximation
or the uniform coupling assumption are taken, then one can
no longer discuss the interqubit distance dependence. The
relation between the entanglement dynamics and the interqu-
bit distance, however, is gaining interest since people began
to explore the non-Markovian effects of a bath.23434 We
terminate the simulation at half of the revival time, where
usually the Loschmidt echo reaches its minimum, to avoid
the unphysical dynamics due to the revival. We also numeri-
cally check the finite size effect by comparing the entangle-
ment dynamics from different chain lengths. We find that the
results from different chain lengths agree with each other
reasonably well. The length of the chain mainly sets an upper
bound for the simulation time.

We find that for this configuration, it is possible to create
entanglement via the spin bath. In particular, for a weaker
coupling strength, the induced entanglement more slowly
rises but can reach a higher value; while for stronger cou-
pling, the induced entanglement more rapidly rises. The
maximal concurrence reached, however, is lower. This is be-
cause a larger coupling strength also leads to a stronger de-
coherence. It is also evident from Fig. 6 that the entangle-
ment creating rate decreases as the interqubit distance
increases, which is typical for this kind of induced interac-
tion. We find that for a large enough € and a small enough
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FIG. 7. (Color online) Entanglement dynam-

ics for an initially disentangled pair of qubits for
the case of the Heisenberg coupling. Here, A=0,
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interqubit distance, the concurrence shows an oscillatory be-
havior. In these cases, the coupling is strong enough to create
concurrence oscillation but also weak enough to prevent the
bath from totally disentangling the qubits. The delicate inter-
play between the induced decoherence and the induced en-
tanglement indicates that using such an induced entangle-
ment for a quantum computation is a tricky task. One has to
tune the coupling to be within the right window to balance
the effect from each side.

In Fig. 7, we plot the concurrence as a function of time for
the case of the Heisenberg coupling, starting from the same
initial condition. Qualitatively, the behavior is similar to the
case of the Ising coupling. We find that the maximal en-
tanglement that can be reached is smaller. This is because,
for the Heisenberg coupling, the Loschmidt echo always de-
cays to zero regardless of the coupling strength; while for the
Ising coupling, the minimal Loschmidt echo value is a de-
creasing function of the coupling strength and is not zero. We
also find that the onset time is roughly proportional to the
interqubit distance. This is expected as the excitation of the
spin chain, which mediates the entanglement generation,
travels with a finite phase velocity. The time the excitation
reaches the other qubit would be proportional to the interqu-
bit distance. However, the concurrence oscillation is absent,
indicating that the induced interaction is weaker for the
Heisenberg coupling. We note that it is difficult to write
down an exact form of the induced interaction unless a Mar-
kovian approximation is taken. In general, the induced inter-
action is time dependent and is accompanied by a compli-
cated decoherence effect. It is, however, possible to
experimentally or numerically perform a quantum state to-
mography to extract the Kraus operators. The Kraus opera-
tors can then be used to design quantum operations without
directly using the form of the induced interaction.

B. Entanglement decay

Here, we present our results for the disentanglement dy-
namics of an initially entangled state. To investigate the pos-

60

sibility of an ESD in the spin bath, we start from an initial
state of the form |¢/,,(0))=a|00)+B|11), with an initial con-
currence C(0)=2|aB*|. Two qubits are set be 20 sites apart
so that the decoherences of the individual qubits are nearly
independent of each other and the coupling is of the Heisen-
berg type. We first show a typical behavior of the concur-
rence in the ferromagnetic regime in Fig. 8. Clearly, as for
the reduced dynamics for a single qubit, the concurrence
shows oscillatory behaviors. Hence, the qubits in the ferro-
magnetic regime do not suffer from ESD and the envelope of
the entanglement exponentially decays.

In Fig. 9, we plot the disentanglement dynamics of two
states in the XY critical and antiferromagnetic regimes. All of
the computations start from the same initial concurrence with
two sets of coefficients, a/,B:l/vg or B/a:l/\s"B, corre-
sponding to two different initial states. We find that in the
critical regime (-1 <A <+1), both states suffer from ESD.

. 12
initial state=100>+3 " | 11>
0.9 — T
R — A=-15 1
— A=-20 -
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Time/J

FIG. 8. (Color online) Disentanglement dynamics for an initially
entangled pair of qubits when the bath is in the ferromagnetic
phase. The coupling is of the Heisenberg type; e=—0.3 and N=80.
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FIG. 9. (Color online) Disentanglement dynamics for an initially
entangled pair of qubits when the bath is in the antiferromagnetic or
the XY critical phase. The coupling is of the Heisenberg type; e=
—0.3 and N=80.

