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Recent experiments have demonstrated long spin lifetimes in uniformly n-doped quantum wells. The spin dy-
namics of exciton, localized, and conduction spins are important for understanding these systems. We explain
experimental behavior by invoking spin exchange between all spin species. By doing so we explain quanti-
tatively and qualitatively the striking and unusual temperature dependence in (110)-GaAs quantum wells. We
discuss possible future experiments to resolve the pertinent localized spin relaxation mechanisms. In addition,
our analysis allows us to propose possible experimental scenarios that will optimize spin relaxation times in
GaAs and CdTe quantum wells.

I. INTRODUCTION

In recent years, uniformly doped quantum wells (QWs)
have generated increasing interest due to the long relaxation
times measured therein.1–3 The long relaxation times are due
to spins localized on donor centers. While similar relaxation
times have been measured in modulation doped systems, their
duration has not been as reliable due to the weaker binding
energy of localized states and potential fluctuations from re-
mote impurities.4–6 Localization is either not seen at all4 or
localization centers thermally ionize rapidly with increasing
temperature due to a small binding energy.5,6 QWs uniformly
doped within the well have the advantage of being character-
ized by well defined impurity centers with a larger binding
energy. The experimental control in the amount of doping and
well size make doped QWs particularly appealing to the study
of quasi-two-dimensional spin dynamics.

Much of the theoretical study of spin relaxation in semicon-
ducting systems (QWs in particular) has either focused solely
on itinerant electrons7–9 or solely on localized electrons10,11

without regard for either the presence of the other state or
the interaction between the two states. Recently the exis-
tence and interaction between itinerant and localized states
has been dealt with in bulk systems by Putikka and Joynt12

and Harmon et al.13. The results of these calculations are in
very good quantitative and qualitative agreement with exper-
imental observations14,15 in bulk n-GaAs and n-ZnO. In this
paper, the theory of two interacting spin subsystems is applied
to QWs.

The paper is structured as follows: Section II describes the
optical generation of spin polarization in QWs; Section III
introduces a set of modified Bloch equations to model spin
dynamics; Section IV calculates the equilibrium populations
of localized and conductions states; Section V determines the
relaxation rates for all pertinent mechanisms for localized and
conduction electrons; Sections VI and VII compare our re-
sults to two GaAs QWs (uniformly doped and undoped) and
one uniformly doped CdTe QW; Section VIII discusses our
findings, suggests future work, and proposes QWs for spin
liftime optimization; we conclude in Section IX.

II. SPIN POLARIZATION IN QUANTUM WELLS

In QWs at low temperatures the creation of non-zero spin
polarization, in the conduction band and donor states, pro-
ceeds from the formation of trions (charged excitons,X±) and
exciton-bound-donor complexes (D0X) respectively, from the
absorption of circularly polarized light.

Polarization via the trion avenue is most relevant for mod-
ulation doped QWs where donor centers in the well are
sparse.3,4 Due to the modulation doping outside the well, the
number of conduction electrons in the well may be plenti-
ful. In such cases, assuming incidentσ+ pump pulse, a+ 3

2
hole and− 1

2 electron are created. These bind with a resi-
dent electron from the electron gas in the QW to form a trion
(X−

3/2). The ‘stolen’ electron will be+ 1
2 to form a singlet state

with the exciton’s electron. Hence, the electron gas will be
left negatively polarized since the excitons are preferentially
formed with spin up resident electrons. If the hole spin re-
laxes faster than the trion decays the electron gas will remain
polarized.4 Selection rules dictate+ 3

2 (− 3
2) holes will recom-

bine only with− 1
2 (+ 1

2) electrons. Therefore if the hole spins
relax rapidly, the released electrons will have no net polariza-
tion and the polarized electron gas will remain predominantly
negatively oriented.

A very similar picture is given for the polarization of donor
bound electrons in uniformly doped QWs where the donor
bound electrons play the role of the resident electrons.1,2 At
low temperatures the donors are nearly all occupied and the
density of the electron gas will be negligible. When excita-
tions are tuned at the exciton-bound-donor resonance, instead
of photo-excitons binding with the resident electron gas, they
bind with neutral donors to form the complexesD0X3/2. This
notation implies that a+ 3

2 hole -− 1
2 electron exciton bound

to a+ 1
2 donor bound electron. Once again for very short hole

relaxation times, the donor bound electrons can be spin polar-
ized.

