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The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin
is a magnetic moment pointing up or down. The full quantum properties of spin become apparent in
phenomena such as superpositions of spin states, entanglement among spins, and quantum
measurements. Many of these phenomena have been observed in experiments performed on
ensembles of particles with spin. Only in recent years have systems been realized in which individual
electrons can be trapped and their quantum properties can be studied, thus avoiding unnecessary
ensemble averaging. This review describes experiments performed with quantum dots, which are
nanometer-scale boxes defined in a semiconductor host material. Quantum dots can hold a precise but
tunable number of electron spins starting with 0, 1, 2, etc. Electrical contacts can be made for charge
transport measurements and electrostatic gates can be used for controlling the dot potential. This
system provides virtually full control over individual electrons. This new, enabling technology is
stimulating research on individual spins. This review describes the physics of spins in quantum dots
containing one or two electrons, from an experimentalist’s viewpoint. Various methods for extracting
spin properties from experiment are presented, restricted exclusively to electrical measurements.
Furthermore, experimental techniques are discussed that allow for (1) the rotation of an electron spin
into a superposition of up and down, (2) the measurement of the quantum state of an individual spin,
and (3) the control of the interaction between two neighboring spins by the Heisenberg exchange
interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and
experimental results are compared with theories for spin-orbit and hyperfine interactions. All these
subjects are directly relevant for the fields of quantum information processing and spintronics with
single spins (i.e., single spintronics).
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I. INTRODUCTION

The spin of an electron remains a somewhat mysteri-
ous property. The first derivations in 1925 of the spin
magnetic moment, based on a rotating charge distribu-
tion of finite size, are in conflict with special relativity
theory. Pauli advised the young Ralph Kronig not to
publish his theory since “it has nothing to do with real-
ity.” More fortunate were Samuel Goudsmit and George
Uhlenbeck, who were supervised by Ehrenfest: “Pub-
lish, you are both young enough to be able to afford a
stupidi‘[y!”1 It requires Dirac’s equation to find that the
spin eigenvalues correspond to one-half times Planck’s
constant 7 while considering the electron as a point par-

'See  URL:
goudsmit.html

http://www.lorentz.leidenuniv.nl/history/spin/
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ticle. The magnetic moment corresponding to spin is re-
ally very small and in most practical cases it can be ig-
nored. For instance, the most sensitive force sensor to
date has only recently been able to detect some effect
from the magnetic moment of a single-electron spin
(Rugar et al., 2004). In solids, spin can apparently lead to
strong effects, given the existence of permanent mag-
nets. Curiously, this has little to do with the strength of
the magnetic moment. Instead, the fact that spin is asso-
ciated with its own quantum number, combined with
Pauli’s exclusion principle that quantum states can at
most be occupied with one fermion, leads to the phe-
nomenon of exchange interaction. Because the exchange
interaction is a correction term to the strong Coulomb
interaction, it can be of much larger strength in solids
than the dipolar interaction between two spin magnetic
moments at an atomic distance of a few angstroms. It is
the exchange interaction that forces the electron spins in
a collective alignment, together yielding a macroscopic
magnetization (Ashcroft and Mermin, 1974). It remains
striking that an abstract concept as (anti)symmetrization
in the end gives rise to magnets.

The magnetic state of solids has found important ap-
plications in electronics, in particular for memory de-
vices. An important field has emerged in the last two
decades known as spintronics. Phenomena like giant
magnetoresistance or tunneling magnetoresistance form
the basis for magnetic heads for reading out the mag-
netic state of a memory cell. Logic gates have been re-
alized based on magnetoresistance effects as well (Wolf
et al.,2001; Zutic et al., 2004). In addition to applications,
important scientific discoveries have been made in the
field of spintronics (Awschalom and Flatte, 2007), in-
cluding magnetic semiconductors (Ohno, 1998) and the
spin Hall effect (Sih er al., 2005). It is important to note
that all spintronics phenomena consider macroscopic
numbers of spins. Together these spins form things like
spin densities or a collective magnetization. Although
the origin of spin densities and magnetization is quan-
tum mechanical, these collective, macroscopic variables
behave entirely classically. For instance, the magnetiza-
tion of a micron-cubed piece of cobalt is a classical vec-
tor. The quantum state of this vector dephases so rapidly
that quantum superpositions or entanglement between
vectors is never observed. One has to go to systems with
a small number of spins, for instance in magnetic mol-
ecules, in order to find quantum effects in the behavior
of the collective magnetization [for an overview, see,
e.g., Gunther and Barbara (1994)].

The technological drive to make electronic devices
continuously smaller has some interesting scientific con-
sequences. For instance, it is now routinely possible to
make small electron boxes in solid-state devices that
contain an integer number of conduction electrons. Such
devices are usually operated as transistors (via field-
effect gates) and are therefore named single-electron
transistors. In semiconductor boxes the number of
trapped electrons can be reduced to 0, or 1, 2, etc. Such
semiconductor single-electron transistors are called
quantum dots (Kouwenhoven ef al., 2001). Electrons are
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trapped in a quantum dot by repelling electric fields im-
posed from all sides. The final region in which a small
number of electrons can still exist is typically at the scale
of tens of nanometers. The eigenenergies in such boxes
are discrete. Filling these states with electrons follows
the rules from atomic physics, including Hund’s rule,
shell filling, etc.

Studies with quantum dots have been performed dur-
ing the 1990s. By now it has become standard technol-
ogy to confine single-electron charges. Electrons can be
trapped as long as one desires. Changes in charge when
one electron tunnels out of the quantum dot can be
measured on a microsecond time scale. Compared to
this control of charge, it is very difficult to control indi-
vidual spins and measure the spin of an individual elec-
tron. Such techniques have been developed only over
the past few years.

In this review we describe experiments in which indi-
vidual spins are controlled and measured. This is mostly
an experimental review with explanations of the under-
lying physics. This review is limited to experiments that
involve one or two electrons strongly confined to single
or double quantum dot devices. The experiments show
that one or two electrons can be trapped in a quantum
dot; that the spin of an individual electron can be put in
a superposition of up and down states; that two spins can
be made to interact and form an entangled state such as
a spin singlet or triplet state; and that the result of such
manipulation can be measured on individual spins.

These abilities of almost full control over the spin of
individual electrons enable the investigation of a new
regime: single spin dynamics in a solid-state environ-
ment. The dynamics are fully quantum mechanical and
thus quantum coherence can be studied on an individual
electron spin. The exchange interaction is now also con-
trolled on the level of two particular spins that are
brought into contact simply by varying some voltage
knob.

In a solid the electron spins are not completely decou-
pled from other degrees of freedom. First of all, spins
and orbits are coupled by the spin-orbit interaction. Sec-
ond, the electron spins have an interaction with the spins
of the atomic nuclei, i.e., the hyperfine interaction. Both
interactions cause the lifetime of a quantum superposi-
tion of spin states to be finite. We therefore also describe
experiments that probe spin-orbit and hyperfine interac-
tions by measuring the dynamics of individual spins.

The study of individual spins is motivated by an inter-
est in fundamental physics, but also by possible applica-
tions. First of all, miniaturized spintronics is developing
towards single spins. In this context, this field can be
denoted as single spintronics’ in analogy to single elec-
tronics. A second area of applications is quantum infor-
mation science. Here the spin states form the qubits.
The original proposal by Loss and DiVincenzo (1998)
has been the guide in this field. In the context of quan-
tum information, the experiments described in this re-

“Name coined by Wolf (2005).
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view demonstrate that the five DiVincenzo criteria for
universal quantum computation using single-electron
spins have been fulfilled to a large extent (DiVincenzo,
2000): initialization, one- and two-qubit operations, long
coherence times, and readout. Currently, the state of the
art is at the level of single and double quantum dots and
much work is required to build larger systems.

In this review the system of choice is quantum dots in
GaAs semiconductors, simply because this has been
most successful. Nevertheless, the physics is entirely
general and can be fully applied to new material systems
such as silicon-based transistors, carbon nanotubes,
semiconductor nanowires, graphene devices, etc. These
other host materials may have advantageous spin prop-
erties. For instance, carbon-based devices can be puri-
fied with the isotope 'C in which the nuclear spin is
zero, thus entirely suppressing spin dephasing by hyper-
fine interaction. This kind of hardware solution to engi-
neer a long-lived quantum system will be discussed at
the end of this review. Also, we here restrict ourselves
exclusively to electron-transport measurements of quan-
tum dots, leaving out optical spectroscop;/ of quantum
dots, which is a very active field in its own.” Again, much
of the physics discussed in this review also applies to
optically measured quantum dots.

Section II starts with an introduction on quantum dots
including the basic model of Coulomb blockade to de-
scribe the relevant energies. These energies can be visu-
alized in transport experiments and the relation between
experimental spectroscopic lines and underlying ener-
gies are explained in Sec. III. This spectroscopy is spe-
cifically applied to spin states in single quantum dots in
Sec. I'V. Section V introduces a charge-sensing technique
that is used in Sec. VI to read out the spin state of indi-
vidual electrons. Section VII provides a description of
spin-orbit and hyperfine interactions. In Sec. VIII, spin
states in double quantum dots are introduced and the
concept of Pauli spin blockade is discussed. Quantum
coherent manipulations of spins in double dots are dis-
cussed in Sec. IX. Finally, a perspective is outlined in
Sec. X.

II. BASICS OF QUANTUM DOTS
A. Introduction to quantum dots

A quantum dot is an artificially structured system that
can be filled with electrons (or holes). The dot can be
coupled via tunnel barriers to reservoirs, with which
electrons can be exchanged (see Fig. 1). By attaching
current and voltage probes to these reservoirs, we can
measure the electronic properties. The dot is also
coupled capacitively to one or more gate electrodes,
which can be used to tune the electrostatic potential of
the dot with respect to the reservoirs.

3See, e.g., Atature et al. (2006), Berezovsky et al. (2006),
Greilich, Oulton, et al. (2006), Krenner et al. (2006), and refer-
ences therein.
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FIG. 1. Schematic picture of a quantum dot in (a) a lateral
geometry and (b) in a vertical geometry. The quantum dot
(represented by a disk) is connected to source and drain reser-
voirs via tunnel barriers, allowing the current through the de-
vice / to be measured in response to a bias voltage Vs, and a
gate voltage V.

Because a quantum dot is such a general kind of sys-
tem, there exist quantum dots of many different sizes
and materials: for instance, single molecules trapped be-
tween electrodes (Park et al., 2002), normal metal (Petta
and Ralph, 2001), superconducting (Ralph et al., 1995;
von Delft and Ralph, 2001), or ferromagnetic nanopar-
ticles (Guéron et al., 1999), self-assembled quantum dots
(Klein et al., 1996), semiconductor lateral (Kouwen-
hoven et al., 1997) or vertical dots (Kouwenhoven et al.,
2001), and also semiconducting nanowires or carbon
nanotubes (Dekker, 1999; McEuen, 2000; Bjork et al.,
2004).

The electronic properties of quantum dots are domi-
nated by two effects. First, the Coulomb repulsion be-
tween electrons on the dot leads to an energy cost for
adding an extra electron to the dot. Due to this charging
energy tunneling of electrons to or from the reservoirs
can be suppressed at low temperatures; this phenom-
enon is called Coulomb blockade (van Houten et al.,
1992). Second, the confinement in all three directions
leads to quantum effects that influence the electron dy-
namics. Due to the resulting discrete energy spectrum,
quantum dots behave in many ways as artificial atoms
(Kouwenhoven et al., 2001).

The physics of dots containing more than two elec-
trons has been previously reviewed (Kouwenhoven et
al., 1997; Reimann and Manninen, 2002). Therefore we
focus on single and coupled quantum dots containing
only one or two electrons. These systems are particularly
important as they constitute the building blocks of pro-
posed electron spin-based quantum information proces-
sors (Loss and DiVincenzo, 1998; DiVincenzo et al.,
2000; Byrd and Lidar, 2002; Levy, 2002; Wu and Lidar,
2002a, 2002b; Meier et al., 2003; Kyriakidis and Penney,
2005; Taylor et al., 2005; Hanson and Burkard, 2007).

B. Fabrication of gated quantum dots

The bulk of the experiments discussed in this review
was performed on electrostatically defined quantum
dots in GaAs. These devices are sometimes referred to
as lateral dots because of the lateral gate geometry.

Lateral GaAs quantum dots are fabricated from het-
erostructures of GaAs and AlGaAs grown by molecular-
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FIG. 2. Lateral quantum dot device defined by metal surface
electrodes. (a) Schematic view. Negative voltages applied to
metal gate electrodes (dark gray) lead to depleted regions
(white) in the 2DEG (light gray). Ohmic contacts (light gray
columns) enable bonding wires (not shown) to make electrical
contact to the 2DEG reservoirs. (b), (c) Scanning electron mi-
crographs of (b) a few-electron single-dot device and (c) a
double dot device, showing the gate electrodes (light gray) on
top of the surface (dark gray). White dots indicate the location
of the quantum dots. Ohmic contacts are shown in the corners.
White arrows outline the path of current Ipor from one reser-
voir through the dot(s) to the other reservoir. For the device in
(c), the two gates on the side can be used to create two quan-
tum point contacts, which can serve as electrometers by pass-
ing a current Iopc. Note that this device can also be used to
define a single dot. Image in (b) courtesy of A. Sachrajda.

beam epitaxy (see Fig. 2). By doping the AlGaAs layer
with Si, free electrons are introduced. These accumulate
at the GaAs/AlGaAs interface, typically 50-100 nm be-
low the surface, forming a two-dimensional electron gas
(2DEG)—a thin (~10 nm) sheet of electrons that can
only move along the interface. The 2DEG can have high
mobility and relatively low electron density [typically
10°-107 cm?/V's and ~(1-5) % 10" m~2, respectively].
The low electron-density results in a large Fermi wave-
length (~40 nm) and a large screening length, which al-
lows us to locally deplete the 2DEG with an electric
field. This electric field is created by applying negative
voltages to metal gate electrodes on top of the hetero-
structure [see Fig. 2(a)].

Electron-beam lithography enables fabrication of gate
structures with dimensions down to a few tens of na-
nometers (Fig. 2), yielding local control over the deple-
tion of the 2DEG with roughly the same spatial resolu-
tion. Small islands of electrons can be isolated from the
rest of the 2DEG by choosing a suitable design of the
gate structure, thus creating quantum dots. Finally, low-
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resistance (Ohmic) contacts are made to the 2DEG res-
ervoirs. To access the quantum phenomena in GaAs
gated quantum dots, they have to be cooled down to
well below 1 K. All experiments that are discussed in
this review are performed in dilution refrigerators with
typical base temperatures of 20 mK.

In so-called vertical quantum dots, control over the
number of electrons down to zero was already achieved
in the 1990s (Kouwenhoven et al., 2001). In lateral gated
dots this proved to be more difficult, since reducing the
electron number by driving the gate voltage to more
negative values tends to decrease the tunnel coupling to
the leads. The resulting current through the dot can then
become unmeasurably small before the few-electron re-
gime is reached. However, by proper design of the sur-
face gate geometry the decrease of the tunnel coupling
can be compensated for.

In 2000, Ciorga et al. reported measurements on the
first lateral few-electron quantum dot (Ciorga et al.,
2000). Their device, shown in Fig. 2(b), makes use of two
types of gates specifically designed to have different
functionalities. The gates of one type are big and largely
enclose the quantum dot. The voltages on these gates
mainly determine the dot potential. The other type of
gate is thin and just reaches up to the barrier region. The
voltage on this gate has a very small effect on the dot
potential but it can be used to set the tunnel barrier. The
combination of the two gate types allows the dot poten-
tial (and thereby electron number) to be changed over a
wide range while keeping the tunnel rates high enough
for measuring electron transport through the dot.

Applying the same gate design principle to a double
quantum dot, Elzerman et al. demonstrated control over
the electron number in both dots while maintaining tun-
able tunnel coupling to the reservoir (Elzerman et al.,
2003). Their design is shown in Fig. 2(c) [for more details
on design considerations and related versions of this
gate design, see Hanson (2005)]. In addition to the
coupled dots, two quantum point contacts (QPCs) are
incorporated in this device to serve as charge sensors.
The QPCs are placed close to the dots, thus ensuring a
good charge sensitivity. This design has become the stan-
dard for lateral coupled quantum dots and is used with
minor adaptions by several research groups (Petta et al.,
2004; Pioro-Ladriere et al., 2005); one noticeable im-
provement has been the electrical isolation of the charge
sensing part of the circuit from the reservoirs that con-
nect to the dot (Hanson et al., 2005).

C. Measurement techniques

In this review, two all-electrical measurement tech-
niques are discussed: (i) measurement of the current due
to transport of electrons through the dot, and (ii) detec-
tion of changes in the number of electrons on the dot
with a nearby electrometer, so-called charge sensing.
With the latter technique, the dot can be probed nonin-
vasively in the sense that no current needs to be sent
through the dot.
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The potential of charge sensing was first demonstrated
by Ashoori et al. (1992) and Field et al. (1993). But
whereas current measurements were already used exten-
sively in the first experiments on quantum dots (Kou-
wenhoven et al., 1997), charge sensing has only recently
been fully developed as a spectroscopic tool (Elzerman,
Hanson, Willems van Beveren, Vandersypen, et al., 2004;
Johnson, Marcus, et al., 2005). Several implementations
of electrometers coupled to a quantum dot have been
demonstrated: a single-electron transistor fabricated on
top of the heterostructure (Ashoori et al., 1992; Lu et al.,
2003), a second electrostatically defined quantum dot
(Hofmann et al., 1995; Fujisawa et al., 2004), and a quan-
tum point contact (QPC) (Field et al., 1993; Sprinzak et
al., 2002). The QPC is the most widely used because of
its ease of fabrication and experimental operation. We
discuss the QPC operation and charge sensing tech-
niques in more detail in Sec. V.

We briefly compare charge sensing to electron-
transport measurements. The smallest currents that can
be resolved in optimized setups and devices are roughly
10 fA, which sets a lower bound of order 10 fA/e
~100 kHz on the tunnel rate to the reservoir I' for
which transport experiments are possible [see, e.g.,
Vandersypen et al. (2004) for a discussion on noise
sources]. For I'<<100 kHz the charge detection tech-
nique can be used to resolve electron tunneling in real
time. Because the coupling to the leads is a source of
decoherence and relaxation (most notably via cotunnel-
ing), charge detection is preferred for quantum informa-
tion purposes since it still functions for very small cou-
plings to a (single) reservoir.

Measurements using either technique are conve-
niently understood with the constant interaction model.
In the next section we use this model to describe the
physics of single dots and show how relevant spin pa-
rameters can be extracted from measurements.

D. The constant interaction model

We briefly outline the main ingredients of the constant
interaction model; for more extensive discussions, see
van Houten et al. (1992) and Kouwenhoven et al. (1997,
2001). The model is based on two assumptions. First, the
Coulomb interactions among electrons in the dot, and
between electrons in the dot and those in the environ-
ment, are parametrized by a single, constant capacitance
C. This capacitance is the sum of the capacitances be-
tween the dot and the source Cg, the drain Cp, and the
gate Cs: C=Cg+Cp+Cgs. (In general, capacitances to
multiple gates and other parts of the 2DEG will also
play a role; they can simply be added to C.) The second
assumption is that the single-particle energy-level spec-
trum is independent of these interactions and therefore
of the number of electrons. Under these assumptions,
the total energy U(N) of a dot with N electrons in the
ground state, with voltages Vg, Vp, and Vs applied to
the source, drain, and gate, respectively, is given by
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[ le|(N = No) + CsVs+ CpVp + CoVT
2C

U(N) =

N
+ 2 E,(B), 1)
n=1

where —|e| is the electron charge, Ny|e| is the charge in
the dot compensating the positive background charge
originating from the donors in the heterostructure, and
B is the applied magnetic field. The terms CgVg, CpVp,
and C5V s can be changed continuously and represent
an effective induced charge that changes the electro-
static potential on the dot. The last term of Eq. (1) is a
sum over the occupied single-particle energy levels
E,(B) which depend on the characteristics of the con-
finement potential.

The electrochemical potential u(N) of the dot is de-
fined as

mN)=UN)-UNN-1)
1
= <N— NO - E)EC

E
— =S(CsVs+ CpVip + CVi) + E, )

el

where Ec=€?/C is the charging energy. The electro-
chemical potential contains an electrostatic part (first
two terms) and a chemical part (last term). Here u(N)
denotes the transition between the N-electron ground
state, GS(N), and the (N-1)-electron ground state,
GS(N-1). When excited states also play a role, we have
to use a more explicit notation to avoid confusion: the
electrochemical potential for the transition between the
(N-1)-electron state |a) and the N-electron state |b) is
then denoted as w,..;, and is defined as the difference in
total energy between state |b), U,(N), and state |a),
U,(N-1):

Masb = Ub(N) - Ua(N_ 1) (3)

Note that the electrochemical potential depends lin-
early on the gate voltage, whereas the energy has a qua-
dratic dependence. In fact, the dependence is the same
for all N and the whole “ladder” of electrochemical po-
tentials can be moved up or down while the distance
between levels remains constant.* It is this property that
makes the electrochemical potential the most conve-
nient quantity for describing electron tunneling.

The electrochemical potentials of the transitions be-
tween successive ground states are spaced by the so-
called addition energy:

*Deviations from this model are sometimes observed in Sys-
tems where the source-drain voltage and gate voltage are var-
ied over a very wide range, one notable example being single
molecules trapped between closely spaced electrodes, where
capacitances can depend on the electron state.
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Euqa(N) = w(N +1) = w(N) = Ec + AE. (4)

The addition energy consists of a purely electrostatic
part, the charging energy E., plus the energy spacing
between two discrete quantum levels AE. Note that AE
can be zero, when two consecutive electrons are added
to the same spin-degenerate level.

Electron tunneling through the dot critically depends
on the alignment of electrochemical potentials in the dot
with respect to those of the source wg and the drain up.
The application of a bias voltage Vp=V¢— V| between
the source and drain reservoir opens up an energy win-
dow between ug and wp of wg—up=-le|Vgp. This en-
ergy window is called the bias window. For energies
within the bias window, the electron states in one reser-
voir are filled whereas states in the other reservoir are
empty. Therefore if there is an appropriate electro-
chemical potential level within the bias window, elec-
trons can tunnel from one reservoir onto the dot and off
to the empty states in the other reservoir. Here appro-
priate means that the electrochemical potential corre-
sponds to a transition that involves the current state of
the quantum dot.

In the following, we assume the temperature to be
negligible compared to the energy-level spacing AE (for
GaAs dots this roughly means 7<<0.5 K). The size of the
bias window then separates two regimes: the low-bias
regime where at most one dot level is within the bias
window (—|e|Vsp<AE,E,qq), and the high-bias regime
where multiple dot levels can be in the bias window
(~le|]Vsp=AE and/or —|e|Vsp=E,4q)-

E. Low-bias regime

For a quantum dot system in equilibrium, electron
transport is only possible when a level corresponding to
transport between successive ground states is in the bias
window, i.e., ug= u(N)= up for at least one value of N.
If this condition is not met, the number of electrons on
the dot remains fixed and no current flows through the
dot. This is known as Coulomb blockade. An example of
such a level alignment is shown in Fig. 3(a).

Coulomb blockade can be lifted by changing the volt-
age applied to the gate electrode, as can be seen from
Eq. (2). When w(N) is in the bias window one extra elec-
tron can tunnel onto the dot from the source [see Fig.
3(b)], so that the number of electrons increases from N
—1 to N. After it has tunneled to the drain, another
electron can tunnel onto the dot from the source. This
cycle is known as single-electron tunneling.

By sweeping the gate voltage and measuring the cur-
rent through the dot Ipgy a trace is obtained as shown in
Fig. 3(c). At the positions of the peaks in Ipo, an elec-
trochemical potential level corresponding to transport
between successive ground states is aligned between the
source and drain electrochemical potentials and a single-
electron tunneling current flows. In the valleys between
peaks, the number of electrons on the dot is fixed due to
Coulomb blockade. By tuning the gate voltage from one
valley to the next one, the number of electrons on the
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FIG. 3. Quantum dot in the regime of low bias. (a), (b) Sche-
matic diagrams of the electrochemical potential levels of a
quantum dot in the low-bias regime. (a) If no level in the dot
falls within the bias window set by ug and up, the electron
number is fixed at N—1 due to Coulomb blockade. (b) The
u(N) level is in the bias window, so the number of electrons
can alternate between N—-1 and N, resulting in a single-
electron tunneling current. The magnitude of the current de-
pends on the tunnel rate between the dot and the reservoir on
the left I'g and on the right I') [see Kouwenhoven et al. (1997)
for details]. (c) Schematic plot of the current /gt through the
dot as a function of gate voltage V. The gate voltages where
the level alignments of (a) and (b) occur are indicated.

dot can be precisely controlled. The distance between
peaks corresponds to E,qq [see Eq. (4)], and therefore
provides insight into the energy spectrum of the dot.

