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We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing
one or more bends along their length. We show how bends can be used to provide electrical control of confined
spins, while spins confined in straight segments remain insensitive to electric fields. Device geometries that
allow general rotation of single spins are presented and analyzed. In addition, capacitive coupling along bends
provides coherent spin-spin interaction, including between otherwise disconnected nanotubes, completing a
universal set of one- and two-qubit gates.
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I. INTRODUCTION

Electron spins in confined nanostructures show promise
as a basis for quantum-information processing.1–4 Among the
realizations of spin qubits, gated carbon nanotubes offer a
number of attractive features, including large confinement
energy and a nearly nuclear-spin-free environment. A novel
circumferential spin-orbit coupling in nanotubes, mediated
by s-p hybridization and inversely proportional in strength to
the nanotube radius, has been investigated experimentally5,6

and theoretically7–11 recently. In this paper, we show that
circumferential spin-orbit coupling provides a natural means
of creating a strong spatial dependence of the magnitude and
direction of the effective magnetic field experienced by a
spin qubit formed by confining charge in a nanotube. Along
bends in the nanotube, the spin qubit couples efficiently to
electrostatic gates, allowing spin control and spin-spin cou-
pling, while along straight regions the spin qubit is insensi-
tive to electric fields and is therefore inactive and protected.
Related effects of bending modes on spin relaxation have
also been considered recently.12

The spin, or quantum two-level system, that forms the
physical qubit is a Kramers doublet in a nanotube quantum
dot containing an odd number of electrons, in the low-
magnetic-field regime. As illustrated in Fig. 1, splitting of
these doublets in a magnetic field depends on the direction of
the field with respect to the nanotube axis. This is the key
observation of our analysis: in tubes with bends, the angle
between the tube axis and the applied magnetic field depends
on position along the tube. This dependence couples position
and spin, allowing electric fields to control spin and create
spin-spin coupling. In straight segments, changes in position
do not change the angle between the field and the nanotube
axis, and so this coupling vanishes. For use as a qubit, relax-
ation of the low-field Kramers doublet is suppressed due to
time-reversal symmetry, in contrast to the qubit formed at the
high-field crossing12,13 �at 1.4 T in Fig. 1�, consistent with
experiment.6

II. KRAMERS QUBIT

We start by analyzing the spectrum of a quantum dot con-
fined along a bend in a nanotube. The geometry of the sys-
tem can be described in terms of local �primed� coordinates,

x�, perpendicular to the nanotube axis, and y� along the
nanotube axis �see Fig. 2� at the position of the dot. For bend
radius r much greater than the interatomic distance, the
nanotube band structure is described by that of a locally
straight tube,14 including spin-orbit interaction.7–11 For a
nanotube quantum dot13 of length L�r, the effective Hamil-
tonian to leading order in L /r is

H = −
1

2
��3�SO� · ŷ� + �1�KK�� + gs�B� · Bex

+ �3gorb�BBex · ŷ�, �1�

where �i and �i are Pauli matrices in spin and valley space,
respectively, �S0 is spin-orbit coupling energy, and �KK� is a
valley mixing term due to substrate, contacts, gates, or any
disorder that breaks the crystal symmetry. The first two terms
describe the two Kramers doublets while the last term de-
scribes the coupling to magnetic fields of spin and orbital
moments. Note that orbital moments are always along the
nanotube axis unit vector ŷ�. We consider only planar de-
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FIG. 1. �Color online� Spectrum of low-energy states of a nano-
tube quantum dot as a function of magnetic field along axial
�B�� and transverse �B�� directions, for typical device values
��KK�=25 �eV and �SO=170 �eV� from Ref. 6. The �yellow� box
marks the low-field Kramers doublet, or qubit, for single-electron
�mod four� occupancy. Spin-orbit coupling leads to a large effective
g factor for axial fields, B�, and small effective g factor for trans-
verse fields, B�. Inset shows axial and transverse projections of
applied field.
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vices with magnetic fields applied in plane of the bent nano-
tube, but this restriction can be readily generalized to bends
and fields out of the plane.