The measured long spin relaxation times in uniformly
doped QWs imply that spin polarization remains after short
time processes such asX andD0X recombination have com-
pleted. In other words, the translational degrees of freedom
thermalize much more quickly than the spin degrees of free-
dom. The occupational statistics of itinerant and localized
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electrons are important and can be determined from equilib-
rium thermodynamics.

As the temperature is increased, the electrons bound to
donors thermally ionize and become itinerant. In analogy with
the trion case, if the excitation energy is maintained at theD0X
frequency, the initial polarization should decrease as there are
fewer D0X complexes allowed.6 However as the number of
electrons in the conduction states increases, the spin thatex-
ists on the donors will equilibrate by cross relaxing to con-
duction states by the isotropic exchange interaction. If cross
relaxation is rapid enough, the total spin, which is conserved
by exchange, will now exist in the donor and conduction states
weighted by their respective equilibrium densities.12,13,16The
polarized electron moments will then proceed to relax via dif-
ferent processes for the localized and itinerant states. Since
trion binding energies (∼ 2 meV)5,6 are smaller than donor-
exciton binding energies (∼ 4.5 meV),17 polarization of itin-
erant electrons via trion formation should be negligible asthe
temperature is increased.

The above description is complicated when the photoexci-
tation energy is at the exciton resonance and not the exciton-
bound-donor resonance. In such a case, the excitons may
recombine or the electron-in-exciton spin may relax before
binding to a donor so one expects the low temperature spin
relaxation to reflect also the exciton spin dynamics insteadof
the donor electron spin dynamics alone.6 In essence, the elec-
trons in an exciton represent a third spin environment with a
characteristic spin relaxation time scale different from that of
the localized donor and itinerant electrons. Because of the
electron’s proximity to a hole, relaxation may result from spin
exchange or recombination.

Therefore to understand the spin dynamics in QWs, it is
imperative to examine the relaxation processes that affectthe
polarized spin moments of the various spin systems.

III. MODIFIED BLOCH EQUATIONS

After rapid exciton-donor-bound complex formation, re-
combination, and hole relaxation, we model the zero field spin
dynamics of the system in terms of modified Bloch equations:

dmc

dt
=−

( 1
τc

+
nl

γcr
c,l

)

mc+
nc

γcr
c,l

ml

dml

dt
=

nl

γcr
c,l

mc−
( 1

τl
+

nc

γcr
c,l

)

ml (1)

wheremc (ml ) are the conduction (localized) magnetizations,
nc (nl ) are the conduction (localized) equilibrium occupation
densities,τc (τl ) are the conduction (localized) spin relax-
ation times, andγcr

c,l is a parameter describing the cross re-
laxation time between the two spin subsystems. Mahan and
Woodworth16 have shown the cross relaxation time between
impurity and conduction electron spins to be much shorter
than any of the other spin relaxation times relevant here. We
shall assume below that the same is true for the cross relax-
ation between electrons bound in an exciton and conduction
or impurity electron spins. The motivation of these modified

Bloch equations is set forth in Refs. (12) and (13). Eqs. (1)
is valid for photoexcitation energies that do not cause freeex-
citon formation (only two relevant spin systems). It is im-
portant to note that Eqs. (1) hold only for intermediate time
scales. These scales are long compared with laser pulse times,
energy relaxation times that determine subsystem populations
and donor-bound exciton formation times. Fortunately, these
intermediate time scales are the ones probed in the experi-
ments.

Standard methods can be used to solve these differential
equations with initial conditionsmc(0) and ml (0). We as-
sume that the initial spin polarization is perpendicular tothe
QW’s growth plane and that the excitation density,Nx, is small
enough such that the resultant spin relaxation time,τs, will
not depend strongly onNx.2 The solutions yield a time depen-
dence of the total magnetizationm(t) = mc(t)+ml (t) to be a
sum of two exponentials - one of which is exp(−t/τs) and the
other of which has a time constant proportional to the cross
relaxation time. In the case of rapid cross relaxation (faster
than all spin relaxation mechanisms), only one exponential
survives and we express the total relaxation rate as

1
τs

=
nl

nimp

1
τl
+

nc

nimp

1
τc

(2)

wherenimp = nl +nc is the total impurity concentration. This
model, or variations of it, has been successfully applied to
bulk n-GaAs and bulk n-ZnO.12,13