F. High-bias regime

We now look at the regime where the source-drain
bias is so high that multiple dot levels can participate in
electron tunneling. Typically the electrochemical poten-
tial of only one of the reservoirs is changed in experi-
ments, and the other one is kept fixed. Here we take the
drain reservoir to be at ground, i.e., up=0. When a
negative voltage is applied between the source and the
drain, ug increases (since wg=-|e|Vp). The levels of the
dot also increase, due to the capacitive coupling between
the source and the dot [see Eq. (2)]. Again, a current can
flow only when a level corresponding to a transition be-
tween ground states falls within the bias window. When
Vsp is increased further such that also a transition in-
volving an excited state falls within the bias window,
there are two paths available for electrons tunneling
through the dot [see Fig. 4(a)]. In general, this will lead
to a change in current, enabling us to perform energy
spectroscopy of the excited states. How exactly the cur-
rent changes depends on the tunnel coupling of the two
levels involved. Increasing Vg, even more eventually
leads to a situation where the bias window is larger than
the addition energy [see Fig. 4(b)]. Here the electron
number can alternate between N—1, N, and N+1, lead-
ing to a double-electron tunneling current.

We now show how the current spectrum as a function
of bias and gate voltage can be mapped out. The elec-
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FIG. 4. Schematic diagrams of the electrochemical potential
levels of a quantum dot in the high-bias regime. The level in
gray corresponds to a transition involving an excited state. (a)
Here Vp exceeds AE and electrons can now tunnel via two
levels. (b) Vgp exceeds the addition energy for N electrons,
leading to double-electron tunneling.

trochemical potentials of all relevant transitions are first
calculated by applying Eq. (3). For example, consider
two successive ground states GS(N) and GS(N+1) and
the excited states ES(N) and ES(N+1), which are sepa-
rated from the GSs by AE(N) and AE(N+1), respec-
tively [see Fig. 5(a)]. The resulting electrochemical po-
tential ladder is shown in Fig. 5(b) (we omit the
transition between the two ESs). Note that the electro-
chemical potential of the transition ES(N)« GS(N+1) is
lower than that of the transition between the two ground
states.

The electrochemical potential ladder is used to define
the gate voltage axis of the (—|e|Vp,V(;) plot, as in Fig.
5(c). Here each transition indicates the gate voltage at
which its electrochemical potential is aligned with ug
and wup at Vgp=0. Analogous to Figs. 3(c) and 3(d),
sweeping the gate voltage at low bias will show electron
tunneling only at the gate voltage indicated by
GS(N) — GS(N+1). For all other gate voltages the dot is
in Coulomb blockade.

Then for each transition a V-shaped region is outlined
in the (~|e|Vsp, V) plane, where its electrochemical po-
tential is within the bias window. This yields a plot like
Fig. 5(c). The slopes of the two edges of the V shape
depend on the capacitances; for V=0, the two slopes
d(—|€|VSD)/dVG are —CG/(C—Cs) and +CG/CS- The
transition between the N-electron GS and the
(N+1)-electron GS (dark solid line) defines the regions
of Coulomb blockade (outside the V shape) and tunnel-
ing (within the V shape). The other solid lines indicate
where the current changes due to the onset of transitions
involving excited states.

The set of solid lines indicates all values in the param-
eter space spanned by Vgp and V; where the current
Ipor changes. Typically, the differential conductance
dIpot/dVp is plotted, which has a nonzero value only
at the solid lines.’

A general rule of thumb for positions of the lines in-
dicating finite differential conductance is this: if a line

SIn practice, a tunnel coupling dependence on Vs and Vp
may result in a nonzero value of dIpgt/dVgp where current
flows. Since this background of nonzero dIpgt/dVgp is more
uniform and much smaller than peaks in dIpgp/dVsp at the
solid lines, the two are easily distinguished in experiments.
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FIG. 5. (Color online) Schematic of a high-bias measurement. (a) Energies for N electrons U(N) and for N+1 electrons U(N
+1). Possible transitions are indicated by arrows. (b) The electrochemical potential ladder for the transitions depicted in (a). (c)
Schematic plot of the differential conductance dIpgr/dVsp as a function of —|e|Vgp and V. At several positions the level

alignment is indicated with schematic diagrams.

terminates at the N-electron Coulomb blockade region,
the transition necessarily involves an N-electron excited
state. This is true for any N. As a consequence, no lines
terminate at the Coulomb blockade region where N=0,
as there exists no excited state for N=0.° For a transition
between two excited states, say ES(N) and ES(N+1), the
position of the line depends on the energy-level spacing:
for AE(N+1)>AE(N), the line terminates at the (N
+1)-electron Coulomb blockade region, and vice versa.

A measurement as shown in Fig. 5(c) is very useful for
finding the energies of the excited states. Where a line of
a transition involving one excited state touches the Cou-
lomb blockade region, the bias window exactly equals
the energy-level spacing. Figure 5(c) shows the level
diagrams at these special positions for both
ES(N)«~ GS(N+1) and GS(N)«ES(N+1). Here the
level spacings can be read off directly on the —|e|Vyp
axis.

We discuss the transition ES(N)« ES(N+1) that was
neglected in the discussion thus far. The visibility of such
a transition depends on the relative magnitudes of the
tunnel rates and the relaxation rates. When the relax-
ation is much faster than the tunnel rates, the dot will
effectively be in its ground state all the time and the
transition ES(N)«+ ES(N+1) can therefore never occur.
In the opposite limit where the relaxation is much
slower than the tunneling, the transition ES(V)«— ES(N
+1) participates in the electron transport and will be
visible in a plot like Fig. 5(c). Thus the visibility of tran-
sitions can give information on the relaxation rates be-

®Note that energy absorption from the environment can lead
to exceptions: photon-or phonon-assisted tunneling can give
rise to lines ending in the N=0 Coulomb blockade region.
However, many experiments are performed at very low tem-
peratures where the number of photons and phonons in ther-
mal equilibrium is small. Therefore these processes are usually
negligible.
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tween different levels (Fujisawa et al., 2002b).

If the voltage is swept across multiple electron
transitions and for both signs of the bias voltage, the
Coulomb blockade regions appear as diamond shapes
in the (~|e|Vsp,V) plane. These are the well-known
Coulomb diamonds.

II1. SPIN SPECTROSCOPY METHODS

In this section, we discuss various methods for getting
information on the spin state of electrons on a quantum
dot. These methods make use of various spin-dependent
energy terms. Each electron spin is first influenced di-
rectly by an external magnetic field via the Zeeman en-
ergy E,=S_gugB, where S, is the spin z component.
Moreover, the Pauli exclusion principle forbids two elec-
trons with equal spin orientation to occupy the same
orbital, thus forcing one electron into a different orbital.
This generally leads to a state with a different energy.
Finally, the Coulomb interaction leads to an energy dif-
ference (the exchange energy) between states with sym-
metric and antisymmetric orbital wave functions. Since
the total wave function of the electrons is antisymmetric,
the symmetry of the orbital part is linked to that of the
spin.

A. Spin filling derived from magnetospectroscopy

The spin filling of a quantum dot can be derived from
the Zeeman energy shift of the Coulomb peaks in a
magnetic-field. (An in-plane magnetic-field orientation
is favored to ensure minimum disturbance of the orbital
levels.) On adding the Nth electron, the z component S,
of the spin on the dot is either increased by 1/2 (if a
spin-up electron is added) or decreased by 1/2 (if a spin-
down electron is added). This change in spin is reflected
in the magnetic-field dependence of the electrochemical
potential u(N) via the Zeeman term
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gmpBS (N) = S (N - 1)] = gupB[AS (N)]. )

As the g factor in GaAs is negative (see the Appen-
dix), addition of a spin-up electron [AS.(N)=+1/2] re-
sults in u(N) decreasing with increasing B. Spin-
independent shifts of w(N) with B (e.g., due to a change
in confinement potential) are removed by looking at the
dependence of the addition energy E qq on B (Weis et
al., 1993):

IEqqa(N) _ dp(N)  du(N —1)
B 4B JB

= g:“B[ASz(N) - ASz(N_ D]. (6)

Assuming S, only changes by i%, the possible out-
comes and the corresponding filling schemes are

Pasd® o 11 0r 1.1
= +8MB :Tvl
=—8uB :l5T’

where the first (second) arrow depicts the spin added in
the N-2—N-1 (N-1— N) electron transition. Spin fill-
ing of both vertical (Sasaki et al., 1998) and lateral GaAs
quantum dots (Duncan et al, 2000; Lindemann et al.,
2002; Potok et al., 2003) has been determined using this
method, showing clear deviations from a simple Pauli
filling (S, alternating between 0 and %). Note that tran-
sitions where S, of the ground state changes by more
than %, which can occur due to many-body interactions
in the dot, can lead to a spin blockade of the current
(Weinmann et al., 1995; Korkusinski et al., 2004).

In circularly symmetric few-electron vertical dots, spin
states have been determined from the evolution of or-
bital states in a magnetic field perpendicular to the plane
of the dots. This indirect determination of the spin state
has allowed observation of a two-electron singlet-to-
triplet ground-state transition and a four-electron spin
filling following Hund’s rule. For a review on these ex-
periments, see Kouwenhoven et al. (2001). Similar tech-
niques were also used in experiments on few-electron
lateral dots in both weak and strong magnetic fields
(Ciorga et al., 2000; Kyriakidis et al., 2002).

B. Spin filling derived from excited-state spectroscopy

Spin filling can also be deduced from excited-state
spectroscopy without changing the magnetic field (Cob-
den et al., 1998), provided the Zeeman energy splitting
AE,=2|E,|=gugB between spin-up and spin-down elec-
trons can be resolved. This powerful method is based on
the simple fact that any single-particle orbital can be
occupied by at most two electrons due to Pauli’s exclu-
sion principle. Therefore as we add one electron to a dot
containing N electrons, there are only two scenarios pos-
sible: either the electron moves into an empty orbital, or
it moves into an orbital that already holds one electron.
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FIG. 6. Spin filling deduced from high-bias excited-state spec-
troscopy. Schematic diagrams of dIpgr/dVsp in the (Vgp, V)
plane. (a) Ground-state filling is spin up: a line corresponding
to an (N+1)-electron ES, separated from GS(N+1) by AE,,
terminates at the edge of the (N+1)-electron Coulomb block-
ade region (point P). (b) Ground-state filling is spin down: a
line corresponding to an N-electron ES, separated from GS(V)
by AE,, terminates at the N-electron Coulomb blockade re-
gion (point Q).

As we show below, these scenarios always correspond to
ground-state filling with spin up and spin down, respec-
tively.

Consider an electron entering an empty orbital with
well-resolved spin splitting [see Fig. 6(a)]. Here addition
of a spin-up electron corresponds to the transition
GS(N) < GS(N+1). In contrast, addition of a spin-down
electron takes the dot from GS(N) to ES(N+1), which is
AEy higher in energy than GS(N+1). Thus we expect a
high-bias spectrum as in Fig. 6(a).

Now consider the case where the (N+1)th electron
moves into an orbital that already contains one electron
[see Fig. 6(b)]. The two electrons need to have antipar-
allel spins, in order to satisfy the Pauli exclusion prin-
ciple. If the dot is in the ground state, the electron al-
ready present in this orbital has spin up. Therefore the
electron added in the transition from GS(N) to GS(N
+1) must have spin down. A spin-up electron can only
be added if the first electron has spin down, i.e., when
the dot starts from ES(N), AE, higher in energy than
GS(N). The high-bias spectrum that follows is shown
schematically in Fig. 6(b).

Comparing the two scenarios, we see that spin filling
has a one-to-one correspondence with the excited-state
spectrum: if the spin ES line terminates at the
(N+1)-electron Coulomb blockade region [as point P in
Fig. 6(a)], a spin-up electron is added to the GS; if, how-
ever, the spin ES line terminates at the N-electron Cou-
lomb blockade region [as point Q in Fig. 6(b)], a spin-
down electron is added to the GS.
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The method is valid regardless of the spin of the
ground states involved, as long as the addition of one
electron changes the spin z component of the ground
state by |AS,|=1/2. If |AS,[>1/2, the (N+1)-electron
GS cannot be reached from the N-electron GS by addi-
tion of a single electron. This would cause a spin block-
ade of electron transport through the dot (Weinmann et
al., 1995).

C. Other methods

If the tunnel rates for spin up and spin down are not
equal, the amplitude of the current can be used to de-
termine the spin filling. This method has been termed
spin-blockade spectroscopy. This name is slightly mis-
leading as the current is not actually blocked, but rather
assumes a finite value that depends on the spin orienta-
tion of transported electrons. This method has been
demonstrated and utilized in the quantum Hall regime,
where the spatial separation of spin-split edge channels
induces a large difference in the tunnel rates of spin-up
and spin-down electrons (Ciorga et al., 2000, 2002; Kupi-
dura et al., 2006). Spin-polarized leads can also be ob-
tained in moderate magnetic fields by changing the elec-
tron density near the dot with a gate. This concept was
used to perform spin spectroscopy on a quantum dot
connected to gate-tunable quasi-one-dimensional chan-
nels (Hitachi et al., 20006).

Care must be taken when inferring spin filling from
the amplitude of the current as other factors, such as the
orbital spread of the wave function, can have a large,
even dominating influence on the current amplitude. A
prime example is the difference in tunnel rate between
the two-electron spin singlet and triplet states due to the
different orbital wave functions of these states. In fact,
this difference is large enough to allow single-shot read-
out of the two-electron spin state, as discussed in Sec.
VI.C.

In zero magnetic field, a state with total spin § is (25
+1)-fold degenerate. This degeneracy is reflected in the
current if the dot has strongly asymmetric barriers. As
an example, in the transition from a one-electron §
=1/2 state to a two-electron S=0 state, only a spin-up
electron can tunnel onto the dot if the electron that is
already on the dot is spin down, and vice versa. How-
ever, in the reverse transition (S=0 to S=1/2), both elec-
trons on the dot can tunnel off. Therefore the rate for
tunneling off the dot is twice the rate for tunneling onto
the dot. In general, the ratio of the currents in opposite
bias directions at the GS(N)<« GS(N+1) transition is,
for spin-independent tunnel rates and for strongly asym-
metric barriers, given by [2S(N+1)+1]/[2S(N)+1] (Ak-
era, 1999). Here S(N) and S(N+1) denote the total spin
of GS(N) and GS(N+1), respectively. This relation can
be used in experiments to determine the ground-state
total spin (Cobden et al., 1998; Hayashi et al., 2003).

Information on the spin of the ground state can also
be found from (inelastic) cotunneling currents (Kogan et
al., 2004) or the current due to a Kondo resonance
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(Cronenwett et al., 1998; Goldhaber-Gordon et al., 1988).
If a magnetic field B drives the onset of these currents to
values of Vgp=+gugB/|e|, it follows that the ground
state has nonzero spin. Since the processes in these cur-
rents can change the spin z component by at most 1, the
absolute value of the spin cannot be deduced with this
method, unless the spin is zero.

We end this section with some remarks on spin filling.
The parity of the electron number cannot be inferred
from spin filling unless the sequence of spin filling is
exactly known. For example, consider the case where
the electron added in the GS(N)— GS(N+1) transition
has spin down. Then, if the dot follows an alternating
(Pauli) spin-filling scheme, N is odd. However, if there is
a deviation from this scheme such that GS(N) is a spin
triplet state (total spin S=1), then N is even.

Second, spin-filling measurements do not yield the ab-
solute spin of the ground states, but only the change in
ground-state spin. However, by starting from zero elec-
trons (and thus zero spin) and tracking the change in
spin at subsequent electron transitions, the total spin of
the ground state can be determined (Willems van Bev-
eren et al., 2005).

IV. SPIN STATES IN A SINGLE DOT
A. One-electron spin states

The simplest spin system is that of a single electron,
which can have one of only two orientations: spin up or
spin down. Let E;, and E |, (E;; and E ;) denote the
one-electron energies for the two spin states in the low-
est (first excited) orbital. With a suitable choice of the
zero of energy we arrive at the following electrochemi-
cal potentials:

Hoet0= Erp, (7)
Mooy 0=E| o= E;og+AEy, (8)
Moo 1= Ep1= Erg+ AEq, )
Moo 1=E 1= E; g+ AE, + AE,, (10)

where AEy, is the orbital level spacing.

Figures 7(a)-7(f) show excited-state spectroscopy
measurements on two devices A and B via electron
transport at the N=0«1 transition, at different mag-
netic fields B applied in the plane of the 2DEG. A clear
splitting of both the orbital ground and first excited state
is observed, which increases with increasing magnetic
field (Hanson et al., 2003; Potok et al., 2003; Konemann
et al., 2005; Willems van Beveren et al., 2005). The or-
bital level spacing AE,, in device A is about 1.1 meV.
Comparison with Fig. 6 shows that a spin-up electron is
added to the empty dot to form the one-electron ground
state, as expected.

In Fig. 7(g) the Zeeman splitting AE, is plotted as
function of B for the same two devices A and B which
are made on different heterostructures. These measure-
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FIG. 7. Measurement of the one-electron spin states. (a)-(f) Excited-state spectroscopy on two devices: device A is fabricated on
a heterostructure with the 2DEG at 90 nm below the surface and device B with the 2DEG at 60 nm below the surface. Differential
conductance dIpor/dVp is plotted as a function of Vg and gate voltage near the 0« 1 electron transition, for in-plane magnetic
fields (as indicated in top-right corners). Darker corresponds to larger dIpor/dVsp. Data on device A show spin splitting in both
the orbital ground and first excited state; data on device B only display the orbital ground state. (g) Zeeman splitting AE, as a
function of B extracted from (a) to (f) and similar measurements. Gray solid lines are fits to the data. Dashed line shows AE,
expected for the bulk GaAs g factor of —0.44. Data adapted from Hanson et al., 2003, and Willems van Beveren et al., 2005.

ments allow a straightforward determination of the elec-
tron g factor. The measured g factor can be affected by
(i) extension of the electron wave function into the
Aly;Ga;As region, where g=+0.4 (Snelling ef al., 1991,
Salis et al., 2001); (ii) thermal nuclear polarization, which
decreases the effective magnetic field through the hyper-
fine interaction (Meier and Zakharchenya, 1984); (iii)
dynamic nuclear polarization due to electron-nuclear
flip-flop processes in the dot, which enhances the effec-
tive magnetic field (Meier and Zakharchenya, 1984); (iv)
the nonparabolicity of the GaAs conduction band (Snel-
ling et al., 1991); (v) the spin-orbit coupling (Falko ef al.,
2005); and (vi) the confinement potential (Hermann and
Weisbuch, 1977; Bjork et al., 2005). The effect of the
nuclear field on the measured g factor is discussed in the
Appendix. More experiments are needed to separate
these effects, e.g., by measuring the dependence of the g
factor on the orientation of the in-plane magnetic field
with respect to the crystal axis (Falko et al., 2005).

B. Two-electron spin states

The ground state of a two-electron dot in zero mag-
netic field is always a spin singlet (total spin quantum
number S=0) (Ashcroft and Mermin, 1974), formed by
the two electrons occupying the lowest orbital with their
spins antiparallel: [S)=(|1 | )—|| 1))/+2. The first excited
states are the spin triplets (S=1), where the antisymme-
try of the total two-electron wave function requires one
electron to occupy a higher orbital. Both the antisymme-
try of the orbital part of the wave function and the oc-
cupation of different orbitals reduce the Coulomb en-
ergy of the triplet states with respect to the singlet with
two electrons in the same orbital (Kouwenhoven et al.,
2001). We include this change in Coulomb energy by the
energy term Eg. The three triplet states are degenerate
at zero magnetic field, but acquire different Zeeman en-
ergy shifts £, in finite magnetic fields because their spin
z components differ: S,=+1 for |T,)=|11), S,=0 for
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IToy=(1 1)+|1 T))/\2, and S,=~1 for |T_)=]]| |).

Using the constant interaction model, the energies of
the states can be expressed in terms of the single-particle
energies of the two electrons plus a charging energy E.
which accounts for the Coulomb interactions:

US:ET,0+EL,0+EC:2ET,0+AEZ+EC’

UT+:ET,O+ ETJ _EK+EC
= 2ET,0 + AEorb - EK + EC
- 2ET70 + EST+ Ec,

UTOZET,0+E1,O+EST+ EC
:2ET,O+ AEorb_EK+ AEz+EC
:ZET,0+ EST+ AEz+Ec,

UT7=2EL,0+EST+ EC
:ZET,O+AE0rb_ EK+2AE2+EC
:ZET,0+EST+ ZAEz‘f‘Ec,

with E¢7 denoting the singlet-triplet energy difference in
the absence of the Zeeman splitting AE,: Egr=AE
—Ex.

We first consider the case of an in-plane magnetic field
B,. Here E¢ris almost independent of B and the ground
state remains a spin singlet for all fields attainable in the
lab. The case of a magnetic field perpendicular to the
plane of the 2DEG will be treated below.

Figure 8(a) shows the possible transitions between the
one-electron spin-split orbital ground state and the two-
electron states. The transitions < 7_ and |<— T, are
omitted, since these require a change in the spin z com-
ponent of more than % and are thus spin blocked (Wein-
mann et al., 1995). From the energy diagram the follow-
ing electrochemical potentials can be deduced [see Fig.

8(b)]:
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FIG. 8. (Color online) Measurement of the two-electron spin states. (a) Energy diagram schematically showing the energy levels
of the one- and two-electron states. The allowed transitions between these levels are indicated by arrows. (b) Electrochemical
potential ladder corresponding to the transitions shown in (a), using the same color coding. Changing the gate voltage shifts the
ladder as a whole. Note that the three triplet states appear at only two values of the electrochemical potential. (c) Energetically
allowed 1«2 electron transitions as a function of Vg and V. The lines corresponding to T+« S outline the region of transport;
outside this region, where lines are dashed, the dot is in Coulomb blockade. (d) dIpgr/dVsp as a function of V; and Vp around
the 1+ 2 electron transition at Bj=12 T in device A. The regions labeled with letters A—F correspond well to those in (c). In the
region labeled A only spin-down electrons pass through the dot. Data adapted from Hanson, Vandersypen, et al., 2004.

M oos=E g+ AEZ+ E¢,
Moot = E o+ Esr+ Ec,

M10-T, = E,o+Esr+AE; + E,

“oos=Ej o+ Ec,
My o1, =Ero+ EsT+ Ec,

'U'LO‘—’T, = ET70 + EST+ AEZ + Ec.

Note that Mt 0T, = ] 0T, and Mt 0Ty = M| 0T - Con-
sequently, the three triplet states change the first-order
transport through the dot at only two values of Vp. The
reason is that the first-order transport probes the energy
difference between states with successive electron num-
ber. In contrast, the onset of second-order (cotunneling)
currents is governed by the energy difference between
states with the same number of electrons. Therefore the
triplet states change the second-order (cotunneling) cur-
rents at three values of Vp if the ground state is a
singlet7 (Paaske et al., 2006).

In Fig. 8(c) we map out the positions of the electro-
chemical potentials as a function of V; and Vip. For

"If the ground state is a triplet, the cotunneling current only
changes at two values of Vg, (0 and AE,/|e|), due to spin
selection rules.

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

each transition, the two lines originating at Vg,=0 span
a V-shaped region where the corresponding electro-
chemical potential is in the bias window. In the region
labeled A, only transitions between the one-electron
ground state |1 ,0) and the two-electron ground state |S)
are possible, since only w; g is positioned inside the
bias window. In the other regions several more transi-
tions are possible which leads to a more complex, but
still understandable, behavior of the current. Outside
the V-shaped region spanned by the ground-state transi-
tion u; o5, Coulomb blockade prohibits first-order elec-
tron transport.

Experimental results from device A, shown in Fig.
8(d), are in excellent agreement with the predictions of
Fig. 8(c). Comparison of the data with Fig. 6 indicates
that indeed a spin-down electron is added to the one-
electron (spin-up) ground state to form the two-electron
singlet ground state. From the data the singlet-triplet
energy difference E¢7is found to be =520 peV. The fact
that Egy is about half the single-particle level spacing
(AE, =1 meV) indicates the importance of Coulomb
interactions. The Zeeman energy, and therefore the g
factor, is found to be the same for the one-electron
states as for the two-electron states (within the measure-
ment accuracy of =5%) on both devices A and B. We
note that the large variation in differential conductance
observed in Fig. 8(d) can be explained by a sequential
tunneling model with spin- and orbital-dependent tunnel
rates (Hanson, Vink, et al., 2004).
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FIG. 9. Single-triplet ground-state transition in a two-electron
quantum dot. (a) Differential conductance dIpgt/dVsp vs gate
voltage V; and perpendicular magnetic field B, . Dark (light)
corresponds to high (low) value for dipgt/dVsp. Within the
stripe of finite conductance, set by the source-drain bias volt-
age, the evolution of the energy difference between the singlet
state (ground state at zero field) and the triplet state is visible.
At around 1.1 T the singlet and triplet states cross and the
ground state becomes a spin triplet. (b) Energy difference be-
tween the singlet and triplet states Eg¢r as a function of B,
extracted from (a). Data adapted from Kyriakidis ef al., 2002.