The magnetic-field dependence of a nanotube quantum
dot, including effects of spin-orbit coupling, is shown in
Fig. 1 for typical parameters for small-gap semiconduct-
ing nanotubes. Two parameters characterizing the nanotube
device are the spin-orbit energy scale, �SO, and �KK�,
which characterizes the mixing of K and K� valleys due
to disorder on length scales comparable to or smaller than
the nanotube radius, R. Fourfold degeneracy at zero applied

field, Bext��Bext�=0, is lifted by ��SO
2 +�KK�

2 , typically
�0.4 meV, giving two doublets that are well separated at
low temperatures. Either doublet may constitute a qubit in
the present scheme, depending on occupancy of the dot.
Here, we concentrate on the lower pair, appropriate for a
single confined electron, in the low-field regime �boxed re-
gion in Fig. 1�, away from the anticrossing of different or-
bital states.

Diagonalizing the above 4�4 Hamiltonian and projecting
onto the lowest two eigenstates yields an effective spin-1/2
system, which is our qubit. It has an anisotropic g factor
described by the Hamiltonian

H� =
1

2
�Bs� · g · Bext, �2�

where s� are Pauli matrices, �B is the Bohr magneton, and g
is the gyromagnetic tensor. In terms of local nanotube coor-
dinates

H� =
1

2
�B�g�s�

� B� + g�s�
�B�� , �3�

where � and � refer to components of the vectors in Eq. �3�
along x� and y�, respectively. Components of g can be ex-
pressed in terms of nanotube parameters

g� = gs +
2gorb�SO

��KK�
2 + �SO

2
, �4�

g� =
gs�KK�

��KK�
2 + �SO

2
, �5�

where gs�2 is the spin g factor and gorb is the orbital g
factor with gorb /gs�10 for typical nanotubes. We emphasize
that because the coordinates are local, changes in confine-
ment position along a bend will change the directions and
magnitudes of field components B� and B� for fixed external
field. Equations �4� and �5� show how spatial inhomogeneity
in �KK� can also couple spin to position. When this inhomo-
geneity is small compared to either �KK� or �SO this effect is
weak.

We introduce the effective field, B�=g ·Bext /gs, felt by
an electron spin, including spin-orbit effects, as a function of
position along the nanotube. Variation in the magnitude and
direction of B� along a bend are shown in Fig. 2 for realis-
tic device parameters. Because the g tensor in local coor-
dinates, g�, is diagonal, the effective field is found by
B�=R�

−1 ·g� ·R� ·Bext /gs, where R� is the matrix that rotates
Bext to the local nanotube coordinates. The effective field is

B� =
g� + g� − �g� − g��cos 2�

2gs
Bext + ẑ � Bext

g� − g�

2gs
sin 2� .

�6�

This formula forms the basis for the discussion in Figs.
2 and 4.

III. ELECTRIC-DIPOLE SPIN RESONANCE

The sizable variation in B� along the bend suggests sev-
eral applications that involve both finite and infinitesimal
gate-induced motion. As a first example, we consider electric
dipole spin resonance �EDSR� using an oscillating gate volt-
age, as illustrated in Fig. 3. We consider a single electron
confined by gates to a region containing a bend. A second
electron confined in an adjacent dot may be used to detect
spin rotation via Pauli blockade.3 An external field is applied
at an angle � to the local transverse �x�� direction, and a gate
voltage, oscillating at frequency f , causes the center position
of the dot to move by an amount �y�. This motion modifies
the orbital coupling to the applied field while Zeeman cou-
pling is unchanged. Small displacements �y� of the dot po-
sition then result in a perturbation �H= ��y� /r���H /��� of
the Hamiltonian �1�. Only the tangent vector ŷ� in Eq. �1�
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FIG. 2. �Color online� Effective fields along a bend. �a� Illustra-
tion of how the magnitude, B�, �red� and angle, ��= � �B� ,x��,
�blue� relative to local �x� ,y�� coordinates of the local effective
magnetic field depend on angle, �, between the applied field, Bext

�black� and the local transverse direction. Nanotube radius, R, and
bend radius, r, are indicated. �b� Values for angle �blue� and nor-
malized magnitude �red� of effective field, B� as a function of angle,
�, for realistic parameters �Ref. 6� with g� =10 and g�=1. Dashed
line �red� indicates B� /Bext=1.
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depends on �, with derivative �ŷ� /��= x̂�. Again projecting
onto the lowest Kramers doublet, the modulation of the ef-
fective field becomes �B�= ��y� /r�B��, where