If the photoexcitation energy is set near the exciton energy,
the Bloch equations must be modified to take into account ex-
citon spin relaxation and multiple cross relaxations:γi, j for
i, j ∈ c, l ,x for conduction, localized, and excition spins re-
spectively. We model exciton spin relaxation as electron-in-
exciton spin relaxation18 and assume that hole spin relaxation
is very rapid. Eq. (1) generalizes to

dmc

dt
=−

( 1
τc

+
nl

γcr
c,l

+
nx

γcr
c,x

)

mc+
nc+Nx−nx

γcr
c,l

ml +
nc+Nx−nx

γcr
c,x

mx

dml

dt
=

nl

γcr
c,l

mc−
( 1

τl
+

nc+Nx−nx

γcr
c,l

+
nx

γcr
l ,x

)

ml +
nl

γcr
l ,x

mx

dmx

dt
=

nx

γcr
c,x

mc+
nx

γcr
l ,x

ml −
( 1

τx
+

nc+Nx−nx

γcr
c,x

+
nl

γcr
l ,x

)

mx,

(3)

whereτx represents spin lifetime of an electron bound to a
hole. nx (mx) is the number (magnetization) of electrons
bound in an exciton.Nx is the initial density of photoexcited
electrons and the quantityNx−nx is the number of photoex-
cited electrons that do not participate in an exciton. We as-
sume quasi-equilibrium such thatnx is determined from ther-
modynamics (see Section IV). It should be stated that Eq. (3)
is valid only for times shorter than the recombination time;
in other words, on a time scale whereNx can be assumed
to not change significantly. Recombination times have been
measured19 in similar systems as to those studied here to be
longer than the observed spin relaxation times so this approx-
imation seems justified. In Section VI, we find that the effects
of recombination of free carriers can be added to 1/τc to ob-
tain excellent agreement with the experimental data.
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If we solve the system of equations in Eq. (3) as we did for
Eq. (1), we obtain the relaxation rate

1
τs

=
nl

nimp+Nx

1
τl
+

nc+Nx−nx

nimp+Nx

1
τc

+
nx

nimp+Nx

1
τx
. (4)

For both Eqs. (2) and (4), we allowτl , τc, andτx to be phe-
nomenological parameters of the formτ−1

i = ∑ j 1/τ j where j
refers to a type of spin relaxation mechanism. From the ex-
perimental constraints and results, we can determine which
relaxation mechanisms are important.

IV. OCCUPATION CONCENTRATIONS

As shown above, the relative occupations of localized and
itinerant states play an important role in our theory. Fortu-
nately, in two dimensional systems, the occupation probabili-
ties of the two states (nl/nimp andnc/nimp) can be determined
exactly. The densities we are interested in are dilute enough
such that the non-degenerate limit (Boltzmann statistics)can
be utilized.

FIG. 1: Occupation probabilities of localized (solid line)and conduc-
tion (dash-dotted line) states with impurity densitynimp = 4×1010

cm−2 determined from Eqs. (7, 8). Other parameters for GaAs are
a∗B = 10.4 nm andm∗ = 0.067m.

The probability for a donor to be singly occupied (only the
ground state needs to be considered20) is21

nl

nimp
=

1
1
2e(EB−µ)/kBT +1

. (5)

The density of itinerant states is given by

nc = Nce
µ/kBT (6)

where Nc = m∗kBT/~2π and the conduction band edge is
taken to be zero energy. The chemical potentialµcan be found
using the constraint

nl

nimp
+

nc

nimp
= 1. (7)

Using the result forµ, one obtains

nl

nimp
=

√

1+Q(T,nimp)−1
√

1+Q(T,nimp)+1
, (8)

where

Q(T,nimp) =
8nimp

Nc
e−Eb/kBT . (9)

An example of the temperature dependence of these oc-
cupation probabilities is shown for a GaAs QW in Figure 1
wherenimp = 4×1010 cm−2. At the lowest temperatures, the
donors are fully occupied. As the temperature increases,nl
decreases andnc increases to where at around 50 K, the two
occupation probabilities are equal. From Eqs. (2, 4), it is ev-
ident that these occupational statistics have ramifications in
the measured spin relaxation times. The results here are also
applied to the excitons in quasi-equilibrium.

V. SPIN RELAXATION

We now discuss the relevant spin relaxation mechanisms
for both localized and conduction electrons. The electron-in-
exciton spin relaxation,τx, is a combination of electron-hole
recombination and electron-hole exchange relaxation. Dueto
its complicated nature we defer the calculation ofτx to future
work. Here we treat it as a phenomenological parameter.