By applying a large magnetic field perpendicular to
the plane of the 2DEG a spin singlet-triplet ground-state
transition can be induced, see Fig. 9. This transition is
driven by two effects: (i) the magnetic field reduces the
energy spacing between the ground and first excited or-
bital state, and (ii) the magnetic field increases the Cou-
lomb interactions which are larger for two electrons in a
single orbital (as in the singlet state) than for two elec-
trons in different orbitals (as in a triplet state). Singlet-
triplet transitions were first observed in vertical dots (Su
et al., 1992; Kouwenhoven et al., 2001). In lateral dots,
the gate-voltage dependence of the confinement poten-
tial has allowed electrical tuning of the singlet-triplet
transition field (Kyriakidis et al, 2002; Zumbiihl et al.,
2004).

In very asymmetric lateral confining potentials with
large Coulomb interaction energies, the simple single-
particle picture breaks down. Instead, the two electrons
in the ground-state spin singlet in such dots will tend to
avoid each other spatially, thus forming a quasi-double
dot state. Experiments and calculations indicating this
double-dot-like behavior in asymmetric dots have been
reported (Zumbiihl et al., 2004; Ellenberger et al., 2006).

C. Quantum dot operated as a bipolar spin filter

If the Zeeman splitting exceeds the width of the en-
ergy levels (which in most cases is set by the thermal
energy), electron transport through the dot is (for cer-
tain regimes) spin polarized and the dot can be operated
as a spin filter (Recher e al., 2000; Hanson, Vander-
sypen, et al., 2004). In particular, electrons are spin-up
polarized at the N=0+«1 transition when only the one-
electron spin-up state is energetically accessible, as in
Fig. 10(a). At the N=1+2 transition, the current is spin-
down polarized if no excited states are accessible [region
A in Fig. 8(c)], see Fig. 10(b). Thus the polarization of
the spin filter can be reversed electrically, by tuning the
dot to the relevant transition.

Spectroscopy on dots containing more than two elec-
trons has shown important deviations from an alternat-
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FIG. 10. Few-electron quantum dot operated as a bipolar spin
filter. Schematic diagrams show the level arrangement for
ground-state transport at (a) the 0«1 electron transition,
where the dot filters for spin-up electrons, and (b) at the 12
electron transition, where the dot only transmits spin-down
electrons.

ing spin filling scheme. Already for four electrons, a spin
ground state with total spin S=1 in zero magnetic field
has been observed in both vertical (Kouwenhoven et al.,
2001) and lateral dots (Willems van Beveren et al., 2005).

V. CHARGE SENSING TECHNIQUES

The use of local charge sensors to determine the num-
ber of electrons in single or double quantum dots is a
recent technological improvement that has enabled a
number of experiments that would have been difficult or
impossible to perform using standard electrical transport
measurements (Field et al., 1993). In this section, we dis-
cuss relevant measurement techniques based on charge
sensing. Much of the same information as found by mea-
suring the current can be extracted from a measurement
of the charge on the dot Qpot using a nearby electro-
meter, such as a quantum point contact (QPC). In con-
trast to a measurement of the current through the dot, a
charge measurement can also be used if the dot is con-
nected to only one reservoir.

The conductance Ggpc through a QPC is quantized
(van Wees et al., 1988; Wharam et al., 1988). At the tran-
sitions between quantized conductance plateaus, Gopc is
very sensitive to the electrostatic environment including
the number of electrons N on a nearby quantum dot [see
Fig. 11(a)]. This property can be exploited to determine
the absolute number of electrons in single (Sprinzak et
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FIG. 11. Quantum point contact operated as an electrometer.
A typical device, with the current paths through the dot and
through the QPC, is shown in Fig. 2(c). (a) QPC conductance
Gopc Vs gate voltage on one of the two gates that defines the
QPC, Vg opc. Halfway the last conductance step, at Gopc
~e?/h (indicated by a cross), the QPC is very sensitive to the
charge on the dot. (b) Direct comparison between current
measurement (top panel) and charge sensing (bottom panel).
Data adapted from Elzerman et al., 2003.
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al., 2002) and coupled quantum dots (Elzerman et al.,
2003), even when the tunnel coupling is so small that no
current through the dot is detected. Figure 11(b) shows
measurements of the current and of dGgpc/dV s over
the same range of V. Dips in dGgpc/dV ; coincide with
the current peaks, demonstrating the validity of charge
sensing. The sign of dGgpc/dV is understood as fol-
lows. On increasing Vs, an electron is added to the dot.
The electric field created by this extra electron reduces
the conductance of the QPC, and therefore dGgpc/dV
dips. The sensitivity of the charge sensor to changes in
the dot charge can be optimized using an appropriate
gate design (Zhang et al., 2004).

We should mention here that charge sensing fails
when the tunnel time is much longer than the measure-
ment time. In this case, no change in electron number
will be observed when the gate voltage is swept and the
equilibrium charge cannot be probed (Rushforth et al.,
2004). Note that a quantum dot with very large tunnel
barriers can trap electrons for minutes or even hours
under nonequilibrium conditions (Cooper et al., 2000).
This again emphasizes the importance of funable tunnel
barriers (see Sec. I1.LB). Whereas the regime where the
tunnel time largely exceeds the measurement time is of
little interest for this review, the regime where the two
are of the same order is actually quite useful, as ex-
plained below.

We can get information on the dot energy-level spec-
trum from QPC measurements, by monitoring the aver-
age charge on the dot while applying short gate voltage
pulses that bring the dot out of its charge equilibrium.
This is the case when the voltage pulse pulls u(N) from
above to below the electrochemical potential of the res-
ervoir p... During the pulse with amplitude V>0, the
lowest energy state is GS(N), whereas when the pulse is
off (V»=0), the lowest energy state is GS(N-1). If the
pulse length is much longer than the tunnel time, the dot
will effectively always be in the lowest-energy charge
configuration. This means that the number of electrons
fluctuates between N—1 and N at the pulse frequency. If,
however, the pulse length is much shorter than the tun-
nel time, the equilibrium charge state is not reached dur-
ing the pulse and the number of electrons will not
change. Measuring the average value of the dot charge
as a function of the pulse length thus yields information
on the tunnel time. In between the two limits, i.e., when
the pulse length is comparable to the tunnel time, the
average value of the dot charge is very sensitive to
changes in the tunnel rate.

In this situation, excited-state spectroscopy can be
performed by raising the pulse amplitude Vp (Elzerman,
Hanson, Willems van Beveren, Vandersypen, et al., 2004;
Johnson, Marcus, et al., 2005). For small pulse ampli-
tudes, at most one level is available for tunneling on and
off the dot, as in Fig. 12(b). Whenever Vp is increased
such that an extra transition becomes energetically pos-
sible, the effective tunnel rate changes as in Fig. 12(c).
This change is reflected in the average value of the dot
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FIG. 12. Excited-state spectroscopy on a one-electron dot
using charge sensing. (a) 6Gopc at =385 Hz vs Vs, with Vp
=6 mV. Here I'=2.4 kHz. (b) Schematic electrochemical po-
tential diagrams for the case that only the GS is pulsed across
Mres- (€) Potential diagram when both the GS and an ES are
pulsed across us. (d) Derivative of 6Gopc With respect to Vg
plotted as a function of V5 and Vp. Note that Vp is negative,
and therefore the region of tunneling extends to more positive
gate voltage as |V p| is increased. The curve in (a) is taken at the
dotted line. Data adapted from Elzerman, Hanson, Willems
van Beveren, Vandersypen, et al., 2004.

charge and can therefore be measured using the charge
Sensor.

The signal-to-noise ratio is enhanced significantly by
lock-in detection of Ggpc at the pulse frequency, thus
measuring the average change in Gopc wWhen a voltage
pulse is applied (Sprinzak et al., 2002). We denote this
quantity by 6Ggpc. Figure 12(a) shows such a measure-
ment of 6Ggpc, lock-in detected at the pulse frequency,
as a function of V; around the 0« 1 electron transition.
The different sections of the dip correspond to Figs.
12(b) and 12(c) as indicated, where GS (ES) is the elec-
trochemical potential of the 0« 1 (0« |) transition. Fig-
ure 12(d) shows a plot of the derivative of 6Gqpc With
respect to Vi in the (Vp,V) plane, where the one-
electron Zeeman splitting is clearly resolved. This mea-
surement is analogous to increasing the source-drain
bias Vgp in a transport measurement, and therefore
leads to a similar plot as in Fig. 5, with Vg, replaced by
Vp, and dIpor/dVsp rteplaced by d(6Gopc)/dVg
(Fujisawa et al., 2002b; Elzerman, Hanson, Willems van
Beveren, Vandersypen, ef al., 2004).

The QPC response as a function of pulse length is a
unique function of tunnel rate. Therefore comparison of
the obtained response function with the theoretical func-
tion yields an accurate value of the tunnel rate (Elzer-
man, Hanson, Willems van Beveren, Vandersypen, ef al.,
2004; Hanson, 2005). In a double dot, charge sensing can
be used to quantitatively set the ratio of the tunnel rates
[see Johnson, Petta, Marcus, et al. (2005) for details], and
also to observe the direction of tunnel events (Fujisawa,
Hayashi, Tomita, et al., 2006).

Electron tunneling can be observed in real time if the
time between tunnel events is longer than the time
needed to determine the number of electrons on the dot
or, equivalently, if the bandwidth of the charge detection
exceeds the tunnel rate and the signal from a single-
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FIG. 13. Electrontunneling induced by a voltage pulse. (a)
Measured changes in the QPC current Alopc when a pulse is
applied to a gate, near the degeneracy point between 0 and 1
electron on the dot (bias voltage across the QPC is 1 mV). The
pulse of positive voltage increases the QPC current due to the
capacitive coupling between the pulsed gate and the QPC.
Shortly after the start of the pulse, an electron tunnels onto the
dot and the QPC current decreases. When the pulse has ended,
the electron tunnels off the dot again. (b) Average of 286 traces
as in (a). The top and bottom panels are taken with a different
gate settings, and therefore different tunnel rates are observed.
The damped oscillation following the pulse edges is due to the
eighth-order 40-kHz filter used. Data adapted from Vander-
sypen et al., 2004.

electron charge exceeds the noise level over that band-
width (Schoelkopf et al, 1998; Lu et al., 2003). Figure
13(a) shows gate-pulse-induced electron tunneling in
real time. In Fig. 13(b), the average of many such traces
is displayed; from the exponential decay of the signal the
tunnel rate can be accurately determined.

Optimized charge sensing setups typically have a
bandwidth that allows tunneling to be observed on a
microsecond time scale (Lu et al., 2003; Fujisawa et al.,
2004; Schleser et al., 2004; Vandersypen et al., 2004). If
the relaxation of the electron spin occurs on a longer
time scale, single-shot readout of the spin state becomes
possible. This is the subject of the next section.

VI. SINGLE-SHOT READOUT OF ELECTRON SPINS
A. Spin-to-charge conversion

The ability to measure individual quantum states in a
single-shot mode is important both for fundamental sci-
ence and for possible applications in quantum informa-
tion processing. Single shot immediately implies that the
measurement must have high fidelity (ideally 100%)
since only one copy of the state is available and no av-
eraging is possible.

Because of the tiny magnetic moment associated with
the electron spin it is very challenging to measure it di-
rectly. However, by correlating the spin states to differ-
ent charge states and subsequently measuring the charge
on the dot, the spin state can be determined (Loss and
DiVincenzo, 1998). This way, the measurement of a
single spin is replaced by the measurement of a single
charge, which is a much easier task. Several schemes for
such a spin-to-charge conversion have been proposed
(Kane, 1998; Loss and DiVincenzo, 1998; Vandersypen
et al., 2003; Engel et al., 2004; Friesen et al., 2004; Green-
tree et al., 2005; Tonicioiu and Popescu, 2005). Two meth-

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

a) Energy-selective b)Tunnel-Rate-selective

ReadOut ReadOut
Eee»Egs Fes»lgs
ES ES
ES ES - o]
Wias - - -é)g -(;ST
GS GS
-0 -

FIG. 14. Energy diagrams depicting two different methods for
spin-to-charge conversion: (a) energy-selective readout (ERO),
and (b) tunnel-rate-selective readout (TR-RO).

ods, both outlined in Fig. 14, have been experimentally
demonstrated.

In one method, a difference in energy between the
spin states is used for spin-to-charge conversion. In this
energy-selective readout (ERO), the spin levels are po-
sitioned around the electrochemical potential of the res-
ervoir u,. [see Fig. 14(a)], such that one electron can
tunnel off the dot from the spin excited state |ES),
whereas tunneling from the ground state |GS) is ener-
getically forbidden. Therefore if the charge measure-
ment shows that one electron tunnels off the dot, the
state was |ES), while if no electron tunnels the state was
|GS). This readout concept was pioneered by Fujisawa et
al. in a series of transport experiments, where the mea-
sured current reflected the average state of the electron
after a pulse sequence [see Fujisawa, Hayashi, and
Sasaki (2006) for a review]. Using this pump-probe tech-
nique, the orbital relaxation time and a lower bound on
the spin-relaxation time in few-electron vertical and lat-
eral dots was determined (Fujisawa et al., 2001a, 2001b,
2002a; Hanson et al., 2003). A variation of ERO can be
used for reading out the two-electron spin states in a
double dot (see Sec. VIIL.B).

Alternatively, spin-to-charge conversion can be
achieved by exploiting the difference in tunnel rates of
the different spin states to the reservoir. We outline the
concept of this tunnel-rate-selective readout (TR-RO) in
Fig. 14(b). Suppose that the tunnel rate from |ES) to the
reservoir I'gg is much higher than the tunnel rate from
|GS) T'gs, i.€., [gg>T's. Then, the spin state can be read
out as follows. At time =0, the levels of both |[ES) and
|GS) are positioned far above u,., so that one electron is
energetically allowed to tunnel off the dot regardless of
the spin state. Then, at a time ¢=7, where T'gk> r>Tg,
an electron will have tunneled off the dot with a very
high probability if the state was |[ES), but most likely no
tunneling will have occurred if the state was |GS). Thus
spin information is converted to charge information, and
a measurement of the number of electrons on the dot
reveals the original spin state. The TR-RO can be used
in a similar way if I'gg is much lower than I'gg. A con-
ceptually similar scheme has allowed single-shot readout
of a superconducting charge qubit (Astafiev et al., 2004).

B. Single-shot spin readout using a difference in energy

Single-shot readout of a single electron spin has first
been demonstrated using the ERO technique (Elzer-
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FIG. 15. Scheme for ERO of a single-electron spin. (a) Two-
level voltage pulse scheme. The pulse level is 10 mV during
fwair and 5 mV during #..,q (Which is 0.5 ms for all measure-
ments). (b) Schematic response of the QPC if the injected elec-
tron has spin-7 (solid line) or spin-| (dotted line; the difference
with the solid line is only seen during the readout stage). Ar-
rows indicate the moment an electron tunnels into or out of
the quantum dot. (c) Energy diagrams for spin up (E4) and spin
down (E)) during the different stages of the pulse. If the spin is
up at the start of the readout stage, no change in the charge on
the dot occurs during f,.,q. In contrast, if the spin is down, the
electron can escape and be replaced by a spin-up electron.

{5

man, Hanson, van Beveren, Witkamp, et al., 2004). In
this section we discuss this experiment in more detail. A
quantum dot containing zero or one electrons is tunnel
coupled to a single reservoir and electrostatically
coupled to a QPC that serves as an electrometer. The
electrometer can determine the number of electrons on
the dot in about 10 us. The Zeeman splitting is much
larger than the thermal broadening in the reservoir. The
readout configuration therefore is as in Fig. 14(a), with
the 0« T transition as |GS) and the 0« | transition as
[ES). In the following, we will also use just T and | to
denote these transitions.

To test the single-spin measurement technique, the
following three-stage procedure is used: (i) empty the
dot, (ii) inject one electron with unknown spin, and (iii)
measure its spin state. The different stages are con-
trolled by gate voltage pulses as in Fig. 15(a), which shift
the dot’s energy levels as shown in Fig. 15(c). Before the
pulse the dot is empty, as both the spin-up and spin-
down levels are above the electrochemical potential of
the reservoir u.,. Then a voltage pulse pulls both levels
below u,.. It is now energetically allowed for one elec-
tron to tunnel onto the dot, which will happen after a
typical time =~I'~!. That particular electron can have spin
up or spin down as shown in the lower and upper dia-
grams, respectively. During this stage of the pulse, last-
ing .., the electron is trapped on the dot and Coulomb
blockade prevents a second electron to be added. After
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twait the voltage pulse is reduced, in order to position the
energy levels in the readout configuration. If the elec-
tron has spin up, its energy level is below u., so the
electron remains on the dot. If the electron has spin
down, its energy level is above u,., so the electron tun-
nels to the reservoir after a typical time ~I'"!. Now Cou-
lomb blockade is lifted and an electron with spin up can
tunnel onto the dot. Effectively, the spin on the dot has
been flipped by a single-electron exchange with the res-
ervoir. After t..,4, the pulse ends and the dot is emptied
again.

The expected QPC response Alqpc to such a two-level
pulse is the sum of two contributions [Fig. 15(b)]. First,
due to a capacitive coupling between pulse gate and
QPC, Algpc will change proportionally to the pulse am-
plitude. Second, Alqpc tracks the charge on the dot, i.e.,
it goes up whenever an electron tunnels off the dot, and
it goes down by the same amount when an electron tun-
nels onto the dot. Therefore if the dot contains a spin-
down electron at the start of the readout stage, a char-
acteristic step appears in Algpc during f.,q for spin
down (dotted trace inside gray circle). In contrast, Algpc
is flat during #,.,q for a spin-up electron. Measuring
whether a step is present or absent during the readout
stage constitutes the spin measurement.

Figure 16(a) shows experimental traces of the pulse
response at an in-plane field of 10 T. The expected two
types of traces are indeed observed, corresponding to
spin-up electrons [as in the top panel of Fig. 16(a)], and
spin-down electrons [as in the bottom panel of Fig.
16(a)]. The spin state is assigned as follows: if Algpc
crosses a threshold value [gray line in Fig. 16(a)], the
electron is declared spin down; otherwise it is declared
spin up.

As t, 1s increased, the number of spin-down traces
decays exponentially [see Fig. 16(b)], precisely as ex-
pected because of spin relaxation to the ground state.
This confirms the validity of the spin readout procedure.
The spin decay time T} is plotted as a function of B in
the inset of Fig. 16(b). The processes underlying the spin
relaxation will be discussed in Sec. VIIL

The fidelity of the spin measurement is characterized
by two error probabilities @ and B [see inset to Fig.
16(c)]. Starting with a spin-up electron, there is a prob-
ability « that the measurement yields the wrong out-
come |. Similarly, 8 is the probability that a spin-down
electron is mistakenly measured as . These error prob-
abilities can be determined from complementary mea-
surements (Elzerman, Hanson, van Beveren, Witkamp,
et al., 2004). Both « and B depend on the value of the
threshold as shown in Fig. 16(c) for data taken at 10 T.
The optimal value of the threshold is the one for which
the visibility 1-a—£ is maximal [vertical line in Fig.
16(c)]. For this setting, @=0.07 and 8=0.28, so the mea-
surement fidelity for the spin-up and the spin-down state
is 0.93 and 0.72, respectively. The measurement visibility
in a single-shot measurement is thus 65%, and the fidel-
ity [1—(a+B)/2] is 82%. Significant improvements in the
spin measurement visibility can be made by lowering the
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electron temperature (smaller &) and by making the
charge measurement faster (smaller ).

The first all-electrical single-shot readout of an elec-
tron spin has thus been performed using ERO. How-
ever, this scheme has a few drawbacks: (i) ERO requires
an energy splitting of the spin states larger than the ther-
mal energy of the electrons in the reservoir. Thus for a
single spin the readout is only effective at very low elec-
tron temperature and high magnetic fields (kzT<<AE ).
Also, interesting effects occurring close to degeneracy,
e.g., near the singlet-triplet crossing for two electrons,
cannot be probed. (ii) Since the ERO relies on precise
positioning of the spin levels with respect to the reser-
voir, it is very sensitive to fluctuations in the electrostatic
potential. Background charge fluctuations (Jung et al.,

0.8 1
Threshold (nA)

the reservoir I'; is much larger than the rate from the
singlet state 'y, i.e., ['/>1'g (Hanson, Vink, et al., 2004).

The TR-RO has been tested experimentally in Han-
son et al. (2005) by applying gate voltage pulses as de-
picted in Fig. 17(a). Figure 17(b) shows the expected re-
sponse of Inpc to the pulse, and Fig. 17(c) depicts the
level diagrams in the three different stages. Before the
pulse starts, there is one electron on the dot. Then, the
pulse pulls the levels down so that a second electron can
tunnel onto the dot (N=1—2), forming either a singlet
or a triplet state with the first electron. The probability
that a triplet state is formed is given by 31"/ (I'g+3I'y),
where the factor of 3 is due to the degeneracy of the
triplets. After a variable waiting time f,,; the pulse ends

2004) can easily push the levels out of the readout con-
figuration. (iii) High-frequency noise can spoil the ERO

by inducing photon-assisted tunneling from the spin
ground state to the reservoir (Onac et al., 2006). Since
the QPC is a source of shot noise, this limits the current
through the QPC and thereby the bandwidth of the
charge detection (Vandersypen et al., 2004). These con-
straints have motivated the search for a different
method for spin-to-charge conversion, and have led to
the demonstration of the tunnel-rate-selective readout
(TR-RO) which we treat in the next section.

C. Single-shot spin readout using a difference in tunnel rate

The main ingredient necessary for TR-RO is a spin
dependence in the tunnel rates. To date, TR-RO has
only been demonstrated for a two-electron dot, where
electrons are either in the spin-singlet ground state, de-
noted by |S), or in a spin-triplet state, denoted by |T). In
|S), the two electrons both occupy the lowest orbital, but
in |T) one electron is in the first excited orbital. Since the
wave function in this excited orbital has more weight
near the edge of the dot (Kouwenhoven et al., 2001), the
coupling to the reservoir is stronger than for the lowest
orbital. Therefore the tunnel rate from a triplet state to
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FIG. 17. Single-shot readout of two-electron spin states using
TR RO. (a) Voltage pulse wave form applied to one of the gate
electrodes. (b) Response of the QPC current to the wave form
of (a). (c) Energy diagrams indicating the level positions during
the three stages. In the final stage, spin is converted to charge
information due to the difference in tunnel rates for states |S)
and |T).
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FIG. 18. Experimented results of single-shot readout of two-
electron spin states. (a) Real-time traces of Algpc during the
last part of the wave form (dashed box in the inset), for t,;
=0.8 ms. At the vertical dashed line, N is determined by com-
parison with a threshold (horizontal dashed line in bottom
trace) and the spin state is declared 'T" or 'S’ accordingly. (b)
Fraction of ‘T’ as a function of waiting time at B;=0.02 T,
showing a single-exponential decay with a time constant 7' of
2.58 ms. (c) Normalized fraction of 'T' vs fy,; for different
values of B). The singlet-triplet splitting E g7 in this experiment
is 1 meV. Data reproduced from Hanson et al., 2005.

and the readout process is initiated, during which one
electron can leave the dot again. The rate for tunneling
off depends on the two-electron state, resulting in the
desired spin-to-charge conversion. Due to the direct ca-
pacitive coupling of the pulse gate to the QPC channel,
Alqpc follows the pulse shape. Tunneling of an electron
on or off the dot gives an additional step in Algpc as
indicated by arrows in Fig. 17(b).

In the experiment, I'y is tuned to 2.5 kHz, and I'; is
~50 kHz. The filter bandwidth is 20 kHz, and therefore
many of the tunnel events from |T) are not resolved, but
the tunneling from |S) is clearly visible. Figure 18(a)
shows several traces of Algpc, from the last part (0.3 ms)
of the pulse to the end of the readout stage (see inset),
for a waiting time of 0.8 ms. In some traces, there are
clear steps in Algpc, due to an electron tunneling off the
dot. In other traces, the tunneling occurs faster than the
filter bandwidth. In order to discriminate between |S)
and |T), the number of electrons on the dot is deter-
mined at the readout time [vertical dashed line in
Fig. 18(a)] by comparing Algpc to a threshold value [as
indicated by the horizontal dashed line in the bottom
trace of Fig. 18(a)]. If Algpc is below the threshold, it
means N=2 and the state is declared 'S’. If Algpc is
above the threshold, it follows that N=1 and the state is
declared 'T".