B�� = �g · Bext/gs �7�

and

�g =
1

2
� 0 0

g� − gs 0
	 . �8�

Therefore the oscillatory part of the effective field points
along the nanotube axis, ŷ�, which in general is not aligned
with B�, but has components both along B�, with magnitude
�B�, and transverse to B�, with magnitude B1

�, given by

�B�

B�
= ��y�

r
	g��g� − g��sin�2��

2b2���
, �9�

B1
�

B�
= ��y�

r
	g��g� − g��cos2���

2b2���
, �10�

where b���=�g�
2 cos2 �+g�

2 sin2 �=gsB
� /Bext. For a reason-

able nanotube bend radius, r=1 �m, and gate-induced dot-
motion, �y��1 nm, the plots in Fig. 3 indicate a transverse
field of order B1

��10−4 T for Bext=100 mT, an applied field
for which the qubit remains well defined �Fig. 1�. At the
resonance frequency, f = 1

2gs�BB� /h �h is Planck’s constant�,
the electron spin will precess at the Rabi frequency,
gs�BB1

� /h, which exceeds several MHz.
Note from Eq. �10� that the transverse oscillating field, B1

�,
vanishes in the absence of valley mixing. For weak valley
mixing, �KK���SO, the maximal ratio B1

� /B�	g� /g� is ob-
tained at �=0, i.e., when the applied field is transverse to
tube.

Cross coupling of ac gate voltages to dots in nearby
straight regions of the nanotube �as in the example in Fig. 3�
will not effect spins there. Moreover, adjacent dots also in
bent regions �with the same or different r� will have different
resonant frequencies—f depends on position along a bend—
and so will be relatively insensitive to the oscillating gate.
This example illustrates how modest bends and ac gate volt-
ages are capable of generating efficient and selective spin
rotation with transverse field strengths comparable to exist-
ing few-spin EDSR schemes.2,4,15,16

IV. FAST SPIN ROTATION VIA NONADIABATIC
PASSAGE THROUGH BENDS

As a second example of spin manipulation, we consider
the geometry in Fig. 4�a�, consisting of two straight segments
on either side of a single bend, with radius of curvature r,
forming an angle 2
. Two quantum dots, denoted a and b,
are defined by gates on the straight segments of this “coat-
hanger” shape, and the external field is applied in the plane,
at an angle � with respect to the symmetry axis. Effective
fields Ba

� and Bb
� in the two dots differ in both magnitude and

direction. In particular, the angle � between Ba
� and Bb

�, given
by

sin � =

�g� − g��2cos�2
� + �g�

2 − g�
2�cos�2���sin�2
�

2b�
 + ��b�
 − ��
�11�

can reach �=� /2 for realistic device parameters. Figure 4�b�
shows � as a function of bend angle, 
, for two values of
g-factor anisotropy, g� /g�, one that does and one that does
not exceed the critical value, g� /g�=5.87. . ., above which
the condition Ba

��Bb
� can be met for two values of 
. In

particular, typical nanotubes, with g� /g��10, easily allow
this orthogonality condition.

The coat hanger geometry provides nonresonant qubit ro-
tation when an electron is moved nonadiabatically from one
dot to the other. Because the precession field is the same
order as the quantizing field, precession rates, �gs�BBa

� /h,
are typically two to three orders of magnitude faster than
the EDSR device described above, allowing nanosecond �
rotations. As an example, for Ba

��Bb
� and �

, a qubit ini-

FIG. 3. �Color online� Gate-driven spin resonance on bend. �a�
The geometry for EDSR for quantum dot confined along a bend.
Spin in the quantum dot in the adjacent straight region is not sen-
sitive to electric fields. An oscillating gate voltage produces an os-
cillating transverse field, B1

�, which on resonance drives efficient
qubit rotation around B�. �b� Normalized static field, B�, �red� and
oscillating transverse field, B1

� as a function of angle, �, of the
applied field measured in local dot coordinates, for g� =10 and g�

=1. Resonance frequency, gs�BB� /h, depends on dot position, al-
lowing frequency tuning and multiplexing. The scale of the trans-
verse field scales with �y� /r, the ratio of the axial excursion due to
the oscillating gate voltage to bend radius, r.
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tialized in dot a and moved nonadiabatically to dot b will
rapidly precess around Bb

�, at a frequency gs�BBb
� /h. At some

point along the passage, Bext will be purely transverse to
the nanotube axis. At this point, the condition for nonadia-
batic passage becomes very liberal, only requiring a passage
rate faster than g��BBext /h. From Eq. �5�, g�
gs, which
makes the minimum gap small. Experimental values �KK�
=25 �eV and �SO=170 �eV give g�=0.15gs. Using Bext

�10 mT allows pulse transition occurring in under 10 ns to
be considered nonadiabatic, a criterion that is readily
achieved with standard arbitrary waveform generators and
coaxial cryogenic wiring.

A notable feature of the coat hanger geometry is that the
electron spends nearly all of its time—including during
rotation—in straight regions of the tube, where stray electric
fields do not cause inadvertent qubit rotation; only during the
brief nonadiabatic passage from one straight region to an-
other is the qubit on a bend and therefore sensitive to deco-
herence due to electrical noise. A single bend 
as in Fig. 4�a��
allows spin rotation around a single axis. A nanotube with
two bends �for instance, in the shape of the letter N� allows
rotation around two axes and thus arbitrary qubit rotation.

V. SPIN-SPIN INTERACTION VIA
CAPACITATIVE COUPLING

The coupling of spin and position also provides a natural
mechanism for spin-spin interaction using a capacitive gates
or resonant cavities.17,18 This allows nonlocal two-qubit in-
teraction in a single nanotube by coupling adjacent or non-
adjacent qubits using gates between multiple bends, as well
as providing two-qubit interaction between different nano-
tubes. Coherent coupling of spins in different nanotubes us-
ing gated bends solves an important challenge of nanotube-
based quantum information systems of how to move
quantum information through networks or arrays of multiple
tubes.

Previous work has demonstrated capacitive coupling
between separated quantum dots on the same nanotube,6

as well as between two quantum dots on different Si/Ge
nanowires,19 and between a nanotube quantum dot and a
single-electron transistor,20 all over distance scales of
�1 �m. The coupling between dots is mediated by a rela-
tively large metallic gate whose self-capacitance Cg typically
exceeds the self-capacitances C1 and C2 of the dots. In this
configuration �see Fig. 5�, the electrostatic interaction energy,
U12, is approximately given by U12�e2�C1gC2g� / �C1CgC2�
where C1g and C2g are the mutual capacitances of the dots to
the coupling gate. Typical values from previous experiments
give U12�0.01U, where U�e2 /C1�e2 /C2 is the Coulomb
charging energy of the individual nanotube dots, typically
�5 meV.

The two-qubit Hamiltonian is H1+H2+H12, where H1 and
H2 are the single dot Hamiltonians as in Eq. �1�, and where
the interaction term, H12=U12�y1� ,y2��, depends on the posi-
tion of the electrons within the two dots. For small displace-
ments, the linear terms of H1+H2 are

FIG. 4. �Color online� Moving between straight segments pro-
vides rapid spin rotation. �a� Two quantum dots �labeled a and b� on
straight segments with a bend of angle 2
 between them. This ge-
ometry provides fast qubit rotation without an oscillating field while
keeping spins in straight segments protected from stray electric
fields. A spin quantized in the effective field Ba

� of dot a, when
moved nonadiabatically to dot b, encounters an effective field, Bb

�,
that makes a sizable angle, �, with Ba

�. The spin then precesses
about Ba

� at a frequency gs�BBb
� /h before being returned nonadia-

batically to dot a. Shown is the symmetric case, �=0, where the
applied field is transverse to the nanotube axis at its apex. The
condition for nonadiabatic transfer is easily met for small g� �see
text�. �b� The angle, �, between effective field directions in dots a
and b as a function of the bend angle, 
, for �=0 and g� /g�=2
�lower, blue� and g� /g�=10 �upper, purple�. Inset: for g� /g��5.8
pairs of values of 
 for which effective fields in a and b are or-
thogonal, �=� /2.