A. Localized Spin Relaxation

First we discuss spin relaxation via the anisotropic spin ex-
change for donor bound electrons. This has been treated ex-
tensively elsewhere.11,22–24Most recently it has been exam-
ined by Kavokin in Ref. (10). It is his treatment that we detail
below for semiconducting QWs.

Kavokin argues10 that some portion of localized relaxation
results from spin diffusion due to the exchange interactionbe-
tween donors. Anisotropic corrections to the isotropic ex-
change Hamiltonian cause a spin to rotate through an an-
gle γi, j when it is transferred between two donor centers lo-
cated at positionsr i andr j . The angle-averaged rotation an-
gle is 〈γ2

i, j 〉1/2 = 〈r2
i, j〉1/2/Ls.o. whereLs.o. is the spin orbit

length.10 The spin is relaxed when the accumulated rotation
angleΓ becomes on the order of unity such thatΓ2 =∑〈γ2

i, j〉=
∑〈r2

i, j 〉/L2
s.o.=2Dexτex/L2

s.o.= 1 whereDex is the diffusion co-
efficient and the relaxation time is

τex=
L2

so

2Dex
. (10)

In quasi-2D (100) QWs where Dresselhaus bulk inversion
asymmetry (BIA) terms dominate,11

Ls.o. =
( 2α~
√

2m∗Eg
〈k2

z〉
)−1

, (11)
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whereα is a dimensionless measure of the spin orbit strength
and〈k2

z〉 is due to the quasi-2D confinement and is of the form
β2/L2. For infinite well confinementβ = π. The diffusion
coefficient is approximately10

Dex=
1
2
〈r2

i, j〉〈J〉/~. (12)

with exchange constant25 in 2D

J2D = 15.21Eb

( r i, j

aB

)7/4
e−4r i, j/aB (13)

whereEb is the binding energy:Eb = ~
2/(2m∗a2

B). How r i, j
is to be determined will be discussed in Section VI.

These results can be combined to obtain the relaxation rate
in terms of a dimensionless impurity separation scale,x:

1
τex

= 15.21
α2

~
3〈k2

z〉2

Egm∗2 〈x2〉〈x7/4e−4x〉 (14)

wherex= r i, j/aB.
Localized electron spins may also relax due to nuclear

fields. A localized electron is coupled to many nuclear spins
by the hyperfine interaction. To the electrons, these nuclear
spins appear as a randomly fluctuating field but these nu-
clear fields can be assumed quasi-stationary since the nuclear
evolution time is much longer than electron evolution time
due to the contrast in magnetic moments.10 What governs
the electron spin evolution is the electron correlation time,
τcorr. If τcorr is long such thatµBg∗/~〈B2

N〉1/2τcorr > 1 (where
〈B2

N〉1/2 = Bmax
N /

√
NL is the root-mean-square field,Bmax

N is
the maximum nuclear field, andNL is the number of nuclei
in the electron’s localization volume), then the electron polar-
ization decays due to ensemble dephasing; there will be ran-
dom electron precession frequencies due to a random distri-
bution of frozen nuclear fields.26 If the mechanism contribut-
ing to the electron correlation time is exchange induced spin

diffusion, τcorr is estimated to be(n1/2
impDex)

−1 in quasi-two

dimensions.10

Merkulov et al.26 find a dephasing rate for quantum dots to
be

1
τnuc

=

√

16∑ j I j(I j +1)A2
j

3~2NL
(15)

where the sum overj is a sum over all nuclei in the unit cell,
I j is the nuclear spin,A j is the hyperfine constant, andNL is
the number of nuclei in the electron’s localized volume. It
is important to state that this spin dephasing does not decay
exponentially but decreases to 10% of the original spin polar-
ization inτnuc and then increases to 33% of the original spin
polarization in 2τnuc where it will then decay at a much slower
rate.26,27

If τcorr is short such thatµBg∗/~〈B2
N〉1/2τcorr ≪ 1, then the

relaxation will be of the motional narrowing type.10

B. Conduction Spin Relaxation

Conduction band states undergo ordinary impurity and
phonon scattering. Each scattering event gives a change in
the wave vectork, which in turn changes the effective mag-
netic field on the spin that comes from spin-orbit coupling.
This fluctuating field relaxes the spin. This is known as the
D’yakonov-Perel’ (DP) spin relaxation mechanism.28,29 The
effective field strength is proportional to the conduction band
splitting. In this article, we are interested in conductionspin
relaxation in (001) and (110) oriented QWs. For (001) QWs
the spin relaxation rate results from a spin-orbit term in the
Hamiltonian,Hs.o =

~

2 Ω(k||) ·σ where9

Ω(k||) =
2γ
~





kx(k2
y −〈k2

z〉)
ky(〈k2

z〉− k2
x)

0



 .