To verify that ‘7" and 'S’ indeed correspond to the
spin states | 7) and |S), the relative occupation probabili-
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ties are changed by varying the waiting time. As shown
in Fig. 18(b), the fraction of 'T" indeed decays exponen-
tially as t,; is increased, due to relaxation, as before.
The error probabilities are found to be a=0.15 and B
=0.04, where « () is the probability that a measurement
on the state |S)(|T)) yields the wrong outcome 'T" ('S").
The single-shot visibility is thus 81% and the fidelity is
90%. These numbers agree well with the values pre-
dicted by a simple rate-equation model (Hanson et al.,
2005). Figure 18(c) shows data at different values of the
magnetic field. These results are discussed in more detail
in Sec. VIL

A major advantage of the TR-RO scheme is that it
does not rely on a large energy splitting between spin
states. Furthermore, it is robust against background
charge fluctuations, since these cause only a small varia-
tion in the tunnel rates (of order 1073 in Jung et al.,
2004). Finally, photon-assisted tunneling is not harmful
since here tunneling is energetically allowed regardless
of the initial spin state. Thus TR-RO overcomes several
constraints of ERO. However, TR-RO can only be used
if there exist state-dependent tunnel rates. In general,
the best choice of readout method will depend on the
specific demands of the experiment and the nature of
the states involved.

It is interesting to think about a measurement proto-
col that would leave the spin state unaffected, a so-
called quantum nondemolition (QND) measurement.
With readout schemes that make use of tunneling to a
reservoir as the ones described in this section, QND
measurements are not possible because the electron is
lost after tunneling; the best one can do in this case is to
re-initialize dot electrons to the state they were in before
the tunneling occured (Meunier et al., 2006). However,
by making the electron tunnel not to a reservoir, but to a
second dot (Engel ef al., 2004; Engel and Loss, 2005),
the electron can be preserved and QND measurements
are in principle possible. One important example of
such a scheme is the readout of double-dot singlet and
triplet states using Pauli blockade that will be discussed
in Sec. VIII.C.

VIIL. SPIN INTERACTION WITH THE ENVIRONMENT

The magnetic moment of a single-electron spin up
=9.27x1072* J/T is very small. As a result, electron spin
states are only weakly perturbed by their magnetic en-
vironment. Electric fields affect spins only indirectly, so
generally spin states are only weakly influenced by their
electric environment as well. One notable exception is
the case of two-electron spin states—since the singlet-
triplet splitting directly depends on the Coulomb repul-
sion between the two electrons, it is very sensitive to
electric-field fluctuations (Hu and Das Sarma, 2006)—
but we will not discuss this further here.

For electron spins in semiconductor quantum dots,
the most important interactions with the environment
occur via the spin-orbit coupling, the hyperfine coupling
with the nuclear spins of the host material, and virtual
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exchange processes with electrons in the reservoirs. This
last process can be efficiently suppressed by reducing the
dot-reservoir tunnel coupling or creating a large gap be-
tween the eletrochemical potentials in the dot and in the
lead (Fujisawa et al., 2002a), and we will not further con-
sider it in this section. The effect of the spin-orbit and
hyperfine interactions can be observed in several ways.
First, the spin eigenstates are redefined and the energy
splittings are renormalized. A good example is the fact
that the g factor of electrons in bulk semiconductors can
be very different from 2, due to the spin-orbit interac-
tion. In bulk GaAs, for instance, the g factor is —0.44.
Second, fluctuations in the environment can lead to
phase randomization of the electron spin, by convention
characterized by a time scale 7,. Finally, electron spins
can also be flipped by fluctuations in the environment,
thereby exchanging energy with degrees of freedom in
the environment. This process is characterized by a time
scale T.

A. Spin-orbit interaction

1. Origin

The spin of an electron moving in an electric field E
experiences an internal magnetic field, proportional to

E X p, where p is the momentum of the electron. This is
the case, for instance, for an electron “orbiting” about a
positively charged nucleus. This internal magnetic field
acting on the spin depends on the orbital the electron
occupies, i.e., spin and orbit are coupled. An electron
moving through a solid also experiences electric fields,
from charged atoms in the lattice. In crystals that exhibit
bulk inversion asymmetry (BIA), such as in the zinc-
blende structure of GaAs, the local electric fields lead to
a net contribution to the spin-orbit interaction (which
generally becomes stronger for heavier elements). This
effect is known as the Dresselhaus contribution to the
spin-orbit interaction (Dresselhaus, 1955; Dyakonov and
Kachorovskii, 1986; Wrinkler, 2003).

In addition, electric fields associated with asymmetric
confining potentials also give rise to a spin-orbit interac-
tion (SIA, or structural inversion asymmetry). This
occurs, for instance, in a 2DEG formed at a
GaAs/AlGaAs heterointerface. It is at first sight surpris-
ing that there is a net spin-orbit interaction: since the
state is bound along the growth direction, the average
electric field in the conduction band must be zero (up to
a correction due to the effective mass discontinuity at
the interface, which results in a small force that is bal-
anced by a small average electric field). The origin of the
net spin-orbit interaction lies in mixing with other bands,
mainly the valence band, which contribute a nonzero
average electric field (Pfeffer, 1999; Wrinkler, 2003).
Only in symmetric quantum wells with symmetric dop-
ing, these other contributions are zero as well. The spin-
orbit contribution from SIA is known as the Rashba
term (Rashba, 1960; Bychkov and Rashba, 1984).
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FIG. 19. The small arrows indicate the orientation of the ap-
parent magnetic field acting on the electron spin as a result of
(a) the Dresselhaus and (b) the Rashba spin-orbit interaction
when the electron travels through a GaAs crystal with momen-
tum p.

2. Spin-orbit interaction in bulk and two dimensions

In order to get insight in the effect of the Dresselhaus
spin-orbit interaction in zinc-blende crystals, we start
from the bulk Hamiltonian (Dyakonov and Perel, 1972;
Wrinkler, 2003),

My < [pupy— pDoc+p,(pr - pY oy + p.(ps - Yol
(11)

where x, y, and z point along the main crystallographic
directions, (100), (010), and (001).

In order to obtain the spin-orbit Hamiltonian in two-
dimensional (2D) systems, we integrate over the growth
direction. For 2DEGs grown along the (001) direction,
(p.»=0, and (pﬁ) is a heterostructure dependent but fixed
number. The Dresselhaus Hamiltonian then reduces to

Hp Y o[- p (2o, + p(p2oy + ppio — pypeoy .

(12)

The first two terms are the linear Dresselhaus terms and
the last two are the cubic terms. Usually the cubic terms
are much smaller than the linear terms, since (p?}
> p)zc , pi due to the strong confinement along z. We then
retain (Dresselhaus, 1955)

Hp O = Bl p.oy + pyor ], (13)
where B depends on material properties and on (p?). It
follows from Eq. (13) that the internal magnetic field is
aligned with the momentum for motion along (010), but
is opposite to the momentum for motion along (100) [see
Fig. 19(a)].

Similarly, we now write down the spin-orbit Hamil-
tonian for the Rashba contribution. Assuming that the
confining electric field is along the z axis, we have

Hp < [E X pl6= E.(~ pyo, + pyo,) (14)
or
Hg=al(- Pyox +px0-y)7 (15)

with @ a number that is material specific and also de-
pends on the confining potential. Here the internal mag-
netic field is always orthogonal to the momentum [see
Fig. 19(b)].

We point out that as an electron moves ballistically
over some distance /, the angle by which the spin is ro-
tated, whether through Rashba or linear Dresselhaus
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spin-orbit interaction, is independent of the velocity
with which the electron moves. The faster the electron
moves, the faster the spin rotates, but the faster the elec-
tron travels over the distance [ as well. In the end, the
rotation angle is determined by / and the spin-orbit
strength only. A useful quantity is the distance associ-
ated with a 7 rotation, known as the spin-orbit length
lso. In GaAs, estimates for B vary from 10°to 3
%103 m/s, and it follows that the spin-orbit length I,
=f/Bm” is 1-10 um, in agreement with experimentally
measured values (Zumbiihl et al., 2002). The Rashba
contribution can be smaller or larger than the Dressel-
haus contribution, depending on the structure. From
Fig. 19, we see that the Rashba and Dresselhaus contri-
butions add up for motion along the (110) direction and

oppose each other along (110), i.e., the spin-orbit inter-
action is anisotropic (Kénemann et al., 2005).

In 2DEGs, spin-orbit coupling (whether Rashba or
Dresselhaus) can lead to spin relaxation via several
mechanisms (Zutic et al., 2004). The Dyakonov-Perel
mechanism (Dyakonov and Perel, 1972; Wrinkler, 2003)
refers to spin randomization that occurs when the elec-
tron follows randomly oriented ballistic trajectories be-
tween scattering events (for each trajectory, the internal
magnetic field is differently oriented). In addition, spins
can be flipped upon scattering, via the Elliot-Yafet
mechanism (Elliott, 1954; Yafet, 1963) or the Bir-
Aronov-Pikus mechanism (Bir et al., 1976).

3. Spin-orbit interaction in quantum dots

From the semiclassical picture of the spin-orbit inter-
action, we expect that in 2D quantum dots with dimen-
sions much smaller than the spin-orbit length /g, the
electron spin states will be hardly affected by the spin-
orbit interaction. We now show that the same result fol-
lows from the quantum-mechanical description, where
the spin-orbit coupling can be treated as a small pertur-
bation to the discrete orbital energy-level spectrum in
the quantum dot.

We note that stationary states in a quantum dot are
bound states, for which (p,)=(p,)=0. This leads to the
result that

<I’lll|H50|an> & <nl|px,y|nl><l |0-x,y|T> = 05 (16)

where n and [/ label the orbitals in the quantum dot, and
Hgo stands for the spin-orbit Hamiltonian, which con-
sists of terms of the form p, ,o,, for both the Dressel-
haus and Rashba contributions. Thus the spin-orbit in-
teraction does not directly couple the Zeeman-split
sublevels of a quantum dot orbital. However, the spin-
orbit Hamiltonian does couple states that contain both
different orbital and different spin parts (Khaetskii and
Nazarov, 2000). As a result, what we usually call the
electron spin states spin up and spin down in a quantum
dot, are in reality admixtures of spin and orbital states
(Khaetskii and Nazarov, 2001). When the Zeeman split-
ting is well below the orbital level spacing, the perturbed
eigenstates can be approximated as
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FIG. 20. Two views on spin relaxation due to the spin-orbit
interaction and the phonon bath. (a) The electron phonon in-
teraction does not couple pure spin states, but it does couple
the spin-orbit perturbed spin states, labeled with super-
scripts (V. Here Hgo and H,pn are treated sequentially (al-
though they do not commute). (b) The combined electron-
phonon and spin-orbit Hamiltonian couples pure spin states.

(n'l' ||Hgolnl?)

W =ity + X

n'l' #nl

n'l'l), (17)

(n'l'|Hgolnl])

nl)V=nlly+ X

n'l' #nl

n'I'7)  (18)

[the true eigenstates can be obtained via exact diagonal-
ization (Cheng et al., 2004)]. Here AE, refers to the un-
perturbed spin splitting (in the remainder of the review,
AE, refers to the actual spin splitting, including all per-
turbations). The energy splitting between the spin-up
and spin-down states will be renormalized accordingly,
AE(ZD:E(j)—E?) (de Sousa and Das Sarma, 2003b; Stano
and Fabian, 2005) [see also Fig. 20(a)]. In GaAs few-
electron quantum dots, the measured g factor in abso-
lute value is usually in the range of 0.2-0.4, and is some-
times magnetic-field dependent (see Fig. 7). A similar
behavior of the g factor was found in GaAs/AlGaAs
2DEGs (Dobers et al., 1988).

In contrast to single-electron spin states in a quantum
dot, the lowest two-electron spin states, singlet and trip-
let, are coupled directly by the spin-orbit interaction [ex-
cept for Ty and S, which are not coupled to lowest order
in the spin-orbit interaction, due to spin selection rules
(Dickmann and Hawrylak, 2003; Florescu and Hawry-
lak, 2006; Sasaki et al., 2006; Climente et al., 2007; Golo-
vach et al., 2007)]. This is not so surprising since the
singlet and triplet states themselves involve different or-
bitals. Nevertheless, coupling to two-electron spin states
composed of higher orbitals needs to be included as
well, as their effect is generally not negligible (Climente
et al., 2007, Golovach et al, 2007). The leading-order
correction to the two-electron wave function is then
given by

E <th,|HSO|SQ>

1Sg)V =[Sq) +
Er g - Es,

|T.q"), (19)
q'#q

(Toq'|HsolT.q)
E AU PASONT £H7

IT.q"),  (20)
Ethr - EToq

|T061>(1) = |T0(Z> +
q'#q
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> (T.q'|HsolSq)

|T¢CI>(1)=|T¢¢I>+ |Sq,>
4'%q ESq’ _ET+q
(T.q'|Hso| Toq) ,
+ 22— ), (21)
Toq' T.q

q'#q

where ¢ is shorthand for the quantum numbers n/;n,/,
that label the orbital for each of the two electrons. It can
be seen from inspection of the spin-orbit Hamiltonian
and the form of the wave functions that many of the
matrix elements in these expressions are zero. A more
detailed discussion is beyond the scope of this review
but can be found in Climente et al. (2007) and Golovach
et al. (2007).

4. Relaxation via the phonon bath

Electric fields cannot cause transitions between pure
spin states. However, we have seen that the spin-orbit
interaction perturbs the spin states and the eigenstates
become admixtures of spin and orbital states, see Egs.
(17)—(21). These new eigenstates can be coupled by elec-
tric fields (see Fig. 20), and electric-field fluctuations can
lead to spin relaxation (Khaetskii and Nazarov, 2000,
2001; Woods et al., 2002). As we will see, this indirect
mechanism is not very efficient, and accordingly very
long spin-relaxation times have been observed experi-
mentally (Fujisawa et al, 2001b, 2002a; Hanson et al.,
2003, 2005; Elzerman, Hanson, Willems van Beveren,
Witkamp, et al., 2004; Kroutvar et al., 2004; Amasha et
al., 2006; Sasaki et al., 2006; Meunier et al., 2007).

In general, fluctuating electric fields could arise from
many sources, including fluctuations in the gate poten-
tials, background charge fluctuations or other electrical
noise sources (Marquardt and Abalmassov, 2005;
Borhani et al., 2006). However, as we shall see, it appears
that in carefully designed measurement systems, the
electric-field fluctuations of these extraneous noise
sources is less important than those caused by the pho-
non bath. Phonons can produce electric-field fluctua-
tions in two ways. First, so-called deformation potential
phonons inhomogeneously deform the crystal lattice,
thereby altering the band gap in space, which gives rise
to fluctuating electric fields. This mechanism occurs in
all semiconductors. Second, in polar crystals such as
GaAs, also homogeneous strain leads to electric fields,
through the piezoelectric effect (piezoelectric phonons).

The phonon-induced transition rate between the
renormalized states |n,/, 1)) and |n,/, | )V is given by
Fermi’s golden rule (an analogous expression can be de-
rived for relaxation from triplet to singlet states, or be-
tween other spin states):

2
r= 72 |Vnlt [, prlnl ) VPD(AEY), (22)
n,l

where D(E) is the phonon density of states at energy E.
Hepn is the electron-phonon coupling Hamiltonian,
given by
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HI = Me (bl + bg), (23)

eph

where M ; is a measure of the electric-field strength of a
phonon Wlth wave vector ¢ and phonon branch j (one
longitudinal and two transverse modes), r is the position
vector of the electron, and b and bg; are the phonon
creation and annihilation operators respectively.

The relaxation rate thus depends on the phonon den-
sity of states at the spin-flip energy (the phonons have to
carry away the energy), and on how strongly the
electron-phonon coupling connects the spin-orbit per-
turbed spin states [see Eq. (22)]. The latter in turn de-
pends on (i) the degree of admixing between spin and
orbital states [see Egs. (17) and (18)], (ii) the electric-
field strength of a single phonon (<Mg)), (iii) the effec-
tiveness of phonons at coupling different dot orbitals,
via €47, and (iv) the phonon occupation, via (b i+bg). In
addition, (v) we will show that an external magnetlc field
is necessary for spin relaxation to occur. We next discuss
each of these elements separately, starting with the den-
sity of states.

The phonons are taken to be bulk phonons in most
discussions of relaxation in GaAs quantum dots. This
may not be fully accurate since the dot is formed at a
heterointerface, and furthermore is in close vicinity to
the surface [e.g., surface acoustic waves have also been
observed to couple to dots, when explicitly excited
(Naber et al., 2006)]. Nevertheless, this simplification has
worked reasonably well so far for explaining observa-
tions of relaxation in dots (Fujisawa et al., 1998; Krout-
var et al., 2004; Amasha et al., 2006; Meunier et al., 2007).
In what follows, we therefore consider bulk phonons
only. Furthermore, we only include acoustic phonons, as
the energies for optical phonons are much higher than
typical spin-flip energies (Ashcroft and Mermin, 1974).
Since bulk acoustic phonons have a linear dispersion re-
lation at low energies (Ashcroft and Mermin, 1974), the
phonon density of states increases quadratically with en-
ergy.

(i) The degree of admixing between spin and orbitals
obviously scales with the spin-orbit coupling parameters
a and B. Since the spin-orbit interaction is anisotropic
(@ and B can add up or cancel out depending on the
magnetic-field orientation with respect to the crystal
axis), the admixing and hence the relaxation rate are
anisotropic as well (Falko et al., 2005). Furthermore, the
admixing depends on how close together in energy the
relevant orbitals are [see Egs. (17)-(21)]. At an avoided
crossing of two levels caused by the spin-orbit interac-
tion, the admixing will be complete (Bulaev and Loss,
2005; Stano and Fabian, 2005, 2006).

(11) The electrlc field associated with a single phonon
scales as 1/\q for piezoelectric phonons and as Vg for
deformation potential phonons, where ¢ is the phonon
wave number. This difference can be understood from
the fact that small phonon energies correspond to long
wavelengths, and therefore nearly homogeneous crystal
strain, which can only create electric fields through the
piezoelectric effect. At sufficiently small energies (below
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FIG. 21. The relaxation rate from two-electron triplet to sin-
glet states, as a function of the singlet-triplet energy splitting
(measured with TR-RO; see Sec. VI.C). The relaxation rate
shows a maximum when the wavelength of the phonons with
the right energy matches the size of the dot. The energy split-
ting was varied by a magnetic field with a component perpen-
dicular to the 2DEG (circles) and via the gate voltages that
control the dot potential landscape (triangles). We note that
the relaxation rate decreases near the singlet-triplet crossing
(because of the long phonon wavelength and vanishing phonon
density of states), even though the spin-orbit admixing of sin-
glet and triplet is maximum here. Data reproduced from Meu-
nier et al., 2007.

~0.6 meV in GaAs), the effect of piezoelectric phonons
thus dominates over the effect of deformation potential
phonons. As the phonon energy increases, deformation
potential phonons become more important than piezo-
electric phonons.

(iii) How effectively different orbitals are coupled by
phonons, i.e., the size of the matrix element
(nl1]e'"|n'l' 1), depends on the phonon wavelength and
the dot size (Bockelmann, 1994) [this matrix element is
obtained when substituting Eqgs. (17) and (18) into Eq.
(22)]. In GaAs, the speed of sound Cph 18 of the order of
4000 m/s, so the phonon wavelength is hcpy,/ Epp, which
gives ~16 nm for a 1-meV phonon. For phonon wave-
lengths much shorter than the dot size (phonon energies
much larger than a few hundred weV), the electron-
phonon interaction is averaged away (the matrix ele-
ment vanishes). Also for phonon wavelengths much
longer than the dot size, the electron-phonon coupling
becomes inefficient, as it just shifts the entire dot poten-
tial uniformly up and down, and no longer couples dif-
ferent dot orbitals to each other (this is the regime
where the often-used dipole approximation applies,
where the matrix element (n/1|e’"|n’l' 1) is taken to be
«g). When the phonon wavelength is comparable to the
dot size, phonons can most efficiently couple the orbit-
als, and spin relaxation is fastest (Woods et al., 2002;
Golovach et al., 2004; Bulaev and Loss, 2005). This role
of the phonon wavelength (convoluted with the other
effects discussed in this section) has been clearly ob-
served experimentally; see Fig. 21.

(iv) A finite phonon occupation N, leads to stimu-
lated emission. This is accounted for by multiplying the
relaxation rate by a factor 1+ Ny, where Ny, is given by
the Bose-Einstein distribution, and can be approximated
by kgT/E; when kgT>E,.
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FIG. 22. (Color online) Relaxation rate between the two-
electron triplet and singlet states in a single dot as a function of
in-plane magnetic field B). The in-plane magnetic field does
not couple to the orbitals and therefore hardly modifies the
triplet-singlet energy splitting (AEgr~1 meV, whereas the
Zeeman splitting is only ~20 ueV/T in GaAs quantum dots).
Nevertheless, and as expected, the experimentally measured
rate 1/7T; at first markedly decreases as B decreases, before
saturating as B approaches zero and two-phonon relaxation
mechanisms set in. The solid line is a second-order polynomial
fit to the data. For comparison, lines with linear, quadratic, and
cubic B dependences are shown. Data are extracted from Fig.
18(c) and are reproduced from Hanson et al., 2005.

(v) The last necessary ingredient for spin-orbit in-
duced spin relaxation is a finite Zeeman splitting. With-
out Zeeman splitting, the various terms that are ob-
tained when expanding Eq. (22) using Eqgs. (17) and (18)
cancel out (Khaetskii and Nazarov, 2001) (this is known
as van Vleck cancellation; it is a consequence of Kram-
er’s theorem). A similar cancellation occurs for spin
states of two or more electrons. We can understand the
need for a magnetic field intuitively from the semiclassi-
cal discussion of the spin-orbit interaction in Sec.
VII.LA.2. A phonon produces an electric field that oscil-
lates along a certain axis, and this electric field will cause
an electron in a quantum dot to oscillate along the same
axis. In the absence of any other terms in the Hamil-
tonian acting on the electron spin, the spin-orbit induced
rotation that takes place during half a cycle of the
electric-field oscillation will be reversed in the next half
cycle, so no net spin rotation takes place. This is directly
connected to the fact that the spin-orbit interaction
obeys time-reversal symmetry. In contrast, in the pres-
ence of an external magnetic field, the spin rotation
(about the sum of the external and spin-orbit induced
magnetic field) during the first half period does not com-
mute with the spin rotation during the second half pe-
riod, so that a net spin rotation results. Theory predicts
that this effect leads to a B} dependence of the relax-
ation rate 1/7T; (Khaetskii and Nazarov, 2001; Bulaev
and Loss, 2005; Golovach et al., 2007). A clear B, depen-
dence was seen experimentally; see Fig. 22.

When two phonons are involved, a net spin rotation
can be obtained even at zero field. Here the electron will
in general not just oscillate back and forth along one
line, but instead describe a closed trajectory in two di-
mensions. Since spin rotations induced during the vari-
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ous legs along this trajectory generally do not commute,
a net rotation results (San-Jose et al., 2006). Such two-
phonon relaxation processes become relatively more im-
portant at very low magnetic fields, where single-phonon
relaxation becomes very inefficient (Khaetskii and Naz-
arov, 2001; San-Jose et al., 2006) (Fig. 22).

Putting all these elements together, we can predict the
B, dependence of the relaxation rate 1/7, between Zee-
man split sublevels of a single electron as follows. The
phonon density of states increases with AE%. Next, the
electric-field amplitude from a single phonon scales as
\EOC \«"TEZ for deformation potential phonons and as
1/ \«"Eoc 1/ \s"A—EZ for piezoelectric phonons. Furthermore,
for By up to a few tesla, AE, is well below the crossover
point where the dot size matches the phonon energy
(several 100 ueV), so we are in the long-wavelength
limit, where the matrix element {(n/1|e?"|n'l' 1) scales as
q*AE,. Finally, due to the effect of the Zeeman split-
ting, the matrix element in Eq. (22) picks up another
factor of AE, (assuming only single-phonon processes
are relevant). Altogether, and taking into account that
the rate is proportional to the matrix element squared,
T;' is predicted (at low temperature) to vary with AE,
for coupling to piezoelectric phonons (Khaetskii and
Nazarov, 2001), and as AE7Z for coupling to deformation
potential phonons. At high temperature, there is an ex-
tra factor of AE'.