FIG. 5. �Color online� Schematic of electrostatic coupling via a
common gate �red� between two quantum dots formed along bends
in two nanotubes. Spin-spin interaction in the quantum dots creates
a two-qubit gate that is part of a universal gate set. Applied field,
Bext, and local effective fields, B� and B��, along with local axes, x�
and y�, are shown for one of the two nanotubes.
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H1
�1� + H2

�1� =
�y1�

r1
�s1

� · B1
��� +

�y2�

r2
�s2

� · B2
��� , �12�

where Bi
�� is the field defined in Eq. �7� for dot i. To second

order in the dot displacements, the spin interaction becomes

H12
� = K12�s1

� · B1
����s2

� · B2
��� , �13�

where

K12 =
2�B

2

r1r2
Im 


−�

0 dt

�
et0+

��y1��t��y2��B=0. �14�

Inserting Eq. �7� into Eq. �13� leads to

H12
� = K12

� �s�,1
� B�,1��s�,2

� B�,2� �15�

with

K12
� = �g� − g�

2gs
	2 �4�B

2

4m2��E�4r1r2

�2U12

���y1�� � ��y2��
�16�

for identical parabolic confinement potentials. It has the ex-
pected dependences on g-factor anisotropy and radii of cur-
vature of the two bends, r1 and r2. It also depends on the
sensitivity of U12 to differential motion along the nanotubes,
�y1� and �y2�. In this expression m is the effective electron
mass and �E is the characteristic level spacing in the two
quantum dots, which together characterize the stiffness of the
confining potential to spin-dependent forces.

This form, with parallel spin component coupled to
transverse applied field components is a consequence of
locally circular motion along the bends, where changes in
field components �which quantize the spin direction� upon
infinitesimal motion are transverse to the field components
themselves. Expressing H12

� in terms of the fields B��

=B�ŷ� �Fig. 5� yields a transverse-Ising-type form, which is
known to generate spin entanglement between the coupled
dots. Two applications of such a gate in combination with
single qubit rotations generates a CNOT gate and therefore,
together with general single-qubit rotations, constitutes a
universal gate set.21

Realistic values for K12
� can be estimated by noting that

the dependence of U12 on �y1� and �y2�, reflects the depen-
dence of mutual capacitances C1g and C2g on dot motion.
The characteristic scale of this geometrical dependence is the
dot length, L, giving the estimate

�2U12

���y1�� � ��y2��
�

�C1g

���y1��

�C2g

���y2��

1

C1C2Cg

�
U12

L2
. �17�

The stiffness, characterizing changes in dot position in
response to spin-dependent electrostatic forces, can simil-
arly be estimated by replacing the oscillator length
�= ��2 /m�E�1/2 with the dot length L, giving

K12
� � U12�g� − g�

gs
	2� �B

�E
	2 L2

4r1r2
. �18�

Using representative experimental values for coupling
strength U12�0.01U�100 �eV, g-factor anisotropy
�g� −g�� /gs�10, level spacing �E�5 meV, and dot size
L�0.3 �m, and taking reasonable values for bend radii
r1�r2�0.3 �m, yields the estimate K12

� �0.1 �eV /T2. For
applied fields of 100 mT, this strength of coupling allows
two-qubit operations on time scales of �1 �s, which is con-
siderably faster than the anticipated coherence time �which,
however, has not yet been measured�. Gate operation time
can likely be reduced further by decreasing Cg, bend radii, or
level spacing.

VI. CONCLUSIONS

In summary, the combination of spin-orbit coupling and
curved geometry22 allows qubit novel control schemes using
electric-gate manipulation. Notwithstanding the ability to
control spin using electric fields in nanotubes with bends,
spins confined to straight regions of the nanotube electrons
are immune to electrical noise. Bends also allow spin-spin
interaction between capacitively coupled nanotubes, provid-
ing an entangling transverse-Ising-type two-qubit gate,
which along with full single-qubit rotations, provided by
nanotubes with two bends, constitutes a universal set of
gates.

Various methods for creating nanotubes with bends have
been demonstrated. These include growth techniques
that yield serpentine nanotubes with multiple bends23

and manipulation, for instance, using an atomic-force
microscope,24–26 following growth.
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