The angular brackets denote spatial averaging across the well
width. γ is a band parameter that governs the magnitude of the
spin-orbit splitting. For GaAs,γ∼ 17 meV nm3.30 We assume
the QWs have been grown symmetrically and therefore ignore
any Rashba contribution.31

The resulting spin relaxation has been worked out in detail
by Kainz et al. in Ref. (9). For the experiment32 we compare
to, we find the non-degenerate limit to be applicable and hence
use the relaxation rate for spin oriented in the z-direction,

1
τz

=
4
~2 τp(T)

[

γ2〈k2
z〉2 2m∗kBT

~2 kBT − γ2〈k2
z〉

2

(2m∗kBT
~2

)2
j2+

γ2 1+ τ3/τ1

16

(2m∗kBT
~2

)3
j3

]

(16)

where j2 ≈ 2 and j3 ≈ 6 depend on the type of scattering
mechanism. We assume Type I scattering as defined in Ref.
(9). The ratioτ3/τ1 is unity for Type I scattering.τp(T) is
the momentum relaxation time which can be extracted from
mobility measurements.

A more interesting case is that of (110) QWs where the
spin-orbit Hamiltonian is33

Hs.o. =−γσzkx
(1

2
〈k2

z〉−
1
2
(k2

x −2k2
y)
)

(17)

which is obtained from the (001) Hamiltonian by transforming
the coordinate system such thatx||[110], y||[001], andz||[110].
As can be seen from the form of this Hamiltonian, the ef-
fective magnetic field is in the direction of the growth plane.
Hence, spins oriented along the effective field will experience
no spin relaxation.

Conduction spins also relax due to the Elliott-Yafet (EY)
mechanism34,35 which arises from spin mixing in the wave-
functions. Due to spin-orbit interaction, when a conduction
electron is scattered by a spin-independent potential from
statek to k′, the initial and final states are not eigenstates
of the spin projection operatorSz so the process relaxes the
spin. In bulk, the relaxation rate is known to be of the form
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1/τEY =αEYT2/τp(T) whereαEY is a material-dependent pa-
rameter andτp is the momentum relaxation time.36

However the EY mechansim in quasi-two dimensions will
not take the same form sincek will be quantized in one direc-
tion (the direction of confinement). The treatment in bulk37

has been extended to QWs to obtain38

1
τEY

≈
( ∆s.o.

∆s.o.+Eg

)2(

1− m∗

m

)2 EckBT
E2

g

1
τp(T)

, (18)

where∆s.o. is the spin-orbit splitting energy andEc is the QW
confinement energy.

Spins may also relax due to the Bir-Aronov-Pikus (BAP)
mechanism39 which arises from the scattering of electrons and
holes. This relaxation mechansim is commonly considered
efficient only in p-type materials when the number of holes
is large.40 We fit the experimental data in Section VI without
consideration of this mechanism.

We will now examine how these relaxation mechanisms are
manifest in two different QWs.

VI. RESULTS FOR GaAs/AlGaAs QUANTUM WELL

We apply our method to measured spin relaxation times of
two GaAs/AlGaAs QWs by Ohno et al.:32,41 (100) n-doped
QW with dopingnimp = 4×1010 cm−2, well width L = 7.5
nm; and a (110) undoped QW with well widthL = 7.5 nm. In
both (pump-probe) experiments, the pump or photoexcitation
energy was tuned to the heavy hole exciton resonance and nor-
mally incident on the sample. As mentioned in Section II, the
exciton spin becomes important at low temperatures for such
excitation energies. The experimental spin relaxation times
as a function of temperature are displayed (solid circles) in
Figures 2 and 3.42

For the undoped (110) QW, Eq. (4) is modified to become

1
τs

=
Nx−nx

Nx

1
τc

+
nx

Nx

1
τx
. (19)