We can similarly work out the 1/7, dependence on
the dot size [ or, equivalently, on the orbital level spacing
AE ., [ [in single dots, AE,,;, can only be tuned over a
small range, but in double dots, the splitting between
bonding and antibonding orbitals can be modified over
several orders of magnitudes (Wang and Wu, 2006)]. The
degree of admixing of spin and orbital states by Hgo
contributes a factor /2 to the rate via the numerator in
Egs. (17) and (18) and another factor of ~/* via E,,
—E,; [the dominant part in the denominator in Egs.
(17) and (18)]. Taking the long-wavelength limit as be-
fore, |(nl1]e"|n'l' 1)|? contributes a factor /2. We thus
arrive at 1/ T < B AE .

In summary, the relaxation rate from spin down to
spin up (for an electron in the ground-state orbital of a
quantum dot) scales as

1T, < AELIAE? (24)
at temperatures low compared to AE,/kg, and as
1T, < AELkTIAEL (25)

at temperatures much higher than AE,/kp.
Experimentally measured values for 7} between Zee-
man sublevels in a one-electron GaAs quantum dot are
shown in Fig. 23. The relaxation times range from
120 us at 14 T to 170 ms at 1.75 T, about seven orders
of magnitude longer than the relaxation rate between
dot orbitals (Fujisawa et al., 2002a). The expected B>
dependence of 77" is nicely observed over the applicable
magnetic-field range. A similar dependence was ob-
served in optically measured quantum dots (Kroutvar et
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FIG. 23. (Color online) Relaxation rate between the Zeeman
split sublevels of the ground-state orbital in a quantum dot
(measured with ERO, see Sec. VI.B). Square data points are
taken from Amasha et al., 2006; round data points are repro-
duced from Elzerman, Hanson, van Beveren, Witkamp, et al.,
2004. The fact that the two datasets do not connect is ex-
plained by a possible difference in orbital spacing, crystal ori-
entation, etc. For comparison, a solid line with a B> depen-
dence is shown.

al., 2004). In that system, the 1/7 temperature depen-
dence of T, was also verified (Heiss et al., 2005). There
are no systematic experimental studies yet of the depen-
dence on dot size. So far we have first considered the
effect of Hg, on the eigenstates and then looked at tran-
sitions between these new eigenstates, induced by H, ,;
[Fig. 20(a)]. We point out that it is also possible to cal-
culate the matrix element between the unperturbed spin
states directly, for Hgp and H, p; together, for instance,
as

<nli|(HS0 + He,ph)|an>

for Zeeman split states of a single orbital [Fig. 20(b)].

Finally, we remark that whereas at first sight phonons
cannot flip spins by themselves as there are no spin op-
erators in the phonon Hamiltonian H, g, this is not
strictly true. Since phonons deform the crystal lattice,
the g tensor may be modulated, and this can in fact lead
to electron spin flips directly [when phonons modulate
only the magnitude of the g factor but not the anisot-
ropy of the g tensor, the electron spin phase gets ran-
domized without energy exchange with the bath (Se-
menov and Kim, 2004)]. Furthermore, the electron spin
could flip due to the direct relativistic coupling of the
electron spin to the electric field of the emitted phonon.
However, both mechanisms have been estimated to be
much less efficient than the mechanism via admixing of
spin and orbitals by the spin-orbit interaction (Khaetskii
and Nazarov, 2000, 2001).

5. Phase randomization due to the spin-orbit interaction

We have seen that the phonon bath can induce tran-
sitions between different spin-orbit admixed spin states,
and absorb the spin flip energy. Such energy relaxation
processes (described by a time constant 7;) unavoidably
also lead to the loss of quantum coherence (described by
a time constant 7). In fact, by definition 7,<2T].
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FIG. 24. One-electron spin interacts with (a) a single nuclear
spin in an atom and vs (b) many nuclear spins in a semicon-
ductor quantum dot.

Remarkably, to leading order in the spin-orbit inter-
action, there is no pure phase randomization of the elec-
tron spin, such that in fact 7,=2T7; (Golovach et al,
2004). For a magnetic field perpendicular to the plane of
the 2DEG, this can be understood from the form of the
spin-orbit Hamiltonian. Both the Dresselhaus contribu-
tion, Eq. (13), and the Rashba contribution, Eq. (15),
only contain o, and o, terms. With B along Z, these
terms lead to spin flips but not to pure phase random-
ization. However, this intuitive argument does not cap-
ture the full story: for B along X, one would expect the
o, term to contribute to pure phase randomization, but
surprisingly, in leading order in the spin-orbit interac-
tion, there is still no pure randomization even with an
in-plane magnetic field (Golovach et al., 2004).

B. Hyperfine interaction
1. Origin

The spin of an electron in an atom can interact with
the spin of “its” atomic nucleus through the hyperfine
coupling. An electron spin in a quantum dot, in contrast,
may interact with many nuclear spins in the host mate-
rial (Fig. 24). The Hamiltonian for the Fermi contact
hyperfine interaction is then given by

N
Hur= 2 AiliS, (26)
k

where fk and S are the spin operator for nucleus k and
the electron spin, respectively (Abragam, 1961; Meier
and Zakharchenya, 1984; Abragam and Bleaney, 1986;
Slichter, 1990). Since the electron wave function is inho-
mogeneous, the coupling strength A, between each
nucleus k£ and the electron spin varies, as it is propor-
tional to the overlap squared between the nucleus and
the electron wave function.

This asymmetric situation combined with fast
electron-spin dynamics and slow nuclear-spin dynamics
gives rise to a subtle and complex many-body quantum-
mechanical behavior, whereby nuclear spins affect the
electron-spin time evolution, and the electron spin in
turn acts back on the dynamics of each of the nuclei.
Since both nuclear spins and the localized electron spin
are quantum objects, the hyperfine coupling could in
principle create entanglement between them [if both the
electron spin and nuclear spins had a sufficiently pure
initial state; see Braunstein et al., 1999]. For the electron
spin, this interaction with uncontrolled degrees of free-
dom in the environment leads to decoherence (Khaetskii
et al., 2002, 2003; Merkulov et al., 2002; Coish and Loss,
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2004). This implies that an electron spin starting off in a
pure state will evolve to a statistical mixture of several
states, i.e., to one of several states, each with some prob-
ability (Nielsen and Chuang, 2000).

An alternative description of the effect of the nuclei
on the electron spin is to treat the ensemble of nuclear
spins as an apparent magnetic field By. This nuclear
field, also known as the Overhauser field, acts on the
electron spin much like an external magnetic field:

N
(E Aklk)s =gupB\S. 27)
k

When this nuclear field assumes a random, unknown
value, the electron spin will subsequently evolve in a
random way and thus end up in a statistical mixture of
states as well, just like in the quantum-mechanical de-
scription.

The semiclassical description of nuclear spins yields
an intuitive picture of the electron-nuclear dynamics and
is sufficient to explain all experimental observations dis-
cussed in this review. However, we note that the full
quantum description is required to analyze correlations
between microscopic nuclear spin states and the single
electron spin state, as, e.g., in a study of the entangle-
ment between electron and nuclear spins.

The magnitude of the nuclear field B N:EkNAkfk/ gMB
is maximum when all nuclear spins are fully polarized.
In GaAs, By .y is about 5 T (Paget et al., 1977). For any
given host material, this value is independent of the
number of nuclei N that the electron overlaps with—for
larger numbers of nuclei, the contribution from each
nuclear spin to By is smaller (the typical value for A is
proportional to 1/N).

This is distinctly different in the case of (nearly) un-
polarized nuclear spins, for instance, nuclear spins in
thermodynamic equilibrium under typical experimental
conditions. First there is a small average nuclear polar-
ization, oriented along the external magnetic field and
with an amplitude given by the Boltzman distribution
(see the Appendix). In addition, there is a statistical fluc-
tuation about the average, analogous to the case of N
coin tosses. For an electron spin interacting with N
nuclear spins 1/2, the root-mean-square value of the sta-
tistical fluctuation will be By pay/ VN T (Khaetskii et al.,
2002; Merkulov et al., 2002). This quantity has recently
been measured in various semiconductor quantum dots,
both optically (Braun et al., 2005; Dutt et al., 2005) and
electrically (Johnson, Petta, Taylor, et al., 2005; Koppens
et al., 2005), giving values in the range of a few mT, as
expected since N~10° in these dots. Similar values were
obtained earlier for electrons bound to shallow donors
in GaAs (Dzhioev et al., 2002).

A few comments on the importance of the host mate-
rial are in order. First, the value of A is typically smaller
for lighter nuclei. Second, for particles in p-like orbitals,
such as holes in GaAs, the wave function has almost no
overlap with the nuclei (only s orbitals have a finite am-
plitude at the nucleus), so the Fermi contact hyperfine
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(a) ,Bi (b) (c) BY
By

B, B,

FIG. 25. Longitudinal magnetic-field fluctuations B}, add di-
rectly to the external field B, whereas transverse fluctuations
B}y’ change the total field only in second order when B
>By.

coupling constant A, will be very small. Third, if a frac-
tion x of the nuclei in the host material has zero nuclear
spin, By yax is scaled down with a factor 1-x. The num-
ber of nuclei contributing to the statistical fluctuations in
the nuclear field also scales down by 1-x. As a result,
the rms value of the nuclear field scales with v’ﬁ.
While x=0 in GaAs, a fraction x=0.95 of the nuclei
(3si) is nonmagnetic in natural silicon, and x=~0.99 in
carbon (*?C). Furthermore, for both silicon and carbon,
purification to nearly 100% zero-spin isotopes is pos-
sible, so really small nuclear fields can be obtained

Finally, we point out that since the rms value of the
statistically fluctuating hyperfine field scales with 1/ VN,
it is much stronger for electrons localized in dots or
bound to impurities than for electrons with extended
wave functions, for instance, in 2DEGs, where the elec-
tron wave function overlaps with a very large number of
nuclei. This is in sharp contrast to the effect of the spin-
orbit interaction, which becomes suppressed when the
electron is confined to dimensions shorter than the spin-
orbit length, such as in small quantum dots.

2. Effect of the Overhauser field on the electron-spin time
evolution

The electron spin will precess about the vector of the
total magnetic field it experiences, here the vector sum

of the externally applied magnetic field éo and the
nuclear field B ~- The longitudinal component of B N> 1€,

the component oriented parallel or opposed to By, di-
rectly changes the precession frequency by gugBy, irre-
spective of the strength B [Fig. 25(a)]. Throughout this
section, we call the longitudinal component Bj. For

v=1mT, the precession rate is increased by about
6 MHz (taking g=-0.44), and the electron spin picks up
an extra phase of 180° in just 83 ns. The effect of the
transverse components of the nuclear field B} depends
on the strength of B,. For By<Bj/, the electron spin
will precess about an axis very close to By [Fig. 25(b)].
For By> B}, in contrast, the transverse components of
the nuclear field only have a small effect: a change in the
electron-spin precession rate by %g,uBBi,/ 2B, and a tilt
of the rotation axis by arctan (By/B,) [Fig. 25(c)]. Tak-
ing By=1T and B},=1 mT, the precession frequency is
shifted by just 3 kHz, causing an extra phase of 180°
only after 166 ms; the rotation axis is then tilted by
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FIG. 26. Effect of the nuclear field on electron spin dynamics.
(a) Amplitude of the x component of the electron spin as a
function of time, under free precession about B+ B, for three
different values of B5 (dotted and dashed lines). Also shown is
the average of the three oscillations, which is seen to rapidly
decay (solid line). If an average was taken over more values of
B, from a Lorentzian distribution in the same range, the en-
velope of the oscillation would decay with a single exponent
(solid lines). A Gaussian distribution would yield a Gaussian
decay (see text). (b) Representation of the rotating magnetic
field §1 and the longitudinal nuclear field éf\, in a reference
frame rotating about Z at the same rate as By. The electron
spin will precess about the vector sum of these two fields,

rather than about the axis defined by ]§1.

~0.06°. For external magnetic fields above say 100 mT,
we are mainly concerned with the longitudinal nuclear
field. If the nuclear field By were fixed and precisely
known, it would affect the electron-spin dynamics in a
systematic and known way. In this case, there would be
no contribution to decoherence. However, the orienta-
tion and magnitude of the nuclear field change over
time. First, the hyperfine field or Overhauser field By
will change if the local nuclear polarization X7/,
changes. This can occur, for instance, through dynamic
nuclear polarization. Second, By can also change while
the net nuclear polarization remains constant. This hap-
pens when two nuclei with different A; flip-flop with

each other, such that =, A, changes.

At any given time, the nuclear field thus assumes a
random and unknown value and orientation, and this
randomness in the nuclear field directly leads to a ran-
domness in the electron-spin time evolution. During free
evolution, the electron spin will thus pick up a random
phase, depending on the value of the nuclear field, i.e.,
the single-spin coherence decays. The shape of the decay
(exponential, power law, etc.) is determined by the dis-
tribution of nuclear field values. For a longitudinal
nuclear field Bj, that is randomly drawn from a Gaussian
distribution of nuclear fields with standard deviation
V((B3)? (e.g., when every nuclear spin had equal prob-
abilities for being up or down), the decay would be
Gaussian as well, i.e., of the form exp[-#*/(T5)?], where
(Merkulov et al., 2002)

T* _ ﬁ\/z (28)
2 qup\((BL?)

For \((B%)?)=1 mT, 7; would be as short as 37 ns.
The time scale T, can be measured as the decay time

of the electron-spin signal during free evolution, aver-

aged over the nuclear field distribution [Fig. 26(a)]. The
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free evolution of the spin can be measured by tipping
the spin into the x-y plane, subsequently allowing the

spin to freely evolve about B, (assumed to be along 7),
and recording the magnetization in this plane as a func-
tion of the free evolution time interval [in NMR, this is
known as the free induction decay (FID)]. If the spin can
only be measured in the +Z basis, a so-called Ramsey
experiment should be performed instead. It starts off
like an FID but the magnetization is rotated back to the
Z axis after the free evolution time interval, so it can be
measured along Z. Averaging each data point in an FID
or Ramsey experiment over a sufficiently long time, is
equivalent to averaging over a large number of uncorre-
lated nuclear field values (assuming the system is er-
godic). Such experiments have recently been performed
(see Sec. IX), and gave the expected short time scales for
T5.

Also in the case of driven evolution, the nuclear field
will affect the time evolution. In a spin-resonance ex-
periment, for instance, a rotating magnetic field B, is
applied with frequency gugB,/h (on-resonance with the

Zeeman splitting), and perpendicular to By, (see also Sec.
IX.A). In the usual rotating reference frame, this corre-
sponds to a rotation about the B, axis. However, a lon-
gitudinal nuclear field will shift the electron-spin reso-
nance frequency, so that B; is no longer on-resonance
with the electron-spin precession. In the rotating frame,
the spin will then rotate about the vector sum of B, and
Bj3, [Fig. 26(b)], which may be a rather different rotation
than intended. In fact, the nuclear field has been the
main limitation on the fidelity of spin rotations in recent
electron-spin resonance experiments in a quantum dot
(see Sec. IX.A).

We have so far focused on the effect of the nuclear
field (mainly Bj) on the electron-spin phase. We now
turn to electron-spin flips caused by the nuclear field
(mainly by Bj}/). The semiclassical picture says that for
By< B}/ the electron spin will rotate about B}, i.e., it is
changed from spin up to spin down and back, while for
By> B}/, this hardly occurs (see Fig. 25). We arrive at a
similar conclusion from the quantum-mechanical pic-
ture: the hyperfine Hamiltonian, Eq. (26), permits direct
electron-nuclear flip-flops only when the two relevant
electron-spin states are very close in energy (since a
nuclear-spin flip can absorb only a small amount of en-
ergy). This effect has been observed in recent experi-
ments on two-electron singlet and triplet states in a
double quantum dot (Johnson, Petta, Taylor, et al., 2005)
(Sec. VIIL.D).

There still is another contribution from B3} to spin
flips (i.e., to T}). Since the nuclear field strength and
orientation depend on the collection of nuclear spins
that the electron wave function overlaps with, By de-
pends on the orbital the electron occupies. As a result,
like the spin-orbit interaction (see Sec. VIL.A), the hy-
perfine interaction also leads to admixing of spin and
orbital states. Here too phonons can induce transitions
between the perturbed spin states, and absorb the spin-
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flip energy (Erlingsson et al., 2001; Erlingsson and Naz-
arov, 2002, 2004; Abalmassov and Marquardt, 2004).
Whereas the transition amplitude due to the spin-orbit
interaction vanishes in lowest order at By=0 (see discus-
sion in Sec. VII.A.4), this is not the case for hyperfine
mediated transitions, so the hyperfine mechanism will be
relatively more important at low magnetic fields.

3. Mechanisms and time scales of nuclear field fluctuations

We have seen that the nuclear field only leads to a loss
of spin coherence because it is random and unknown—if

éN were fixed in time, we could simply determine its
value and the uncertainty would be removed. We discuss
here on what time scale the nuclear field actually fluctu-
ates. This time scale is denoted by f,,.

The study of nuclear dynamics due to internuclear
and electron-nuclear interactions has a long and rich his-
tory (Abragam, 1961; Meier and Zakharchenya, 1984;
Abragam and Bleaney, 1986; Slichter, 1990). When ap-
plied to quantum dots, theory predicts that the two most
important mechanisms responsible for fluctuations in
the nuclear field are the internuclear magnetic dipole-
dipole interaction (de Sousa and Das Sarma, 2003a,
2003c; Witzel and Rogerio de Sousa, 2005; Yao et al.
2005) and the electron-nuclear hyperfine interaction
(Khaetskii et al., 2002; Coish and Loss, 2004; Shenvi and
Rogerio de Sousa, 2005).

The Hamiltonian describing magnetic dipole-dipole
interactions between neighboring nuclei is of the form

Ho8igjk 3 7o

Hpp= 2 _lJTN<1 1 2(Ii‘ri,')(1,"ri/)>,
i<j 47T|rt/| ij|

(29)

where u is the permeability of free space, g; is the g

factor of nucleus i, uy is the nuclear magneton, and r,]

the vector connecting the two nuclei. The strength of the
effective magnetic dipole-dipole interaction between
neighboring nuclei in GaAs is about (100 us)™' (Shul-
man et al., 1958). In strong magnetic fields, we can dis-
card the nonsecular part of this Hamiltonian, and retain

21517
4I717)12 (30)

Higey i I+ ;= 3L = FE + 'L ~
=L+ LT -
for the coupling term between nuclear spins i and j of
the same species (for coupling between spins of different
isotopes, only the Ifljz term survives at high field). Here
I are the nuclear spin raising and lowering operators.
The I} terms in Eq. (30) are responsible for changing
By and B). This may occur on the 100 us time scale.
The flip-flop terms [;I; + I} affect Bj, but the flip-flop
rate between nuclei i and i+1 may be suppressed,
namely when |A;—A,,,| is greater than the internuclear
coupling strength (Deng and Hu, 2005) (as this causes an
energy mismatch). Thus when we consider the dipolar
interaction only, By’ evolves on a 100 us time scale, but
B3, may evolve more slowly.
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We now turn to the hyperfine interaction. So far we
only considered its effect on the localized electron spin,
but naturally the interaction [Eq. (26)] works both ways
and the nuclei evolve about the electron spin, just like
the electron spin evolves about the nuclear field. The
apparent field experienced by the nuclei is called the
Knight shift, and it has a strength A;~ (10 us)™! (Kha-
etskii et al., 2002; Merkulov et al., 2002; Coish and Loss,
2004) (the N nuclei with which the electron wave func-
tion overlaps share the total coupling strength A). When
we look at the hyperfine interaction Hamiltonian, Eq.
(26), we see that similar to the internuclear dipole-dipole
interaction, it contains I{S* terms as well as flip-flop
terms:

N

Hyr= >, A FLS* + BSY + 57
k

N
= D AILST + IS+ 215912, (31)
k

where S§* are the electron spin raising and lowering op-
erators. The transverse component of the nuclear field
By’ will evolve due to the /{S° terms, on a 10 us time
scale. B, will change on the same time scale only near
By=0, due to the electron-nuclear flip-flop components
in Eq. (31). At finite B, the energy mismatch between
the electron and nuclear Zeeman energies suppresses
electron-nuclear flip-flops, so here B}, cannot change by
direct electron-nuclear flip-flops.

The hyperfine interaction can also affect B, indirectly.
Two virtual electron-nuclear flip-flops (between one
nucleus and the electron and between the electron and
another nucleus) can together lead to a nuclear-nuclear
flip-flop (Shenvi and Rogerio de Sousa, 2005; Yao et al.,
2005; Deng and Hu, 2006). Such a flip-flop process be-
tween two nuclei i and j modifies B}, whenever A;# A;.
This virtual electron-nuclear flip-flop process continues
to be effective up to much higher B than real electron-
nuclear flip-flops. Eventually it is suppressed at high B
as well.

Altogether the dipole-dipole and hyperfine interac-
tions are expected to lead to moderate time scales
(10-100 us) for By fluctuations. At low By, the time
scale for B, fluctuations is similar, but at high B, Bj
fluctuations are very slow. Here ¢, is certainly longer
than 10-100 us and perhaps longer than a second. This
still needs to be confirmed experimentally, but an indi-
cation that ¢, may indeed be very long is that the decay
(due to spin diffusion) of nuclear polarization built up
locally at a quantum dot or impurity occurs on a time
scale of seconds to minutes (Paget, 1982; Hiittel et al.,
2004; Koppens et al., 2005) (see Sec. VIIL.D).

4. Electron-spin decoherence in a fluctuating nuclear field

In Sec. VIL.B.2, we saw that we lose our knowledge of
the electron-spin phase after a time T, in case the
nuclear field orientation and strength are unknown.
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Now suppose that we do know the orientation and
strength of the nuclear field exactly at time ¢=0, but that
the nuclear spin bath subsequently evolves in a random
fashion on a time scale ¢,,., as described in the previous
subsection. On what time scale 75, will the phase of the
electron spin then be randomized?

It may come as a surprise at first that 7, is not simply
the same or even of the same order as ¢,,,.. The reason is
that T, depends not only on the time scale of the nuclear
field fluctuations (f,,.), but also on the amplitude and
stochastics of the fluctuations. The typical amplitude is
given by the width of the nuclear field distribution,
which can be expressed in terms of 1/7,. Examples of
different stochastic models include Gaussian noise and
Lorentzian noise, which lead to distinct decoherence
characteristics (Klauder and Anderson, 1962; de Sousa,
2006). The actual value of T, is difficult to calculate ex-
actly, but can be estimated in various regimes to be
1-100 us.

The time scale T, is also hard to obtain experimen-
tally. In principle 7, could be determined by recording
an FID or Ramsey decay, whereby Bj, is reset to the
same initial value for every data point. This may require
measuring By, accurately and quickly, i.e., better than
the initial uncertainty in Bj; and in a time much shorter
than t,,. (Giedke et al, 2006; Klauser et al, 2006;
Stepanenko et al., 2006). Alternatively, 7, could be ob-
tained by recording all the data points needed to con-
struct an FID or Ramsey experiment within a time short
compared to f,,.

Experimentally, it may be much easier to obtain a
spin-echo decay time 7.4, well known from NMR
(Freeman, 1997; Vandersypen and Chuang, 2004). In its
simplest form, the Hahn echo, the random time evolu-
tion that takes place during a certain time interval 7, is
reversed during a second time interval of the same du-
ration, by applying a so-called echo pulse (180° rotation)
in between the two time intervals. Importantly, this un-
winding of random dephasing only takes place to the
extent that the random field causing it is constant for the
duration of the entire echo sequence. Thus the slow time
evolution of the nuclear field implies that the echo will
not be complete. We call the time scale of the remaining
loss of phase coherence T,

Like T,, Teuo is much longer than T; but also much
shorter than t,,.. For example, if nuclear field fluctua-
tions had Gaussian noise characteristics, the electron-
spin coherence in a Hahn echo experiment would decay
as exp(—t}/ tnucTZZ) (Herzog and Hahn, 1956). Taking
T;=10 ns and f,,,=10 s, we obtain a T, of 10 us, much
faster than ¢, itself. Nuclear field fluctuations may not
be characterized exactly by Gaussian noise, but never-
theless, predictions for 7, still range from 1 to 100 wus,
with contributions from the internuclear dipole-dipole
interaction (de Sousa and Das Sarma, 2003a; Witzel and
Rogerio de Sousa, 2005; Yao et al., 2005), the electron-
nuclear hyperfine interaction (Khaetskii et al., 2002;
Coish and Loss, 2004), and indirect nuclear-nuclear in-
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teractions, mediated by the hyperfine coupling (Shenvi
and Rogerio de Sousa, 2005; Yao et al., 2005; Deng and
Hu, 2006). Also, contrary to the usual case, the echo
decay is not well described by a single exponential. The
predicted form for the echo decay depends on the
magnetic-field strength, and on what terms in the Hamil-
tonian are then important, but can be very complex
(Coish and Loss, 2004; Yao et al., 2005; de Sousa, 2006).