Furthermore, the entanglement dynamics of the two states
are identical in the critical regime, which is due to the reason
that the rotational symmetry is not broken in the critical re-
gime and |00) is equivalent to |11) by the Z, symmetry along
the quantization axis. In both the ferromagnetic and antifer-
romagnetic phases, where the rotational symmetry is broken,
we find that the entanglement dynamics for these two states
start to deviate from each other. In most of the antiferromag-
netic regime, both states do not suffer from ESD. When A is
close to the phase boundary, lg)wever, both of the two states
that correspond to a/B=1/y3 and B/a=1/3 suffer from
ESD and have slightly different disentanglement times. In
Fig. 10, we plot the inverse of the disentanglement time,
which is defined as the time when the concurrence becomes
zero, as a function of A. Starting from A=-1, it shows a
monotonic decrease. Across the phase boundary, A=1, the
inverse of the disentanglement time develops a small bump
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FIG. 10. (Color online) Inverse finite disentanglement time as a
function of A. Here, the coupling is of the Heisenberg type,
€=-0.3 and N=80.
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and persists into the antiferromagnetic phase, and finally de-
creases to zero around A=1.2. The existence of a finite re-
gion with a finite disentanglement time in the antiferromag-
netic regime is due to the fact that when A approaches 1, the
barrier between the two degenerate ground states approaches
zero. For a finite N and a finite value of A—1, the ground
state obtained by the static DMRG includes a small mixture
of the degenerate state so that it resembles the XY critical
state and results in a finite disentanglement time. In the ther-
modynamic limit (N—o0), the region with a finite disen-
tanglement time in the antiferromagnetic regime shrinks
down, resulting in the discontinuity at the phase boundary
A=1. The overall behavior found in the above is different
from those reported in an early work,*® in which two states
investigated in the above possess different entanglement dy-
namics and only one of them suffers from ESD. The differ-
ence is due to the reason that the model adopted in Ref. 30
includes the effect of spontaneous decay, breaking the sym-
metry between |0) and |1); while for the spin bath in the XY
critical regime, such symmetry breaking is absent. It is im-
portant to note that there exists a subregime, which is
roughly around —0.3<<A<0.6, in which an entanglement
shows revival after some dark period. Note that the entangle-
ment revival after some dark period was also reported in Ref.
45, wherein a photonic multimode vacuum bath is assumed
and the revival is attributed to the two photon decay. In our
work, the origin of the revival is less clear. We believe that
the existence of such a subregime is due to the competition
between the entanglement decay and the Loschmidt echo
decay. Within this subregime, the Loschmidt echo more
slowly decay giving the system a chance to revive after the
first ESD.

V. CONCLUSION

In summary, the decoherence and (dis)entanglement dy-
namics induced by spin baths are nonperturbatively investi-
gated by using r~-DMRG. For both the pure dephasing model
(Ising coupling) and the general decoherence model (Heisen-
berg coupling), we calculate the short time decay parameter
of the Loschmidt echo. We find that in both cases the decay
parameter is closely related to the phase of the underlying
spin chain. In the ferromagnetic regime, the reduced dynam-
ics shows an oscillatory behavior; while in the XY critical
and antiferromagnetic regimes, the decay parameter shows a
first derivative discontinuity at A=+1. We evaluate the en-
tanglement dynamics of a pair of initially disentangled qubits
that are close to each other. We demonstrate that it is possible
to induce entanglement via their common interaction with
the spin bath. The competition between the induced decoher-
ence and the entanglement can be easily seen in the coupling
strength dependent behavior of the entanglement onset time,
the growth rate, and the maximal entanglement reached. Fi-
nally, we investigate the disentanglement dynamics of a pair
of initially entangled qubits, which are far from each other.
For the two initial states we studied, we find that their dis-
entanglement dynamics are identical and suffer from ESD in
the critical regime. Their disentanglement dynamics begin to
deviate from each other in both the ferromagnetic and the
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antiferromagnetic regimes. They no longer suffer from ESD
in the ferromagnetic regime but still suffer from ESD if the
chain is near the antiferromagnetic transition. It is shown that
the inverse of the finite disentanglement time has a close
relation to the phase of the spin bath and shows the mono-
tonic decrease behavior as one that moves into the antiferro-
magnetic regime. It should be noted that this work represents
a successful application of ~-DMRG to study the decoher-
ence and the entanglement dynamics induced by interacting
one-dimensional models. We would also like to comment
that it is straightforward to include the self-Hamiltonian of

PHYSICAL REVIEW B 77, 205419 (2008)

the qubit into the simulation. Consequently, one can easily
generalize the method used here to study the efficiency of
various pulse sequences*®*’ proposed to eliminate the deco-
herence induced by an interacting spin bath.
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