For this sample, at low temperatures,nx = Nx so theτs =
τx ≈ 0.15 ns. At higher temperatures, recombination (in time
τr ) and EY act to relax conduction spins since DP relax-
ation is significantly reduced for the (110) QW orientation.
To account for the quasi-two dimensional nature of the QW,
we use an intermediate value (between 2D and 3D values)
for the exciton’s binding energy.43 Eq. (19) (solid line) fits
the data (points) with excellent agreement in Figure 2 when
Nx = 1.5×1010 cm−2 andτr = 2 ns which are near the ex-
perimentally reported values19 (Nx ≈ 1010 cm−2 andτr ≈ 1.6
ns). The contributions from the excitons and conduction elec-
trons are also shown (dashed and dash-dotted lines respec-
tively). The trend in the data is well described by our theory
- at low temperatures excitons predominate and the spin re-
laxation time isτx. When the temperature increases, the exci-
tons thermally ionize leading to net moment in the conduction
band. Since the conduction band spin relaxation time is longer
than the exciton spin relaxation time, the measured relaxation
time increases with temperature as described in Eq. (19). We

FIG. 2: Spin relaxation versus temperature in undoped (110)GaAs
QW. Points are experiment of Ref. (41). Dash-dotted line: Us-
ing only conduction portion of Eq. (19) and 1/τc = 1/τEY +1/τr .
Dashed line: using only excitonic portion of Eq. (19). Solidline:
Eq. (19). Spin relaxation rate of excitons decreases with tempera-
ture increase due to thermal ionization. Conduction spin relaxation
is longer in (110) QW than in other oriented QWs due to vanishing
DP mechanism.

expect the relaxation times to eventually level out as the exci-
tons disappear. Eventually, the relaxation time will decrease
as the temperature dependence of EY takes effect.

For the doped (100) QW, Eq. (4) should be used to describe
the temperature dependence of the relaxation rate. Using the
values from above andnimp= 4×1010 cm−2, τs= 0.35 ns, we
can extract the approximate value ofτl . In doing so we obtain
τl ≈ 0.5 ns. We stress that this value has considerable uncer-
tainty due to the uncertainty in the parameters (namelyNx)
that determineτl . The presence of impurities has lengthened
the observed low temperature spin relaxation time by more
than a factor of two. The relaxation time in the doped sample
can be further increased by reducing the excitation density.
As the temperature is increased, donors become unoccupied
and conduction electrons will play a larger role in relaxation
as expressed in Eq. (4). We can determine the main conduc-
tion spin relaxation mechanism by investigating its tempera-
ture dependence.

We are now left with the task of determining what the local-
ized and conduction spin relaxation mechanisms are. We plot
the relaxation rate for the n-doped GaAs QW as a function of
temperature in Figure 3. The dashed, dotted, and dash-dotted
lines refer to the three terms of Eq. (4) - the density weighted
average of the respective relaxation rates. The solid line is the
sum of all three terms.

We begin by calculating spin relaxation due to spin ex-
change diffusion in Eq. (14). This is difficult due to the expo-
nential dependence onr i, j . For GaAs,α= 0.06,Eg = 1.52 eV,
m∗ = 0.067m, andaB = 10.4 nm. To calculate〈k2

z〉 = β2/L2,
we need to know the band offsets and assume a finite square
well. The potential depth for a AlGaAs QW is aboutV0 = 0.23
eV. This comes from∆Ec

∆Eg
= 0.62 and ∆Eg = 0.37 eV in

GaAs.44 From this we can determineβ which will also de-
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FIG. 3: Spin relaxation versus temperature in n-doped (100)GaAs
QW. Points are from Ref. (32). Dashed line: excitonic contribution
in Eq. (4). Dotted line: localized contribution in Eq. (4). Dash-
dotted line: conduction contribution in Eq. (4). Solid black line: Eq.
(4). Both exciton and localized spin relaxation contributeto the ob-
served low temperature spin relaxation. Conduction spin relaxation
is the most strong contributor to the observed relaxation athigher
temperatures.

pend on the well widthL. For L = 7.5 nm, β = 2.19. Of
course in the limit ofV0 → ∞, β → π. What remains to be
determined isr i, j which is proportional to the inter-donor sep-

arationr i, j = γn−1/2
imp . For average inter-donor spacing in two

dimensions,γav= 0.564. When we allowγ to be fitting param-
eter, we obtainr i, j = 19.5 nm which corresponds toγ = 0.4.