The usefulness of the echo technique for effectively
obtaining an extended coherence time has been demon-
strated experimentally with two electron spins in a
double quantum dot, whereby a lower bound on 7, of
1 us was obtained at 100 mT (Petta, Johnson, Taylor, et
al., 2005) (Sec. IX.B). Similar echolike decay times were
observed in optical measurements on an ensemble of
quantum dots that each contain a single-electron spin
(Greilich, Yakovlev, et al., 2006).

We note that sometimes a distinction is made between
“dephasing,” referring to a loss of phase coherence that
can be reversed with echo techniques, and “decoher-
ence,” referring to a loss of phase coherence that cannot
be reversed. While this distinction is useful in practice,
we note that it is also somewhat artificial, in the sense
that any time evolution can in principle be reversed by a
sufficiently rapid sequence of multiple generalized echo
pulses (Augustine and Hahn, 1997; Viola and Lloyd,
1998; Viola et al., 1999).

Finally, we point out that it may be possible to extend
toues 1-€., to (almost) freeze the nuclear field fluctuations.
One possibility to do this is to fully polarize the nuclear
spins: if all nuclear spins point the same way, nuclear-
nuclear flip-flop processes can no longer take place and
also electron-nuclear flip-flops can only have a very
small effect (Khaetskii et al., 2002, 2003; Schliemann et
al., 2002). For this approach to be effective, the nuclear-
spin polarization must be really very close to 100%
(Schliemann et al., 2002) just 90% polarization hardly
helps. At present the highest nuclear-spin polarizations
reached in quantum dots are 60%, via optical pumping
(Bracker et al., 2005). Certainly other mechanisms for
freezing the nuclear-spin fluctuations could be consid-
ered, but no such effect has been demonstrated to date.

C. Summary of mechanisms and time scales

Our present understanding of the mechanisms and
time scales for energy relaxation and phase randomiza-
tion of electron spins in few-electron quantum dots is
summarized as follows (as before, most numbers are
specific to GaAs dots, but the underlying physics is simi-
lar in other dot systems).

Energy relaxation is dominated by direct electron-
nuclear flip-flops near zero field (or whenever the rel-
evant electron-spin states are degenerate). In this case,
T, is as low as 10-100 ns. As B, increases, electron-
nuclear flip-flops become suppressed, and energy must
be dissipated in the phonon bath. Spin-phonon coupling
is inefficient, and occurs mostly indirectly, mediated ei-
ther by the hyperfine interaction or by spin-orbit inter-
action. As a result 7, rapidly increases with B, and at
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1.75 T, T, has been measured to be 170 ms. As B, fur-
ther increases, the phonon density of states increases
and phonons couple more efficiently to the dot orbitals
(the phonon wavelength gets closer to the dot size), so at
some point relaxation becomes faster again and 7, de-
creases with field. At 14 T, a 120-us T, has been ob-
served. At still higher fields, the phonon wavelength
would become shorter than the dot size, and 7T is once
more expected to go up with field.

Phase coherence is lost on much shorter time scales.
Rapid dephasing of the electron spin results from the
uncertainty in the nuclear field, 7§~10 ns, irrespective
of B. If the uncertainty in the nuclear field is removed
or if the resulting unknown time evolution is unwound,
we recover T, or T.u,, respectively, which are much
longer. Phase randomization of the electron spin then
results from (slow) fluctuations in the nuclear field,
which occur on a time scale of 100 us to perhaps sec-
onds, and should lead to a T, or Ty, of 1-100 us. In-
deed, a lower bound on T,,, of 1 us was experimentally
observed at 100 mT. If the effect of the nuclear field on
the electron-spin coherence could be suppressed, the
spin-orbit interaction would limit 75, to a value of 27}
(to first order in the spin-orbit interaction), which, is as
we have seen, a very long time.

VIII. SPIN STATES IN DOUBLE QUANTUM DOTS

In this section, we discuss the spin physics of double
quantum dots. We start by describing the properties of
“spinless” electrons. Then, we show how the spin selec-
tion rules can lead to a blockade in electron transport
through the double dot. Finally, we describe how this
spin blockade is influenced by the hyperfine interaction
with the nuclear spins, and discuss the resulting dynam-
ics.

A. Electronic properties of electrons in double dots

We first ignore the spin of electrons and describe the
basic electronic properties of double quantum dots. The
properties of spinless electrons in double dots have been
treated in detail by Van der Wiel et al. (2003). Here we
give all theory relevant for electron spins in double dots
without going into the details of the derivations.

1. Charge stability diagram

Consider two quantum dots, labeled 1 and 2, whose
electrochemical potentials are controlled independently
by the gate voltages V;; and V;,, respectively. Figure
27(a) shows the equilibrium electron numbers (N,N,)
of the quantum dots as a function of V; and V;,, for
the case that the dots are completely uncoupled. Such a
plot is called a charge stability diagram. The lines indi-
cate the values of the gate voltages at which the number
of electrons in the ground state changes. Note that the
lines are exactly horizontal and vertical, since the elec-
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FIG. 27. Charge stability diagrams for (a) uncoupled and (b)
coupled double dots, depicting the equilibrium electron num-
bers (N1,N,) in dots 1 and 2, respectively. The lines indicate
the gate voltage values at which the electron number changes.
In (b), a finite cross capacitance between gate 1 (2) and dot 2
(1) is taken into account.

trochemical potential in either dot is independent of the
charge on the other dot, and each gate voltage only af-
fects one of the dots.

When the dots are capacitively coupled, addition of an
electron on one dot changes the electrostatic energy of
the other dot. Also, the gate voltage Vi (V,) gener-
ally has a direct capacitive coupling to quantum dot 2
(1). The resulting charge stability diagram is sketched in
Fig. 27(b). Each cross point is split into two so-called
triple points. The triple points together form a hexagonal
or “honeycomb” lattice. At a triple point, three different
charge states are energetically degenerate. The distance
between the triple points is set by the capacitance be-
tween the dots (the interdot capacitance) C,,. At low
source-drain bias voltage, electron transport through the
double dot is possible only at these triple points. In con-
trast, a charge sensing measurement will detect any
change in the electron configuration and therefore map
out all transitions, including those where an electron
moves between the dots [e.g., from (0,1) to (1,0)].

Figure 28 shows charge sensing data in the few-
electron regime. The absence of charge transitions in the
lower left corner of Fig. 28(a) indicates that the double
dot structure is completely depleted of electrons. This

-0.6

0 -0.3
AV (V)

-0.15
AVg4 (V)

FIG. 28. (Color online) Charge sensing data on a double dot in
the few-electron regime. Dark lines signal the addition of a
single electron to the double dot system. The absolute number
of electrons in dots 1 and 2 is indicated in each region as
Ni,N,. (a) The absence of dark lines in the lower-left region
indicates that the dot is empty there. (b) Zoom-in of the boxed
region of (a). Data adapted from Elzerman et al. 2003.
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allows the absolute number of electrons to be deter-
mined unambiguously in any region of gate voltage
space, by simply counting the number of charge transi-
tion lines from the (0,0) region to the region of interest.
Figure 28(b) displays a zoom-in of the boxed region in
Fig. 28(a). The bright lines in between the triple points
in Fig. 28(b) are due to an electron moving from one dot
to the other. This changes the number of electrons on
each individual dot, while keeping the total number of
electrons on the double dot system constant.

From now on, we assume the dots are in series, such
that dot 1 is connected to the source and dot 2 to the
drain reservoir. From a similar analysis as in Sec. 11.D,
the electrochemical potential of dot 1 is found to be

w1(Ny,N,) = U(Ny,N,) = UN; - 1,N,)

1
= (Nl - 5>EC1 +N,Ecy,

E
- ﬁ(CSVS +CVgi+ C12VG,2)

ECm
+ = (CpVp+CpVia+ CyVa ),

(32)

where Cj; is the capacitance between gate j and dot i, Cg
(Cp) is the capacitance from dot 1 (2) to the source
(drain), E; is the charging energy of the individual dot i,
and E,, is the electrostatic coupling energy.8 The cou-
pling energy E,, is the change in the energy of one dot
when an electron is added to the other dot. One can
obtain u,(N;,N,) by simply interchanging 1 and 2 and
also CpVp and Cg¢V in Eq. (32).

The solid lines in Fig. 29 depict the electrochemical
potentials around the triple points for low source-drain
bias. The diagrams schematically show the level arrange-
ment at different positions [u(N;,N,) and w,(Ny,N,)
are shown in short form (N;,N,) in the left and right dot,
respectively]. In this case, we have assumed the tunnel
coupling to be small (i.e., negligible with respect to the
electrostatic coupling energy). This is called the weak-
coupling regime.

When the tunnel coupling ¢, becomes significant, elec-
trons are not fully localized anymore in single dots but
rather occupy molecular orbitals that span both dots
(Van der Wiel et al., 2003). The molecular bonding or-
bital ¢z and the antibonding orbital ¢, are superposi-
tions of the single-dot states in the left dot ¢, and the
right dot ¢,:

U = ad) + By, (33)

8Note that in Van der Wiel et al. (2003) the cross-capacitance
terms (Cj, and C,) are neglected. However, they generally are
significant in lateral dots.
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FIG. 29. Electrochemical potential lines around the triple points for weak tunnel coupling (solid and dotted lines) and strong
tunnel coupling (dashed lines). Each line outlines the gate voltages where the corresponding electrochemical potential in the dots
is equal to the electrochemical potential in the reservoirs (which is defined as zero). The level diagrams indicate the positions of
the electrochemical potentials at several points in gate space. Inset: The naive expectation for the electrochemical potentials when

spin is included (dotted line).

s =P — ad,. (34)

When the single dot states are aligned, the energy of
bonding orbital is lower by [z.| than the energy of the
single dot orbitals, and the energy of the antibonding
orbital is higher by the same amount.

The tunnel coupling is revealed in the charging dia-
gram by a bending of the honeycomb lines near the
triple points, as depicted by the dashed lines in Fig. 29.
The value of the tunnel coupling can be determined ex-
perimentally from such a plot by measuring the bending
of the lines (Hiittel et al., 2005; Pioro-Ladriére et al.,
2005), or by measuring the charge distribution as a func-
tion of detuning between left and right dot potentials
(DiCarlo et al., 2004; Petta et al., 2004).

Note that, when drawing the diagram in Fig. 29, we
assumed the electrons to be spinless. Therefore the first
electron can enter the molecular bonding orbital which
takes |z.| less energy than in the case of weak tunnel
coupling. The second has to move into the antibonding
orbital because of the Pauli exclusion principle. Thus the
extra energy needed to add the second electron is E¢
+2[t,| (/.| more than for the weak-coupling case) and the
second triple point is pushed to higher gate voltages with
respect to the weak-coupling case.

When spin is taken into account, the orbitals become
doubly degenerate and both electrons can occupy the
bonding orbital. Thus it only takes E. extra energy to
add the second electron. This changes the charging dia-
gram drastically; namely, the dashed line in the (1,1) re-
gion (in the upper right corner in Fig. 29) moves to the
other side of the triple point. This scenario is sketched in

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

the inset of Fig. 29. However, experiments on double
dots with large tunnel coupling (Hiittel et al, 2005;
Pioro-Ladriére ef al., 2005), reproduce the main diagram
of Fig. 29, and not the diagram of the inset that includes
spin. The reason for this is that the Coulomb interaction
is typically one or two orders of magnitude larger than
the tunnel coupling. Therefore when the double dot is
occupied by two electrons, electrons are again strongly
localized. The orbital energy of the two-electron system
is then equal to the sum of the two single-dot orbitals,
which is the same as the sum of the bonding and the
antibonding orbital. When the second electron is added,
the tunnel coupling energy that was gained by the first
electron has to be “paid back,” which causes the second
triple point to appear at higher gate voltages than in the
weak-coupling case. Therefore Fig. 29 is recovered when
spin is included.

2. High bias regime: Bias triangles

When the source-drain bias voltage is increased, two
different types of tunneling can occur. Up to now, we
have only discussed tunneling between aligned levels,
where the initial and final electronic state by definition
have the same energy. This is termed elastic tunneling.
However, tunneling can also occur when there is an en-
ergy mismatch between the initial and final states (levels
are misaligned), in which case the process is called in-
elastic. For inelastic tunneling to take place, energy ex-
change with the environment is required to compensate
for the energy mismatch, since the process as a whole
has to conserve energy. One important example of en-
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FIG. 30. The triple points for an applied source-drain bias Vgp
and the drain kept at ground. A triangle is formed from each
triple point. Within this bias triangle charge transport through
the dot is energetically allowed. Gray lines and regions in the
triangles illustrate the gate voltages at which transitions involv-
ing excited-state levels play a role. Electrochemical potentials
corresponding to transitions involving an excited state are
shown in gray in the level diagrams.

ergy exchange is the absorption of one or more photons
under microwave or radio-frequency radiation, leading
to photon-assisted tunneling (Van der Wiel et al., 2003).
Energy emission usually takes place through phonons in
the surrounding lattice. Note that at cryogenic tempera-
tures the number of photons and phonons in thermal
equilibrium is usually negligle. Since inelastic tunneling
is a second-order process, the inelastic tunneling rate is
in general much lower than the elastic tunneling rate.
However, when there are no aligned levels elastic tun-
neling is suppressed and inelastic tunneling dominates
the electron transport.

The rate of inelastic tunneling between the dots is
highly sensitive to the density of states and the occupa-
tion probability of photons and phonons. Therefore a
double dot system can be used as a probe of the semi-
conductor environment (Van der Wiel et al., 2003) or as
a noise detector (Aguado and Kouwenhoven, 2000;
Onac et al., 2006). The energy window that is being
probed is determined by the misalignment between the
levels in the two dots. Since this misalignment is easily
tuned by gate voltages, a wide range of the energy spec-
trum can be investigated with very high resolution (typi-
cally of order 1 ueV).

When the source-drain bias voltage is increased, the
triple points evolve into bias triangles, as depicted in Fig.
30 for weak tunnel coupling. The electron numbers refer
to the triple points where the first electrons are added to
the double dot system; however, the following discussion
is valid for any number of electrons on either dot.
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To understand the electron transport within such a
triangle, we first look at the three legs. Along the base
leg, wi(Ni+1,N;)=pu,(N{,N,+1), and elastic tunneling
occurs. Moving along this same slope anywhere in the
plot will not change the relative alignment of the levels
in the two dots, but only change their (common) align-
ment with respect to the source and drain.

Moving upwards along the left leg of the triangle, w, is
fixed [u(1,0) is aligned with the source electrochemical
potential] and only w, is changed. At the bottom of the
triangle, the levels corresponding to transitions involving
only the ground states [u;(1,0) and u,(0,1), the black
levels in the diagrams] are aligned and elastic tunneling
is possible. Then, as u, is pulled down the levels become
misaligned and only inelastic tunneling can take place.
Generally, this will cause the current to drop. When pu, is
pulled down so much that a level corresponding to a
transition involving an excited state (gray level of dot 2
in the diagrams) enters the bias window, elastic tunnel-
ing becomes possible again, leading to a rise in the cur-
rent. When we move from this point into the triangle,
along a line parallel to the base of the triangle, these
levels remain aligned. Therefore a line of elastic tunnel-
ing is observed parallel to the base of the triangle (de-
picted as a dark gray line). Going even farther up along
the left leg of the triangle, levels are again misaligned
and only inelastic current flows. Beyond the top of the
triangle, u,(0,1) falls below the drain electrochemical
potential and the system is in Coulomb blockade.

Moving down the upper leg from the top of the tri-
angle, u, is fixed [u,(0,1) remains aligned with the drain
electrochemical potential] and w,; is pulled down. When
a level corresponding to a transition involving an excited
state in the left dot is pulled into the bias window (gray
level in left dot in the diagrams), there are two paths
available for electrons tunneling from the source onto
the first dot. A different current can therefore be ex-
pected in the gray part in the upper-right corner of the
triangle.

When the source-drain bias is inverted, electrons
move through the dot in the opposite direction and the
roles of dot 1 and dot 2 are reversed.

In principle, the different lines and regions of elastic
and inelastic tunneling allow the full energy-level spec-
trum to be determined of both dots. However, the vis-
ibility of lines and regions depends strongly on factors
such as the relative heights of the three tunnel barriers,
the efficiency of inelastic tunneling processes (which
again depends on the environment), and relaxation
within the dots. For example, if relaxation in the first dot
is much slower than the typical time for interdot tunnel-
ing, elastic current involving excited states in both dots 1
and 2 can be observed. Another example: If the tunnel
barrier between the source and dot 1 is much higher
than the other two, the tunnel process from source to
dot 1 dominates the behavior of the system and only
excited states of dot 1 will be resolved in the current
spectrum. In practice, the system should be tuned such
that the parameter of interest has the strongest effect on
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FIG. 31. Level diagrams for different detunings e between dot
1 and dot 2 (dotted line in the bias triangle). Note that the
average of the levels in the two dots is kept constant, and only
the difference between the levels is changed.

the current pattern, while the other factors can be ne-
glected.

From a high source-drain bias measurement as dis-
cussed here, all four gate capacitances can be deduced.
With those, all energy scales such as charging energies,
electrostatic coupling energy, tunnel coupling, and
energy-level spacing can be calibrated.

In many of the experiments that are discussed in the
following sections, the levels in the two dots are detuned
with respect to each other, while keeping the average of
the two at a constant level. This is achieved by changing
the gate voltages along a line exactly perpendicular to
the base of the bias triangle. The resulting axis is com-
monly referred to as the detuning axis, which we denote
by e. Figure 31 displays the level arrangements as a func-
tion of e.

B. Spin states in two-electron double dots

The physics of one- and two-electron spin states in
single dots was discussed in Sec. IV. In double quantum
dots, electrons can be transferred from one quantum dot
to the other by changing the electrostatic potentials us-
ing gate voltages. These interdot charge transitions con-
serve electron spin and are governed by spin selection
rules, leading to a phenomenon called Pauli spin block-
ade. In order to understand this spin blockade, we first
examine the spin states in the double dot system and the
possible transitions between these spin states, while ne-
glecting processes that lead to mixing of these spin
states. Such mixing terms will be introduced later, in Sec.
VIIL.D.

We focus on the two-electron regime, which has been
done for many recent double dot experiments. We work
in the region of the charge stability diagram where the
occupancy of the double dot can be (0,1), (1,1), or (0,2).

For (0,1) and (0,2) spin states, the spin physics is iden-
tical to the single dot case since the left quantum dot is
not occupied. We repeat the description of the single dot
states, as discussed in Sec. IV. In the (0,1) charge state,
the right dot contains a single electron. At zero magnetic
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field, the two spin states are degenerate. A finite mag-
netic field results in a Zeeman splitting between spin-up
and spin-down electrons, with | =E;+ AE,, where AE,
is the Zeeman energy splitting. In the (0,2) charge state,
there are four possible spin states: the singlet, denoted
by S(0,2), and the three triplets 7,(0,2), T4(0,2), and
T_(0,2). The spin parts of the wave functions of these
states are

$(0.2) = (112020 = | 12192, (35)
7,0.2) = 1,1, (36)
T0(0,2) = (11502) + 12122, (37)
T.(0.2) =152, (38)

where the subscript denotes the dot in which the elec-
tron resides. At zero magnetic field, the triplets 7(0,2)
are separated by Eg¢r from the singlet ground state
$(0,2). An in-plane magnetic-field Zeeman splits the
triplet spin states. As in the single dot case, a perpen-
dicular magnetic field tunes Egy and also Zeeman splits
the triplet states.

In the (1,1) charge state, the two-electron states are
also spin singlets and triplets, but with electrons in dif-
ferent dots:

SO, = (112 = L T)N2, (39)
T.(1.1) =|1112), (40)
To(L1) = (11112) + L 1212, (41)
T-(1,1) =]1115). (42)

The energy difference between the lowest-energy singlet
and triplet states J depends on the tunnel coupling 7. and
the single dot charging energy E.. When the single dot
levels in the two dots are aligned, J=4¢/ E¢ in the Hub-
bard approximation (Loss and DiVincenzo, 1998; Hu
and Das Sarma, 2000; Burkard, 2001; Burkard et al.,
2001). Figure 32(a) depicts the energies of the two-
electron spin states as a function of detuning between
the two dots, for the case of negligibly small tunnel cou-
pling. Since the three triplet states are degenerate, we
denote them here by T(1,1) and 7(0,2). The diagrams
indicate the electrochemical potentials in left and right
dot for three values of e.

Due to the tunnel coupling the (1,1) and (0,2) charge
states hybridize. In the case of spinless electrons, this
would result in an avoided crossing between the (1,1)
and (0,2) charge states that is characterized by a tunnel
splitting, 2\‘5%- However, since the interdot transitions
preserve spin, the (1,1) singlet (triplet) states only couple
to (0,2) singlet (triplet) states. As a result, the ground-
state singlets hybridize at a different value of detuning
than the triplets, as depicted in Fig. 32(b). At B=0, Eg;
is typically in the range 0.4—1 meV in electrostatically
defined dots in GaAs. This pushes the avoided crossings
of the triplets far away from the avoided crossing of the
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FIG. 32. (Color online) Energies of the two-electron spin sin-
glet and triplet levels in a double dot as a function of detuning
& between the levels in the two dots for (a) B=0 and negligible
tunnel coupling 7., (b) B=0 but significantly high value for ¢,
and (c) finite B and significantly high value for #.. The electro-
chemical potentials in the two dots are indicated for three val-
ues of detuning in the diagrams on top, for (a). Here (1,1)
denotes the electrochemical potential of both degenerate
states S(1,1) and 7(1,1). Note that other, higher-energy single
dot states will lead to avoided crossings at even larger values of
detuning.

singlets, which has two interesting consequences. First,
the singlet-triplet energy difference J strongly depends
on detuning, allowing simple electrical control over J.
Second, the charge distribution of the singlet and triplet
states are different over a wide range of detunings. For
example, at the value of detuning where the singlets
have an avoided crossing, electrons are in the charge
state [|(1,1))+](0,2))]/y2 in case they form a spin sin-
glet, but almost fully in the charge state |(1,1)) if they
form a spin triplet. This spin-dependent charge distribu-
tion allows readout of the spin state through charge
sensing (Engel et al., 2004; Taylor et al., 2005).

In a finite magnetic field, the triplet states are split by
the Zeeman energy. Figure 32(c) shows the energy levels
for a Zeeman splitting that exceeds the tunnel coupling.
The application of a large magnetic field can be used to
decouple the T, and T_ triplet states from the T, triplet
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state, thus confining the relevant state space to S and 7.

The singlet-triplet energy difference J is often referred
to as the exchange energy. In the strict sense of the
word, exchange energy refers to the difference in Cou-
lomb energy between states whose orbital wave func-
tions differ only in their symmetry (symmetric for a spin
singlet and antisymmetric for a spin triplet) (Ashcroft
and Mermin, 1974). In the case of two electrons in a
double dot, J can also include a large contribution due to
hybridization between the (1,1) and the (0,2) and (2,0)
charge states, especially near one of the avoided cross-
ings. In this sense, one could argue that J is not a true
exchange energy. However, the double dot spin system
can still be described by the Heisenberg spin Hamil-

tonian H=JS 15'2, where §1,2 are the electron-spin opera-
tors. Therefore J acts as an effective exchange coupling.
To avoid confusion, we minimize reference to J as ex-
change energy in this review.

C. Pauli spin blockade

The conservation of spin in electron tunneling leads to
current rectification in dc transport in the two-electron
regime. This effect, termed spin blockade or Pauli block-
ade, was first observed in experiments on vertically
coupled quantum dots (Ono et al., 2002). Later experi-
ments in few-electron lateral dots combined charge sens-
ing and transport to study the effect (Johnson, Petta,
Marcus, et al., 2005). Measurements of transport in the
Pauli blockade regime provided some of the first indica-
tions that the hyperfine interaction plays an important
role in the electron-spin dynamics. Pauli blockade has
also been utilized to implement spin-to-charge conver-
sion for readout of the spin state of electrons in double
quantum dots.

The origin of Pauli blockade is schematically illus-
trated in the insets of Fig. 33. At negative bias electrons
are transferred through the device in the sequence
(0,1)—1(0,2)—(1,1)—(0,1). In this cycle the right dot
always contains a single electron. Assume this electron is
spin up. Then, in the transition (0,1)—(0,2) the right
dot can only accept a spin-down electron from the leads
due to Pauli exclusion, and a S(0,2) state is formed.
Similarly, only a spin-up electron can be added if the first
electron is spin down. From S§(0,2), one electron can
tunnel to the left dot and then out to the left lead.

In contrast, when the bias voltage is positive charge
transport proceeds in the sequence (0,1)—(1,1)
—(0,2)—(0,1) and the left dot can be filled from the
Fermi sea with either a spin-up or a spin-down electron,
regardless of the spin of the electron in the right dot. If
the two electrons form a singlet state S(1,1), the elec-
tron in the left dot can transfer to the right dot forming
S(0,2). However, if electrons form one of the triplet
states 7(1,1), the electron in the left dot will not be able
to tunnel to the right dot because 7(0,2) is too high in
energy. The system will remain stuck in a (1,1) charge
state until the electron spin relaxes. Since the T, time
can approach milliseconds, the current in this direction
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FIG. 33. Current (/) measured as a function of source-drain
voltage (V) in a vertical double dot system. Nonzero current is
measured over the entire range of negative voltage. For posi-
tive bias, current is blocked in the range 2<V <7 mV. At bias
voltages exceeding 7 mV, the (0,2) triplet state becomes acces-
sible and Pauli blockade is lifted. Insets: Device schematic and
energy-level configuration at positive and negative bias volt-
ages. Data reproduced from Ono et al., 2002.

is negligible and the dot is said to be in spin blockade.
Because it is the Pauli exclusion principle that forbids
electrons to make a transition from a 7(1,1) state to
S(0,2), this blockade is also referred to as Pauli block-
ade.

The spin blockade effect leads to current rectification
in dc transport. Figure 33 shows an /-V curve taken from
a vertical double dot. Nonzero current is observed for
negative voltages. For positive bias voltage, spin block-
ade is observed in the range 2-7 mV. Once the bias
voltage exceeds the singlet-triplet splitting Eg; of the
(0,2) charge state, the 7(0,2) state is also energetically
accessible from 7(1,1) and the blockade is lifted. A the-
oretical model reproduces the observed current pattern
(Fransson and Résander, 2006).

Note that the spin blockade can be lifted by photon-
assisted tunneling (Sanchez, Cota, et al., 2006); the pho-
ton then supplies the energy needed to make the transi-
tion from 7(1,1) to 7(0,2). Interestingly, it is predicted
that for a suitable choice of the applied photon fre-
quency, the resulting pumped current can have a large
spin polarization (Cota et al., 2005; Sanchez, Platero, et
al., 2006).

Pauli blockade has also been observed in lateral
double dot systems. In these systems the tunnel rates
and offset energies are easily tuned. Moreover, devices
equipped with a charge sensor can be used to measure
the average occupancy of the double dot during charge
transport (see Fig. 2 for a device image). Figure 34 shows
experimental data from measuring current as a function
of V; and Vp in the one- and two-electron regimes for
both signs of bias (Johnson, Petta, Marcus, et al., 2005).
Apart from a change in the sign of current when the
voltage is changed, the one-electron data are mirror im-
ages of each other for positive and negative bias. This is
in contrast with data acquired in the two-electron re-
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FIG. 34. (Color online) Double dot current measured as a
function of V; and V in the one- and two-electron regimes. In
the one-electron regime, (a), (c), the finite bias triangles at
negative bias mimic the positive bias data, except for an over-
all change in the sign in the current. However, in the two-
electron regime, charge transport shows a striking asymmetry
when the sign of the bias voltage is changed. At negative bias
in the two-electron regime charge transport is blocked, except
near the edges of the finite bias triangles, where exchange of
electrons with the leads lifts the spin blockade. Insets: Simple
rate equation predictions of charge transport. Data reproduced
from Johnson, Petta, Marcus, et al., 2005.

gime, where current flows freely for positive bias but is
strongly suppressed at negative bias due to Pauli exclu-
sion [the voltage bias convention in this paper is oppo-
site to Ono et al. (2002), so blockade is observed at nega-
tive bias]. At negative bias, current is only observed
along the edges of the bias triangles, where an electron
can be exchanged with the leads lifting the spin blockade
(see diagrams in Fig. 34).

Charge sensing measurements on the time-averaged
occupancy of the double quantum dot during transport
directly demonstrate that the current rectification is due
to a blocked interdot charge transition. Figure 35 shows
the charge sensor conductance measured as a function
of V; and Vj in the one- and two-electron regimes for
both positive and negative bias. For the two-electron
case at positive bias charge transport in the lower-left
bias triangle proceeds in the sequence (0,1)—(0,2)
—(1,1)—(0,1). The charge sensing signal in the finite
bias triangles is a weighted average of the (0,1), (0,2),
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FIG. 35. (Color online) Charge sensor conductance g, mea-
sured as a function of V; and V' in the one- and two-electron
regimes. The charge sensor conductance in the lower-left finite
bias triangle in the one-electron regime is a weighted average
of the (0,0), (0,1), and (1,0) charge sensing signals. In the two-
electron Pauli blockade regime, the charge sensor conductance
in the finite bias triangles is pinned to the (1,1) charge sensing
value. This indicates that charge transport is blocked by the
(1,1)—(0,2) charge transition. Insets: Simple rate equation
predictions of charge sensor conductance. Data reproduced
from Johnson, Petta, Marcus, et al., 2005.

and (1,1) charge sensing levels. At negative bias in the
two-electron regime charge transport in the lower-left
bias triangle follows the sequence (0,1)—(1,1)—(0,2)
—(0,1). The data in Fig. 35(d) show that the charge
sensing conductance in the finite bias triangles is practi-
cally identical to the background (1,1) charge sensing
signal. These data indicate that the charge transition
from (1,1) to (0,2) is the limiting step in the current:
precisely what is expected for a double dot in spin block-
ade.

D. Hyperfine interaction in a double dot:
Singlet-triplet mixing

Early experiments in semiconducting heterostructures
in the quantum Hall regime demonstrated that spin-
polarized currents could be used to polarize the nuclei in
the substrate (Wald et al., 1994; Dixon et al., 1997). These
measurements gave a clear indication that electronic ef-
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FIG. 36. Leakage current in the Pauli spin blockade regime.
(a) Pauli blockade leakage current as a function of magnetic
field for increasing and decreasing magnetic field sweeps. (b)
Leakage current as a function of time for fields in the range
from 0.7 T (bottom trace) to 0.85 T (top trace). (c) Transient
behavior of the leakage current measured by moving in and
out of the Pauli blockade regime using Vp. Data reproduced
from Ono and Tarucha, 2004.

fects can have a strong influence on the nuclear-spin sys-
tem. So far we have ignored the consequences of the
hyperfine interaction in few-electron quantum dots, but
early indications of this important interaction were vis-
ible in the first Pauli blockade experiments by Ono et al.
(2002). In this section we review several recent experi-
ments that have shown that the hyperfine effect can
have profound consequences on the electron-spin dy-
namics in GaAs quantum dots.

In GaAs quantum dots each electron spin is coupled
to a bath of nuclear spins through the contact hyperfine
interaction (see Sec. VIL.B). The importance of the hy-
perfine field becomes apparent when considering two
spatially separated electron spins in a double dot struc-
ture. Each electron has a distinct orbital wave function
and averages over a different set of nuclei. As a result,
each electron experiences a slightly different nuclear
field. The difference in the nuclear fields ABy , couples
the singlet and triplet spin states. For example, the z
component of the nuclear field couples S(1,1) and

Ty(1,1), with the Hamiltonian [in the basis
S(1,1), Ty(1,1)]
0 AB
H:( EMB N,z>. (43)
g:U’BABN,z 0

Since § and T are not eigenstates of this Hamiltonian,
the off-diagonal terms will drive rotations between S
and T}, Similarly, the x component and the y component
of the nuclear field mix 7,(1,1) and 7_(1,1) with S(1,1).

Figure 36(a) shows measurements of the leakage cur-
rent in the Pauli spin blockade regime in vertical double
dots as a function of magnetic field for two different
sweep directions (Ono and Tarucha, 2004). Upon in-
creasing the magnetic field, the leakage current was
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FIG. 37. Dependence of leakage current on the Zeeman en-
ergy. (a) Effect of the Zeeman energy on S(1,1) and 7(1,1)
states, which are separated by an energy J. The S(1,1) and
T_(1,1) states become degenerate when the Zeeman energy is
equal to J. (b) Magnetic-field dependence of the leakage cur-
rent measured at various values of source-drain voltages Vp
in the Pauli blockade region. Each curve is offset by 1 pA from
the top. Data reproduced from Tarucha et al., 2006.

nearly constant until B=0.5 T, where a sudden increase
in the leakage current was measured. The leakage cur-
rent decreased suddenly for fields exceeding 0.9 T. Mea-
surements of the leakage current for the opposite
magnetic-field sweep direction showed hysteretic behav-
ior. The amount of hysteresis decreased for slower
magnetic-field sweep rates. In the high leakage current
regime (B=0.7 T), the leakage current showed surpris-
ing oscillations in time. The frequency of these oscilla-
tions was a sensitive function of the external field [see
Fig. 36(b)]. By moving in and out of the Pauli spin block-
ade regime using gate voltages, Ono ef al. determined
that the oscillatory time dependence of the leakage cur-
rent developed on a 5-min time scale. Moreover, the
leakage current was modified by the application of cw
radiation at the "'Ga or ®Ga NMR lines. All these as-
pects indicate that the nuclear spins play a major role in
the observed behavior.

The leakage current in the Pauli spin blockade region
occurs due to spin relaxation from 7_(1,1) to S(1,1) and
the hysteretic behavior observed in Fig. 36(a) can be ex-
plained in terms of triplet-to-singlet relaxation via
hyperfine-induced flip-flops with the spins of the lattice
nuclei in the dot. In the measured device, detuning be-
tween the two dots corresponds to a point just to the
right of the avoided crossing between S(1,1) and S(0,2)
in Fig. 32(b). Here, S(1,1) is slightly higher in energy
than 7T(1,1). This energy separation is about 10 ueV in
the measured device. At zero magnetic field, this energy
mismatch makes the flip-flop mechanism between elec-
tron and nuclear spins inefficient. However, the energy
difference is compensated by the Zeeman energy at a
magnetic field of about 0.5 T, which is comparable to the
magnetic field where a current step is observed [indi-
cated by a triangle in Fig. 36(a)]. On approaching this
particular magnetic field, 7_(1,1) and S(1,1) become de-
generate [see Fig. 37(a)]. Then, the hyperfine-induced
T_(1,1)-to-S(1,1) relaxation becomes efficient, because
energy as well as spin is conserved in flip-flops between
the electronic and nuclear-spin systems. Many such flip-
flops lead to a finite nuclear-spin polarization, which acts
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back on the electron as an effective magnetic field (see
Sec. VII.A). Because the nuclear-spin has a long lifetime
(on the order of minutes), a nuclear-spin polarization
accumulates to sustain the 7_-S degeneracy condition
on sweeping down the external field (Ono and Tarucha,
2004). An increasing nuclear field thus compensates the
decreasing external magnetic field; in other words, the
effective magnetic field resulting from nuclear-spin po-
larization adds to the external field. From the consider-
ations in the Appendix, we see that this implies that the
electron spin is changed by AS,=+1; this is consistent
with hyperfine-induced transitions from 7_ to S. The hy-
perfine interactions are thus the origin of the hysteretic
loop. We note that the similar effect was well studied in
electron-spin resonance (ESR) experiments on two-
dimensional electron gases (Dobers ef al., 1988; Teraoka
et al., 2004).

More detailed experiments on the hysteretic behavior
have been performed for a vertical double dot, as shown
in Fig. 37(b) (Tarucha et al., 2006). The observed hyster-
etic behavior significantly depends on the source-drain
voltage, that is, the hysteretic loop becomes small and
shifts to the lower field for the higher source-drain volt-
age V¢p. This is well understood in terms of the decrease
of singlet-triplet energy splitting, which is estimated
from the threshold field (arrows) as a measure: increas-
ing V¢p increases the detuning between two dots. As can
be seen from Fig. 32(b), this decreases the energy differ-
ence between 7(1,1) and S(1,1) and therefore a smaller
magnetic field is needed to compensate for it.

Further insight into the role of the hyperfine interac-
tion on the electron spin-dynamics was gained in experi-
ments on lateral quantum dots (Koppens et al., 2005).
These experiments measured the Pauli spin blockade
leakage current as a function of the external magnetic
field and of the exchange splitting separating the (1,1)
singlet and triplet spin states. Figure 38 explores the tun-
nel coupling and magnetic-field dependence of the Pauli
blockade in plots of the double dot current as a function
of V; and Vp. For strong interdot tunnel couplings cur-
rent rectification due to Pauli blockade is observed [Fig.
38(a)]. When the tunnel coupling is reduced, the Pauli
blockade is lifted and a substantial current starts to flow,
as shown in Fig. 38(b). Increasing the magnetic field to
100 mT quenches this leakage current [see Fig. 38(c)]. In
all cases, a large current is observed when the voltage
bias exceeds the (0,2) singlet-triplet energy difference
EST.

These data can be explained by considering the de-
pendence of the two-electron spin states on magnetic-
field and exchange splitting, as illustrated in Fig. 32 [see
also Coish and Loss (2005) and Jouravlev and Nazarov
(2006)]. For small tunnel coupling [Fig. 32(a)], the singlet
S(1,1) and the three triplets 7(1,1) are nearly degener-
ate over the entire range of detuning. Increasing the tun-
nel coupling results in a finite exchange splitting be-
tween S(1,1) and all 7(1,1) states [Fig. 32(b)]. The
inhomogeneous hyperfine fields mix S(1,1) and 7(1,1)
when the energy splitting between these states is less
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FIG. 38. (Color online) Transport in the Pauli blockade regime
as a function of V; and V. (a) In the limit of strong tunnel
coupling current suppression due to Pauli blockade is ob-
served. For weak tunnel coupling, the Pauli blockade leakage
current displays a striking magnetic-field dependence. (b) At
B=0 mT, Pauli blockade is lifted near the (1,1)-(0,2) charge
transition (near zero detuning). In contrast, (c) for B
=100 mT, current is suppressed due to Pauli blockade. Data
reproduced from Koppens et al., 2005.

than or comparable to the nuclear field scale E|
~100 neV. This condition is achieved over the entire
range of detunings for small tunnel coupling but only at
large detuning for strong tunnel coupling. An external
field splits off the mg=+1 triplet states 7, and 7_ by the
Zeeman energy [Fig. 32(c)]. When B < B these states
also rapidly mix with S(1,1) due to the inhomogeneous
hyperfine fields. However, when B> By the T, and T_
states do not mix with S(1,1) anymore, and spin block-
ade is recovered.

Time-resolved techniques have been used to measure
the hyperfine-induced relaxation of a spin triplet state in
a two-electron double quantum dot (Johnson, Petta,
Taylor, et al., 2005; Petta, Johnson, Yacoby, et al., 2005),
These experiments used pulsed gate techniques to pre-
pare a spin triplet state and then measure the decay of
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FIG. 39. (Color online) Charge sensor conductance g, mea-
sured as a function of V; and Vj using the T pulse sequence.
The triangular shaped region in the (0,2) region of the charge
stability diagram, termed the pulse triangle, is due to spin
blocked interdot charge transitions. The relaxation time is de-
termined by measuring the decay of this signal as a function of
time [see (a),(b)]. T shows a strong dependence on magnetic
field. This is apparent in the B=0 mT data of (c), where near
zero detuning the spin states have completely relaxed on 8 us
time scales. For long times, 7,,=80 us and B=0 mT the spin
states have completely relaxed and the pulse triangle is absent.
Data reproduced from Johnson, Petta, Taylor, et al., 2005.

that spin state using spin-to-charge conversion. The
pulse experiment is performed near the (1,1)-(0,2) region
of the charge stability diagram. Gates are set in (0,1) to
empty the left dot. A pulse then shifts the gate voltages
to the (1,1) region of the charge stability diagram. A
spin-up or spin-down electron enters the left dot form-
ing a spin singlet or spin triplet state. A spin triplet state
is formed 75% of the time. To measure the relaxation
time 7 of the spin triplet state, a third pulse is applied
to the device which tilts the double well potential so that
$(0,2) is the ground state. In order for the left electron
to tunnel to the right dot, the (1,1) triplet state must spin
relax to S(1,1) and then tunnel to $(0,2). By measuring
the occupancy of the double dot as a function of the
time spent in the biased configuration the spin relax-
ation time can be determined.

Representative data are shown in Fig. 39 as a function
of magnetic field and time in the biased configuration
7y~ In Fig. 39(a) g, is plotted as a function of V; and Vj
with B=100 mT and 7,,=8 us. A triangular shaped sig-
nal (pulse triangle) appears in the (0,2) region of the
charge stability diagram, which is indicative of spin
blocked transitions. For B=100 mT and 7,,=80 us the
signal in the pulse triangle reduces to a value approach-
ing the background S§(0,2) charge sensing level, indicat-
ing that 7),~ 7¢7 and the spin blocked triplet states have
relaxed to S(1,1) and tunneled to S(0,2). In addition to
the observed time dependence a strong magnetic-field
effect is observed. Reducing B from 100 to 0 mT
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FIG. 40. (Color online) Spin-relaxation time 7, of the double
dot spin triplet plotted as a function of detuning for a range of
external magnetic-fields. At low detunings, a strong magnetic-
field dependence is observed due to hyperfine driven spin re-
laxation. At large detunings, spin relaxation occurs due to cou-
pling to the leads, and is independent of magnetic field. Data
are fitted using a simple model of hyperfine driven relaxation
and thermally activated coupling to the leads. Data repro-
duced from Johnson, Petta, Taylor, et al., 2005.

quenches the triplet state signal near the interdot charge
transition for the 7,,=8 us data, which implies that spin
relaxation is much faster near zero field at small detun-
ings. Finally, with B=0 mT and 7,,=80 us the signal in
the pulse triangle is completely absent indicating com-
plete spin relaxation.

The full dependence of the spin triplet relaxation time
T, as a function of magnetic field and detuning is plotted
in Fig. 40. At small detunings near the interdot charge
transition, 7 displays a strong dependence on magnetic
field. Simply increasing the field from 0 to 100 mT ex-
tends 7 from microsecond to millisecond time scales.
At larger values of the detuning, 7 is nearly indepen-
dent of magnetic field. This indicates that hyperfine-
mediated spin relaxation is no longer dominant, but that
relaxation is instead due to a coupling to the leads
(which is independent of magnetic field). Experimental
data are fitted using a simple model of spin relaxation
from 7(1,1) to S(1,1) followed by inelastic decay from
S(1,1) to S(0,2). The model assumes hyperfine-driven
spin relaxation as well as a spin relaxation contribution
from coupling to the leads at large detunings. Best fits to
the model give By=2.8 mT, which is consistent with the
estimated number of nuclei in the dot.

IX. COHERENT SPIN MANIPULATION
A. Single-spin manipulation: ESR

A variety of techniques can be used to coherently
drive transitions between the Zeeman split levels of a
single electron. The most well-known approach is elec-
tron spin resonance (ESR), whereby a rotating magnetic
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a)

FIG. 41. Motion of the electron spin during a spin-resonance
experiment. (a) The motion as seen in a reference frame that
rotates about the Z axis at the same frequency f,. as the spin
itself and the resonant rotating magnetic field B;. Naturally,
the rotating field B 1 lies along a fixed axis in this rotating ref-
erence frame. An observer in the rotating frame will see the
spin simply precess about él. (b) An observer in the laboratory
reference frame sees the spin spiral down over the surface of
the Bloch sphere.

field B, is applied perpendicularly to the static field B
along Z, and on-resonance with the spin-flip transition
energy (f,.=gupB/h), as illustrated in Fig. 41 (Poole,
1983). Alternatively, spin rotations could be realized by
electrical or optical excitation. Electric fields can couple
spin states through the spin-orbit interaction (Dobro-
wolska et al., 1982; Kato, Myers, Gossard, et al., 2003;
Debald and Emary, 2005; Schulte et al., 2005; Golovach
et al., 2006) (see also Sec. VII.A), by making use of an
inhomogeneous static magnetic field (Tokura ef al,
2006), or by g-tensor modulation (Kato, Myers, Driscoll,
et al., 2003). Optical excitation can induce spin flips via
Raman transitions (Imamoglu et al., 1999) or the optical
Stark effect (Gupta et al., 2001). To date, driven coher-
ent rotations of a single spin in a solid have only been
realized using ESR, and only in a few specific systems
(Jelezko et al., 2004; Rugar et al., 2004; Xiao et al., 2004;
Hanson et al., 2006), including in a quantum dot (Kop-
pens et al., 2006). In addition, the free precession of an
electron spin in a quantum dot has been observed with
optical techniques (Dutt et al., 2005; Greilich, Oulton, et
al., 2006).

The quantum dot ESR experiment was realized by
Koppens et al. (2006), and is inspired by the idea of En-
gel and Loss to tune a single quantum dot to Coulomb
blockade with the electrochemical potential alignment
as shown in Fig. 42(a), such that the Coulomb blockade
is lifted when the electron spin is repeatedly flipped (En-
gel and Loss, 2001, 2002). In practice, this requires exci-
tation in the microwave regime, as the Zeeman splitting
must be well above the thermal energy. Furthermore,
the alternating electric fields that are unavoidably also
generated along with the alternating magnetic field can
kick the electron out of the dot via photon-assisted tun-
neling (PAT) processes (Platero and Aguado, 2004). In
early attempts to detect ESR, PAT processes and heat-
ing of the electron reservoirs lifted the blockade long
before enough power was applied to lift the blockade by
ESR (Hanson, 2005). Efforts to suppress the electric-
field component while maximizing the magnetic compo-
nent, via optimized cavities (Simovi¢ et al., 2006) or mi-
crofabricated striplines (Koppens et al., 2006), have so



Hanson et al.: Spins in few-electron quantum dots 1255

(a)
- +
(b)
[ bl 1£|~:|3
+ + +

FIG. 42. (Color online) Schematic diagrams of a single quan-
tum dot and a double quantum dot, illustrating electrical de-
tection of ESR. In both cases, transport through the system is
blocked, but the blockade is lifted when the ESR condition is
satisfied and the spin of the electron is flipped. (a) The two
electrochemical potential levels shown are the spin-up and
spin-down levels of the lowest single-electron orbital. The sys-
tem is in Coulomb blockade. (b) The levels shown are spin
blockade in double dots as discussed in Sec. VIII.C. The Zee-
man sublevels are not shown.

far not been sufficient to overcome this problem.

Instead, ESR detection in quantum dots has been re-
alized using two quantum dots in series, tuned to the
spin blockade regime described in Sec. VIII.C. The two
dots are weakly coupled, and subject to a static magnetic
field B, such that the T state is mixed with the singlet
but the 7. states are not. Current is then blocked as
soon as the double dot is occupied by two electrons with
parallel spins (one electron in each dot), but the block-
ade is lifted when the spin in the left or the right dot is
flipped [Fig. 42(b)].

In this double dot ESR detection scheme, the relevant
transition occurs between the two dots. This transition is
not affected by temperature broadening of the leads. As
a result, ESR detection can be done with Zeeman split-
tings much below the thermal energy, and thus with ex-
perimentally much more accessible frequencies. Further-
more, by applying a large voltage bias across the double
dot structure, photon-assisted tunneling processes can
be greatly suppressed.

The ESR response is seen clearly in transport mea-
surements through the double dot. When the static mag-
netic field is swept, clear peaks in the current develop at
the resonant field when an ac magnetic field is turned
on, as seen in Fig. 43 (the alternating magnetic field B,
can be decomposed into a component with amplitude
B,=B,./2 rotating in the same direction as the spin pre-
cession and responsible for ESR, and a component ro-
tating the opposite way, which hardly affects the spin
because it is very far off-resonance). The characteristic
signature of ESR is the linear dependence of the satel-
lite peak location on the rf frequency which is seen in
the data when the rf frequency is varied from
10 to 150 MHz. A linear fit through the top of the peaks
gives a g factor with modulus 0.35+0.01, which is similar
to the values obtained from high-bias transport mea-
surements in single dots (see Sec. IV).