We now determine the relaxation rate due to the hyperfine
interaction. SinceµBg∗/~〈B2

N〉1/2τcorr ≫ 1 whennimp = 4×
1010 cm−2, the hyperfine relaxation is described by Eq. (15).
Since nearly all nuclei have the same spin45 (I = 3/2), we can
express Eq. (15) as

1
τnuc

= 2

√

5∑ j A
2
j

~2NL
, (20)

with ∑ j A
2
j = 1.2× 10−3 meV2 and NL ∼ 2.1× 105.26 This

yields τnuc = 3.9 ns. Due to the donor’s confinement in the
QW, its wavefunction may shrink thereby reducing the local-
ization volume and therefore also reducingNL andτnuc .43

In Figure 3, we find find excellent agreement with experi-
ment over a large temperature range whenτp(T) in Eq. (16)
is made a factor of three smaller than what is reported in Ref.
(9). We attain approximately the same quantitative accuracy
as in Ref. (9) but since we also take into account the local-
ized spins, we find excellent qualitative agreement as well.It
should be emphasized that the quadratic and cubic terms of
Eq. (16) are important in the high temperature regime. The
EY rate is qualitatively and quantitatively different fromthe
data. For instance, 1/τEY ≈ 0.1 ns−1 at 300 K so we rule it
out of contention. We also now ignore recombination of car-
riers since an appreciable amount of equilibrium carriers exist
(n-doped system) leading to recombination of primarily non-
polarized spins.

One would not expect these results to agree with spin relax-
ation measurements in modulation doped QWs. In modula-
tion doped systems, the occupation densitiesnl andnc cannot
be calculated as we have done here. In such systems different
spin relaxation dependencies are seen.19,46

VII. RESULTS FOR CdTe/CdMgTe QUANTUM WELL

The experiment by Tribollet et. al. on a n-CdTe QW of-
fers an instructive complement to the previous experiments
on GaAs. In their experiment, Tribollet et al. measure spin
relaxation timesτs ≈ 20 ns for CdTe/CdMgTe QWs with
nimp = 1× 1011 cm−2. Importantly, they excited with laser
energies at the donor bound exciton frequency instead of the
heavy hole exciton frequency.

For CdTe,Eg= 1.61 eV,m∗ =0.11m, andaB= 5.3 nm. The
spin-orbit parameter,α is not known but we approximate it by
noting that the spin-orbit splitting energy in CdTe is∆s.o =
0.927 eV whereas in GaAs, it is∆s.o = 0.34 eV. Sinceα is
approximately proportional to∆s.o, we obtainα = 0.164 for
CdTe.

To obtain potential well depth for CdTe QW, use
Eg(xMg) = 1.61+ 1.76xMg wherexMg gives fraction of Mg
in Cd1−xMgxTe.47 If we usexMg = 0.1, we getV0 = 0.12eV
which leads toβ = 2.18.

We now determine the relaxation rate due to the hyperfine
interaction. Since all nuclei with non-zero spin will have the
same spin45 (I = 1/2), we can express Eq. (15) as

1
τnuc

= 2

√

∑ j A
2
j Pj

~2NL
, (21)

where Pj has been addended to account for isotopic
abundances.1 The natural abundancies of spin-1/2 Cd and Te
nuclei dictate thatPCd = 0.25 andPTe = 0.08. The remain-
ing isotopes are spin-0.NL = 1.8× 104, ACd = 31 µeV, and
ATe= 45µeV which yieldsτnuc= 4.4 ns.1 The confined donor
wavefunction in CdTe should shrink less than in GaAs since
the effective Bohr radius is half as large.

We see that this value is within an order of magnitude of
what we have calculated for relaxation due to the hyperfine
interaction. We can also compare the experimental time to
what we obtain for spin exchange diffusion. When we allow
γ to be a fitting parameter, we obtainr i, j = 19.3 nm which
corresponds toγ = 0.61. This is in reasonable agreement with
γav.

Unfortunately no relaxation measurements have been per-
formed at higher temperatures in n-doped CdTe QWs that we
are aware of. We are also not aware of mobility measurements
in n-doped CdTe QWs. The prevalent mechansim (DP or EY)
will depend on the mobility so we forgo determining the more
efficient rate. However, in analogy to bulk systems, we ex-
pect the CdTe QW mobilities to be less than the GaAs QW
mobilities.12,48 In the next section we analyze CdTe’s spin re-
laxation rate for (110) grown crystal so DP can be ignored.
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VIII. COMPARISON OF GaAs AND CdTe QUANTUM
WELLS

First we discuss the low temperature spin relaxation. In-
terestingly, the localized relaxation time in CdTe is about20
times longer than in GaAs. This can be explained by the spin
exchange relaxation despite the larger spin orbit parameter in
the CdTe. This is more than offset by the smaller effective
Bohr radius in CdTe (5.3 nm vs. 10.4 nm) and the exponen-
tial behavior of the anistropic exchange relaxation. However
due to the exponential factor, any discrepancy between the
two QWs can be explained by adjusting their respectiveγs
appropriately, though the fittedγs do fall nearγavg. The dis-
crepancy in times is difficult to explain by the hyperfine inter-
action since the two calculated relaxation times are very near
each other. Additionally, no plateau effect is seen that is in-
dicative of hyperfine dephasing.1,27 Another possibility is that
one QW is governed by relaxation from spin exchange and
the other from hyperfine interactions. Without experimental
data, answering these questions is difficult. It is our hope that
further experiments will be done to sort out these questions.
However, we can propose ways in which these answers can be
discovered.

Relaxation by anisotropic spin exchange is strongly depen-
dent on the impurity density. By altering the impurity doping
within the well, one should see large changes in the spin re-
laxation time if this mechanism is dominant. From Eq. (14)
we see that this mechansim will also depend on the confine-
ment energy. Hence this mechanism should also be affected
by changing the well width. The hyperfine dephasing mech-
anism should be largely unaffected by impurity concentration
differences as long as they are not so extensive as to cause the
correlation time to become very short and enter a motional
narrowing regime. Varying the well width will have an ef-
fect on the donor wavefunctions, but as long as they are not
squeezed too thin the effect should not be dramatic.

FIG. 4: Spin relaxation in GaAs (100) QWs with different well
widths (all other parameters, includingτl and τx, do not change).
Points are from Ref. (32) whereL0 = 7.5 nm. Dotted: 2L0; dash-
dotted: 3L0/2; solid: L0; dashed:L0/2.

For spin relaxation at higher temperatures, DP prevails in

(100) GaAs QWs as mentioned earlier. Whether DP or EY is
more efficient in CdTe depends on the momentum relaxation
time. By changes in momentum relaxation times (by chang-
ing well width or impurity concentration), we predict the the
possibility to induce a clear ‘dip’ in the temperature depen-
dence which we see in Figure 4. This same non-monotonicity
has been observed bulk GaAs and ZnO.12–15

Using our results we propose that n-doped (110) QWs
should optimize spin lifetimes (when excited at exciton-
bound-donor frequency) since DP is suppressed. Figure 5
displays our results for GaAs and CdTe (110) QWs as impu-
rity densitiesnimp= 4×1010 cm−2 andnimp= 1×1011 cm−2

respectively. The decrease seen in GaAs is now due to de-
population of donor states instead of exciton thermalization.
The depopulation is much slower in CdTe since the doping is
higher. The up-turn in the CdTe curve as room temperature is
reached is due to EY which is too weak to be seen in GaAs.
We plot the data points from the undoped (110) GaAs QW for
comparison. By avoiding the creation of excitons and their
short lifetimes, long spin relaxation times can be achieved.

FIG. 5: Spin relaxation in (110) GaAs (nimp = 4× 1010 cm−2):
dashed-dotted line. Spin relaxation in (110) CdTe (nimp = 1×
1011 cm−2): solid line. Points from undoped (110) GaAs QW
experiment41 are included for comparison. For both systems,τp(T)
from Ref. (9) were used. EY is too weak over the temperature range
depicted to be seen in the GaAs system. However EY is the causeof
the increase in spin relaxation rate for the CdTe system.

IX. CONCLUSIONS

We find that the spin relaxation times in n-doped QWs can
be well described by a theory invoking spin exchange between
spin species. In undoped (110) QWs, where DP is absent, we
find that exciton spin relaxation is important and leads to the
observed surprising temperature dependence. We predict that
a similar temperature dependence (though with longer relax-
ation times) should be observed in n-doped (110) QWs when
excited at the exciton-bound-donor frequency.

We have suggested future experimental work to resolve
what mechanisms relax spin localized on donors in n-doped
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GaAs and CdTe QWs. The theory allows us to predict ex-
perimental conditions that should optimize the measured spin
relaxation times in GaAs and CdTe QWs.
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