In order to observe coherent single-spin rotations, the
system is pulsed into Coulomb blockade while B, is ap-
plied. This eliminates decoherence induced by tunnel
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FIG. 43. Detection of ESR in a double dot. (Color online) (a)
Energy levels of the two-electron spin states in the double dot.
ESR can drive transitions between states with parallel spins to
states with antiparallel spins, thereby lifting spin blockade. (b)
Measured current through two quantum dots in the spin block-
ade regime in the absence (dark line; blue) or presence (light
line; pink) of an ac magnetic field. The (light pink) curve is
offset by 100 fA for clarity. At zero field, all three triplets are
admixed with the singlet, so here the current is never blocked.
With the ac field turned on, two satellite peaks develop at the
electron-spin-resonance condition. Inset: the amplitude of the
ESR peaks increases linearly with rf power (B2,) before satu-
ration occurs, as predicted Engel and Loss, 2001. (c) Measured
current (in color scale) through the two dots as a function of
static magnetic field and excitation frequency. Data repro-
duced from Koppens et al., 2006.

events from the left to the right dot during the spin ro-
tations. The experiment then consists of three stages
(Fig. 44): initialization through spin blockade in a statis-
tical mixture of 77 and ||, manipulation by a rf burst in
Coulomb blockade, and detection by pulsing back for
projection [onto S(0,2)] and tunneling to the lead. If one
of the electrons is rotated over (2n+ 1) (with integer n),
the two-electron state has evolved to 7] (or | 1), giving a
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FIG. 44. (Color online) The control cycle for coherent manipu-
lation of the electron spin via electron-spin resonance.

maximum contribution to the current (as before, when
the two spins are antiparallel, one electron charge moves
through the dots). However, no electron flow is expected
after rotations of 2n, where two parallel spins are in
the two dots after the rf burst.

The measured dot current oscillates periodically with
the rf burst length (Fig. 45), demonstrating driven, co-
herent electron-spin rotations, or Rabi oscillations. A
key signature of the Rabi process is a linear dependence
of the Rabi frequency on the rf burst amplitude B;
(frabi=gmpB1/h). This is verified by extracting the Rabi
frequency from a fit of the current oscillations of Fig.
45(b) with a sinusoid, which gives the expected linear
behavior [Fig. 45(b), inset]. The maximum B; that could
be reached in the experiment was ~2 mT, correspond-
ing to /2 rotations of 25 ns (i.e., a Rabi period of
~100 ns). The main limitation that prevented the use of
larger B;’s was still photon-assisted tunneling, even in
this double dot detection scheme. From the spread in
the nuclear field and the rf field strengths that could be
applied, a fidelity of 75% was estimated for intended
180° rotations (Koppens et al., 2006).

The oscillations in Fig. 45(b) remain visible through-
out the entire measurement range, up to 1 us. This is
striking, because the Rabi period of >100 ns is much
longer than the time-averaged coherence time T; of
roughly 25 ns, caused by the nuclear field fluctuations
(see Sec. VIL.B). Slow damping of the oscillations is only
possible because the nuclear field fluctuates slowly com-
pared to the time scale of spin rotations and because
other mechanisms, such as the spin-orbit interaction, dis-
turb the electron-spin coherence only on even longer
time scales.

Finally, we note that in this first ESR experiment the
excitation was on-resonance with either the spin in the
left dot or the spin in the right dot, or with both, de-
pending on the value of the random nuclear fields in
each of the two dots. In all cases, blockade is lifted and
ESR is detected. In future experiments, controllable ad-
dressing of the spins in the two dots separately can be
achieved through a gradient in either the static or the
oscillating magnetic field. Such gradient fields can be
created using a ferromagnet or an asymmetric stripline.
Alternatively, the resonance frequency of the spins can
be selectively shifted using local g-factor engineering
(Jiang and Yablonovitch, 2001; Salis et al., 2001).

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

Spins in few-electron quantum dots

(@) s00} S P-8 dBm Bi~1.5mT P

350}
300
250
200

150}9

Dot current (fA)

100

50}

0 200 400 600 800 1000
Burst time (ns)

210

0 35 7
600 (MA)

200 400
Burst time (ns)

FIG. 45. (Color online) Coherent single-spin rotations. (a) The
dot current—reflecting the spin state at the end of the rf
burst—oscillates as a function of rf burst length (curves offset
by 100 fA for clarity). The period of the oscillation increases
and is more strongly damped for decreasing rf power (P is the
estimated power applied to the on-chip strip line). Each mea-
surement point is averaged over 15 s. Solid lines are obtained
from numerical computation of the time evolution of the elec-
tron spins, using a simple Hamiltonian that includes B, By, and
a Gaussian distribution of nuclear fields in each of the two
dots. (b) The oscillating dot current (in color scale) is displayed
over a wide range of rf powers (the sweep axis) and burst
durations. Inset: The dependence of the extracted Rabi fre-
quency frap; on rf power. Data reproduced from Koppens et
al., 2006.

B. Manipulation of coupled electron spins

It has been shown that single spin rotations combined
with two-qubit operations can be used to create basic
quantum gates. For example, Loss and DiVincenzo have
shown that a XOR gate is implemented by combining
single-spin rotations with YSWAP operations (Loss and
DiVincenzo, 1998). In the previous section experiments
demonstrating single spin manipulation were reviewed.
To implement more complicated gate sequences, two-
qubit interactions are required. In this section we review
experiments by Petta et al. that have used fast control of
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FIG. 46. (Color online) Measurement of the singlet-triplet en-
ergy difference. (a) Schematic representation of the pulse se-
quence used to measure the singlet state decay. (b) Energy of
the two-electron spin states as a function of detuning for the
singlet-triplet qubit. Zero detuning is defined as the value for
which the energies of S(1,1) and S(0,2) are equal. At positive
detunings, the ground state is S(0,2). For negative detunings,
and at finite fields, S and T|) are nearly degenerate. At zero
magnetic field, the triplet states are degenerate. (c) Singlet
state probability measured as a function of detuning and mag-
netic field for 7¢=200 ns>T5. (d) Hybridization of the (1,1)
and (0,2) charge states results in a gate-voltage-tunable energy
splitting, J(g). Data reproduced from Petta, Johnson, Taylor, ez
al., 2005.

the singlet-triplet energy splitting in a double dot system
to demonstrate a \SWAP operation and implement a
singlet-triplet spin-echo pulse sequence, leading to mi-
crosecond dephasing times (Petta, Johnson, Taylor, et al.,
2005).

A few-electron double quantum dot is used to isolate
two electron spins (the device is similar to that shown in
Fig. 2). The device is operated in the vicinity of the (1,1)-
(0,2) charge transition (see Fig. 32). The absolute num-
ber of electrons in the double dot is determined through
charge sensing with the QPC.

The energy of the two-electron spin states as a func-
tion of detuning is illustrated in Fig. 46(b) (see also Fig.
32 for a zoom-out). At positive detuning the ground
state is S(0,2). The triplets, 7, _(0,2) are off-scale in
this plot (Eg7=0.4 meV). For sufficiently negative detun-
ings, S(1,1) and Ty(1,1) are nearly degenerate. An ex-
ternal magnetic field splits off 7, (1,1) and 7_(1,1) by
the Zeeman energy. Near £=0, the singlet states S(1,1)
and S(0,2) are hybridized due to the interdot tunnel
coupling ¢.. This hybridization results in an energy split-
ting J(e) between Ty(1,1) and S(1,1) that is a sensitive
function of the detuning.

This energy-level diagram can be mapped out experi-
mentally by measuring the decay of a initially prepared
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singlet state as a function of magnetic field and detuning.
The pulse sequence is schematically shown in Fig. 46(a)
(see also Fig. 32). The singlet state S(0,2) is prepared at
positive detuning. A pulse is applied to the device which
lowers the detuning, so that the two electrons forming
the spin singlet state are separated [one electron in each
dot, S(1,1)]. The spins are then held in the separated
configuration for a time 7,> T;. At locations in the
energy-level diagram where S is nearly degenerate with
one of the triplet states fast spin mixing will occur,
thereby reducing the singlet occupation Pg. Figure 46(c)
shows Py as a function of B, and e. A strong magnetic-
field-dependent signal is observed, corresponding to the
S(1,1)-T,(1,1) degeneracy. For detunings more negative
than —1.5 mV, S(1,1) and Ty(1,1) are nearly degenerate
resulting in a reduced singlet state probability. J(e) is
extracted from the S(1,1)-7.(1,1) degeneracy and is
plotted in Fig. 46(d). As can be seen from this figure, a
shift in detuning of just a few mV reduces J from a few
peV to well below 100 neV.

Hyperfine fields were shown in Sec. VIIL.D to lead to
current leakage in the Pauli blockade regime and to en-
hanced low-field spin relaxation rates. One relevant
question for quantum information processing is how
long two spatially separated electron spins retain coher-
ence in this solid-state environment. To directly measure
this time a two-electron spin singlet state is prepared,
then the electron spins are spatially separated, and fi-
nally correlations between the electron spins are mea-
sured at a later time. This experiment is performed using
fast electrical control of J. In the spatially separated (1,1)
configuration the electron spins experience distinct hy-
perfine fields. In a semiclassical picture, the electron
spins precess about the local hyperfine fields. Spatial
variations in By, ABy, result in different spin precession
rates for the spatially separated electron spins. This
drives a rotation between S(1,1) and the triplet states.
To measure the rotation rate in the hyperfine fields the
separation time 7, is varied.

The rotation rate in the presence of the hyperfine
fields is determined by performing spin-to-charge con-
version after a separation time 7g. Detuning is increased
and the double well potential is tilted so that S(0,2) is
the ground state. A separated singlet state S(1,1) will
adiabatically follow to §(0,2), while the triplets
T,(-(1,1) will remain in a spin blocked (1,1) charge
state for a long time 7. A charge sensing signal of (0,2)
indicates that the separated spins remain in the singlet
state, while a charge signal of (1,1) indicates that the
separated spins rotated into a triplet state.

Figure 47 shows the singlet state probability as a func-
tion of separation time 75, P(7g) for B=0 and B
=100 mT. For 73<T, we find Pg~1. Py exhibits a
Gaussian decay on a 10-ns time scale and has long time
saturation values of 0.5 (0.7) for B=0 (B=100 mT). The
data are fitted using a simple semiclassical model of the
hyperfine fields assuming an average over many nuclear-
spin configurations. Best fits to the data give By
=23 mT and T;:10 ns. The theoretical curves account
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FIG. 47. (Color online) Singlet state probability Py measured
as a function of separation time 75. Data points are acquired at
B=0 and 100 mT. Solid lines are best fits to the data using a
semiclassical model of the hyperfine interaction. Data repro-
duced from Petta, Johnson, Taylor, et al., 2005.

for a measurement contrast of ~60%. Long time Pg val-
ues reflect the spin state degeneracy at zero and finite
fields. The measurement shows that the separated spins
lose coherence in ~10 ns.

Two electron spins can be manipulated by fast control
of the singlet-triplet energy splitting /. The Hamiltonian
of the two-electron system in the basis (|S), |T;,)) can be
approximated for zero and negative detuning by

H_( ~J(e) gMBABN,Z>
g/'LBABN,z 0 '

Note that |S) and |T,) are defined as the lowest-energy
spin singlet state and spin 7-triplet state, respectively.
Whereas the |T}) state is almost a pure (1,1) orbital state
in the region of interest, the state |S) has an orbital char-
acter that changes with detuning due to the hybridiza-
tion of S(1,1) and S(0,2) [see Fig. 46(b)]. Since the dif-
ference between the nuclear fields in the dots ABy acts
on S(1,1) but not on S(0,2), the Hamiltonian (44) is not
exact. However, it is a very good approximation in the
regime where #.> g,uBABN.9

To visualize the effects of J and ABy we draw the
two-electron spin states using a Bloch sphere represen-
tation in Fig. 48. The effect of J in this representation is
to rotate the Bloch vector about the z axis of the Bloch
sphere. An initially prepared |1]) spin state will rotate
into a |[T) spin state in a time 7p=wh/J(g). This is a
SWAP operation. Leaving J on for half of this time per-
forms a \SWAP operation.

VSWAP combined with single-spin rotations can be
used to create arbitrary quantum gates. In fact, this two-

(44)

For J> guzABy, |S) and |T,) are good eigenstates. The mix-
ing term gupABy only has an effect when J < gugABy. Thus if
|S) is almost equal to S(1,1) for J=<gupABy, the use of Hamil-
tonian (44) is valid. If t,>gugABy, the condition J<gugABy
is only met far away from the avoided crossing. Here J is of
order */|¢|, and the condition can thus be rewritten as ¢*/|¢|
<gupABy. Since t,> gugABy, it follows that ¢./|¢|<1. There-
fore the weight of the §(0,2) component in |S), given by
%tC/Z\f‘szﬂz, is indeed negligible in this regime.
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spin operation allows universal quantum computing by
itself, when the logical qubit is encoded in three spins
(DiVincenzo et al., 2000). If an inhomogenous effective
magnetic field is present, encoding a qubit in just two
spins is sufficient for creating any quantum gate using
just the exchange interaction (Levy, 2002). In this sys-
tem, the qubit basis states are the singlet and the T
triplet state. Note that a Loss-DiVincenzo ySWAP op-
eration corresponds to a single-qubit rotation in the
singlet-triplet basis.

A SWAP operation has been implemented using fast
control of J. The pulse sequence is illustrated in Fig.
48(a). The system is prepared at positive detuning in
S(0,2). The singlet is then spatially separated by making
the detuning more negative; this is at first done fast with
respect to the hyperfine mixing time 77 to avoid mixing
with the 7, state. Once beyond the S-T', degeneracy, the
detuning is lowered further, but now slowly with respect
to T; This prepares the system in the ground state of the
hyperfine fields, here defined |1]). This state is an eigen-
state of the nuclear fields and is insensitive to hyperfine
fluctuations.

To perform coherent two-electron spin rotations a
pulse is applied to the system which increases the energy
splitting J between S and T, This drives a z-axis rota-
tion in the Bloch sphere representation by an angle 6.
The rotation is then turned off by again lowering the
detuning. A spin state projection measurement is per-
formed by reversing the initialization process, thereby
mapping |1 |)—[S(1,1)) and || 7)—|Ty(1,1)). Spin-to-
charge conversion is then used to determine the spin
state.

Figure 48(b) shows the measured singlet state prob-
ability as a function of the rotation pulse time 75 and ¢
during the rotation pulse. Py shows clear oscillations as a
function of both ¢ and 7. The period of the oscillations
agrees well with a theoretical calculation obtained using
a calibration of J(g) from the S(1,1)-7,(1,1) resonance
condition. Horizontal cuts through the data are shown in
Fig. 48(c). By increasing . and hence J, a fast \SWAP
operation time of 180 ps is obtained [see Fig. 48(d)].

Fast control of J can be harnessed to implement a
singlet-triplet spin-echo pulse sequence. As shown in
Fig. 47, hyperfine fields lead to fast dephasing of the spin
singlet state. In the Bloch sphere representation, By
drives a random x-axis rotation. Since By is a fluctuating
quantity, this rotation rate will vary from one experi-
mental run to the next. However, since the nuclear-spin
dynamics are much slower than the electron-spin dy-
namics, the hyperfine dephasing can be reversed using a
spin-echo pulse sequence.

The spin-echo pulse sequence is illustrated in Fig.
49(a). The singlet state S(0,2) is prepared at positive
detuning. The detuning is decreased quickly with respect
to By but slowly compared to ¢, creating a (1,1) singlet
state. Each spin evolves in the presence of the hyperfine
fields during the separation time 7g, which in the Bloch
sphere representation corresponds to an x-axis rotation.
An exchange pulse of angle 7 is applied to the system,
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which rotates the Bloch vector about the z axis of the
Bloch sphere. Exchange is turned off and the spins
evolve for a time 7g. During this time, the hyperfine
fields rotate the Bloch vector back towards S(1,1), refo-
cusing the spin singlet state.

Figure 49(b) shows Pg as a function of ¢ and 7 in the
spin-echo pulse sequence. Pg shows clear oscillations as
a function of 7. For m, 3, and 57 pulses clear singlet
state recoveries are observed. To determine the coher-
ence time we set 7g=7¢ and vary the total separation

time t,,= 75+ 7¢. Figure 49(c) shows Pg as a function of
Tg— 7 for increasing t,. A singlet state recovery is ob-
served for t,,, exceeding 1 us. A best fit to the singlet
state decay using an exponential form leads to T,
=1.2 us. Remarkably, this spin-echo pulse sequence ex-
tends the coherence time by a factor of 100. Experi-
ments are currently underway to determine the physical
origin of the 1.2-us decay. Possible sources of the decay
are nuclear-spin evolution (see Sec. VIL.B), charge
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singlet state recoveries are ob-
served for 7, 3, 57 exchange
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covery persists out to T,
=1.2 us. Data reproduced from
Petta, Johnson, Taylor, et al.,
2005.
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dephasing (Hu and Das Sarma, 2006), and decay to
T.(1,1).

X. PERSPECTIVES

This review has described the spin physics of few-
electron quantum dots. Much of this work can be evalu-
ated within the context of spin-based classical or quan-
tum information processing. In this context, the state of
the art can be best summarized by making a comparison
with the first five DiVincenzo criteria (DiVincenzo,
2000), applied to the Loss-DiVincenzo proposal for en-
coding a logical qubit in a single electron spin (Loss and
DiVincenzo, 1998).

(i) Have a scalable physical system with well-defined
qubits. Electron spins are certainly well-defined qubits.
The Zeeman energy difference between the qubit states
can be made much larger than the thermal energy. The
states can be measured using transport spectroscopy (see
Sec. III). It is difficult to make predictions concerning
scalability. In principle, circuits of solid-state devices are
scalable, but evidently many practical problems will
have to be surmounted.

(ii) Be able to initialize to a simple fiducial state such
as |0000---). By waiting until relaxation takes place at
low temperature and in high magnetic field, the many-
qubit ground state will be occupied with probability
close to 1. Another option is to use the energy difference
between the states or the different coupling to the res-
ervoir to induce spin-selective tunneling from the reser-
voir onto the dot.

(iii) Have long coherence times. The T,-coherence
time has not been determined extensively, but already a
lower bound of ~1 us has been established at 100 mT.
How quantum coherence scales with the size of the sys-
tem is an interesting open question. The coherence
times of qubits can be prolonged by error correction.
This can be done effectively only when many manipula-
tions are allowed before decoherence takes place. The
rule of thumb is that the coherence time should be at
least 10* times longer than the time for a typical one-or
two-qubit operation.

(iv) Have a universal set of quantum gates. The Loss-
DiVincenzo proposal provides two gates which together
allow for universal quantum computing. Single-qubit ro-
tations have been implemented by ESR, with a fidelity
of ~75% and a duration of 25 ns for a 7/2 rotation. The
two-qubit gate is based on the two-spin SWAP opera-
tion, which has been demonstrated as well, combined
with single-spin rotations. The SWAP has already been
operated at sub-ns levels (180 ps for a VSWAP gate),
although the fidelity is yet unclear. These are only the
first experimental results and further improvements are
expected.

(v) Permit high quantum efficiency, qubit-specific mea-
surements. The procedure of spin to charge conversion
and measuring the charge is a highly efficient measure-
ment of the qubit state. It allows for a single-shot read-
out measurement with demonstrated fidelities already
exceeding 90%. An optimization of experimental pa-
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rameters can certainly increase this to >99%. We note
also that the QPC charge meter is a fairly simple device
that can be integrated easily in quantum dot circuits.

We see that qubits defined by single-electron spins in
quantum dots largely satisfy the DiVincenzo criteria. As
an alternative, it is also possible to encode the logical
qubit in a combination of spins. For instance, when the
logical qubit is encoded in three spins instead of a single
spin, the exchange interaction by itself is sufficient for
universal quantum computation (DiVincenzo et al.,
2000). Adding a difference in Zeeman energy between
the two dots reduces the number of spins per logical
qubit to two (Levy, 2002). Coherent operations on this
so-called singlet-triplet qubit have already been experi-
mentally demonstrated (see Sec. IX.B). These two- and
three-electron qubit encodings eliminate the need for
the technologically challenging single-spin rotations.
Many more variations for encoding qubits in several
electron spins have been proposed, each having its own
advantages and drawbacks (Byrd and Lidar, 2002; Wu
and Lidar, 2002a, 2002b; Meier et al., 2003; Kyriakidis
and Penney, 2005; Taylor et al, 2005; Hanson and
Burkard, 2007). In the end, the best implementation for
a given system will depend on many factors that are
hard to oversee at this stage.

In the near future, the natural continuation of the re-
cent work will be to combine the various components
(readout, ESR, and exchange gate) in a single experi-
ment. This may allow for new experiments exploring
quantum coherence in the solid state, for instance in-
volving entanglement and testing Bell’s inequalities. As
another example, the precise role of quantum measure-
ments may be investigated in this system as well.

On a longer time scale, the main challenges are scal-
ability and coherence. Scalability is mostly a practical
issue. The coherence challenge provides a number of
interesting open questions. The coherence time is cur-
rently limited by the randomness in the nuclear-spin sys-
tem. If this randomness is suppressed, the coherence
time will become longer. Polarization of nuclei turns out
not to be very efficient, except for polarizations
>99.9%. As an alternative, the nuclear spins could be
put and kept in a particular, known quantum state
(Giedke et al., 2006; Klauser et al., 2006; Stepanenko et
al., 2006).

It is yet unknown if nuclear spins can indeed be con-
trolled up to a high level of accuracy. A completely dif-
ferent approach would be using a different material. The
isotopes of the III-V semiconductors all have a nonzero
nuclear spin. In contrast, the group-IV semiconductors
do have isotopes with zero nuclear spin. If spin qubits
are realized in a material that is isotopically purified to
for instance **Si or '2C only, the hyperfine interaction is
completely absent.

We believe that the techniques and physics described
in this review will prove valuable regardless of the type
of quantum dot that is used to confine electrons. The
unprecedented level of control over single-electron spins
will enable exploration of new regimes and pave the way
for tests of simple quantum protocols in the solid state.
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APPENDIX: SIGN OF THE GROUND-STATE SPIN AND
THE NUCLEAR FIELDS IN GaAs

In this appendix we derive the sign of the electron
ground state and nuclear spins in GaAs and the sign and
magnitude of the effective magnetic field felt by elec-
trons due to thermal and dynamical nuclear polariza-
tion.

1. Sign of the spin ground states

We define the spin to be up if it is oriented in the
direction of the externally applied magnetic field B,
along the z axis. In other words, an electron with spin §
is spin up if the z component of the spin S, is positive.
The magnetic moments associated with the electron spin
S and the nuclear spin I are

le]

Ms=— gs—ZmeS, M,z =~ 8SMBS ;s (A1)
el _
Ki=815 I, p.=gmnl;, (A2)
mp

where up and wy are the Bohr magneton (57.9 weV/T)
and the nuclear magneton (3.15 neV/T), respectively
(note that in our notation, the spin angular momentum
along z is given by £.S,). The different signs in the mag-
netic moment is due to the difference in the polarity of
the electron and proton charge. The Zeeman energy is
given by E;=—pu-B. Since both free electrons and pro-
tons have a positive g factor, the spins in the ground
states of a free electron (spin down) and a proton (spin
up) are antiparallel to each other.

The nuclear g factors of the isotopes in GaAs are all
positive:  g/(¥Ga)=+1.344, g,("'Ga)=+1.708, and
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g/(PAs)=+0.960. The electron g factor in GaAs is nega-
tive (gg=-0.44). Hence both the nuclei and electrons in
the ground state in GaAs have their spin aligned parallel
to the external field, i.e., they are spin up.

2. Sign and magnitude of the thermal nuclear field

The two Ga isotopes, Ga (60.11% abundance) and
'Ga (38.89% abundance), and "’As all have nuclear
spin 3/2. We can calculate the thermal average of the
spin (I) of each isotope using the Maxwell-Boltzmann
distribution. For example, at 10 T and 20 mK, (I)6og,
=+0.30, (I)715,= +0.38, and (I)755,= +0.22. Then, follow-
ing (Paget et al, 1977) we approximate the effective
field, generated by the polarization of isotope « through
the hyperfine contact interaction, by

BN,a:bN(a)<I>ou (A3)

with  by(®Ga)=-091 T, by("'Ga)=-0.78 T, and
by(PAs)=—1.84 T [formula 2.17-19 of Paget et al
(1977)]. Since (I), is always positive in thermal equilib-
rium, we derive from Eq. (A3) that the thermal nuclear
field acts against the applied field.

3. Sign of the dynamic nuclear field

Nuclear polarization can build up dynamically via flip-
flop processes, where an electron and a nucleus flip their
spin simultaneously. Because of the large energy mis-
match between nuclear and electron Zeeman energy, a
flip-flop process where an electron spin is excited is very
unlikely, since the required energy is not available in the
system (AE ,,q<kpT<AEy ). Therefore we only con-
sider the flip-flop processes where the electron flips its
spin from down to up (AS,=+1), thereby releasing the
Zeeman energy. This brings the nucleus to a different
spin state with A/,=-1. Many of these processes can
dynamically build up a considerable polarization, whose
sign is opposite to that of the thermal nuclear field. This
has already been observed in the ESR experiments on
2DEGs [see, e.g., Dobers et al. (1988)], where the ex-
cited electron spin relaxes via a flip-flop process. The
external field at which the ESR field is resonant shifts to
lower values after many of these processes, indicating
that indeed this nuclear field adds to the external field.
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