0

Foundations of Physics, Vol. 16, No. 6, 1986

Quantum Mechanical Computers'

Richard P. Feynman?

Received March 15, 1985

The physical limitations, due to quantum mechanics, on the functioning of com-
puters are analyzed.

1. INTRODUCTION

This work is a part of an effort to analyze the physical limitations of com-
puters due to the laws of physics. For example, Bennett!") has made a
careful study of the free energy dissipation that must accompany com-
putation. He found it to be virtually zero. He suggested to me the question
of the limitations due to quantum mechanics and the uncertainty principle.
I have found that, aside from the obvious limitation to size if the working
parts are to be made of atoms, there is no fundamental limit from these
sources either.

We are here considering ideal machines; the effects of small imperfec-
tions will be considered later. This study is one of principle; our aim is to
exhibit some Hamiltonian for a system which could serve as a computer.
We are not concerned with whether we have the most efficient system, nor
how we could best implement it.

Since the laws of quantum physics are reversible in time, we shall have
to consider computing engines which obey such reversible laws. This
problem already occurred to Bennett,!" and to Fredkin and Toffoll,® and
a great deal of thought has been given to it. Since it may not be familiar to

! Editor’s note: This article, which is based on the author’s plenary talk presented at the
CLEO/IQEC Meeting in 1984, originally appeared in the February 1985 issue of Optics
News. 1t is here reprinted with kind permission of Professor Feynman and Optics News.

2 Department of Physics, California Institute of Technology, Pasadena, California 91125.

507

0015-9018/86/0600-0507505.00/0 © 1986 Plenum Publishing Corporation

508 Feynman

you here, T shall review this, and in doing so, take the opportunity to
review, very briefly, the conclusions of Bennett,® for we shall confirm them
all when we analyze our quantum system.

It is a result of computer science that a universal computer can be
made by a suitably complex network of interconnected primitive elements.
Following the usual classical analysis we can imagine the interconnections
to be ideal wires carrying one of two standard voltages representing the
local 1 and 0. We can take the primitive elements to be just two, NOT and
AND (actually just the one element NAND = NOT AND suffices, for if
one input is set at 1 the output is the NOT of the other input). They are
symbolized in Fig. 1, with the logical values resulting on the outgoing
wires; resulting from different combinations of input wires.

From a logical point of view, we must consider the wires in detail, for
in other systems, and our quantum system in particular, we may not have
wires as such. We see we really have two more logical primitives, FAN
OUT when two wires are connected to one, and EXCHANGE, when wires
are crossed. In the usual computer the NOT and NAND primitives are
implemented by transistors, possibly as in Fig. 2.

What is the minimum free energy that must be expended to operate an
ideal computer made of such primitives? Since, for example, when the
AND operates the output line, ¢’ is being determined to be one of two
values, no matter what it was before, the entropy change is In 2 units. This
represents a heat generation of kT In 2 at temperature T. For many years it
was thought that this represented an absolute minimum to the quantity of
heat per primitive step that had to be dissipated in making a calculation.

The question is academic at this time. In actual machines we are quite
concerned with the heat dissipation question, but the transistor system
used actually dissipates about 10"k T! As Bennett® has pointed out, this
arises because to change a wire’s voltage we dump it to ground through a
resistance; and to build it up again we feed charge, again through a
resistance, to the wire. It could be greatly reduced if energy could be stored
in an inductance, or other reactive element.

FAN OUT EXCHANGE

Fig. 1. Primitive elements.

e

Quantum Mechanical Computers 509

NOT NAND
+V +V

o—| —[

Fig. 2. Transistor circuits for NOT and NAND.

However, it is apparently very difficult to make inductive elements on
silicon wafers with present techniques. Even Nature, in her DNA copying
machine, dissipates about 100k T per bit copied. Being, at present, so very
far from this k7 In 2 figure, it seems ridiculous to argue that even this is
too high and the minimum is really essentially zero. But, we are going to be
even more ridiculous later and consider bits written on one atom instead of
the present 10" atoms. Such nonsense is very entertaining to professors
like me. I hope you will find it interesting and entertaining also.

What Bennett pointed out was that this former limit was wrong
because it is not necessary to use irreversible primitives. Calculations can
be done with reversible machines containing only reversible primitives. If
this is done the minimum free energy required is independent of the com-
plexity or number of logical steps in the calculation. If anything, it is kT
per bit of the output answer. _

But even this, which might be considered the free energy needed to
clear the computer for further use, might also be considered as part of what
you are going to do with the answer—the information in the result if you
transmit it to another point. This is a limit only achieved ideally if you
compute with a reversible computer at infinitesimal speed.

2. COMPUTATION WITH A REVERSIBLE MACHINE

We will now describe three reversible primitives that could be used to
make a universal machine (Toffoli'®)). The first is the NOT which evidently
loses no information, and is reversible, being reversed by acting again with
NOT. Because the conventional symbol is not symmetrical we shall use an
X on the wire instead (see Fig. 3a).

510 Feynman

(a) NOT (b) CONTROLLED NOT

4] a
FAN OUT i
(o) a
EXCHANGE amd
b b’

(c) CONTROLLED CONTROLLED NOT

¢} a’
b b See Table I.
c c

Fig. 3. Reversible primitives.

Next is what we shall call the CONTROLLED NOT (see Fig. 3b).
There are two entering lines, @ and b, and two exiting lines, @’ and b'. The
a’ is always the same as a, which is the control line. If the control is
activated a =1 then the out b’ is the NOT of b. Otherwise b is unchanged,
b’ =b. The table of values for input and output is given in Fig. 3. The
action is reversed by simply repeating it.

The quantity b’ is really a symmetric function of a and b called XOR,
the exclusive or; a or b but not both. It is likewise the sum modulo 2 of a
and b, and can be used to compare a and b, giving a 1 as a signal that they
are different. Please notice that this function XOR is itself not reversible.
For example, if the value is zero we cannot tell whether it came from
(a, b)=(0, 0) or from (1, 1) but we keep the other line a’ = a to resolve the
ambiguity.

We will represent the CONTROLLED NOT by putting a 0 on the
control wire, connected with a vertical line to an X on the wire which is
controlled. :

This element can also supply us with FAN OUT, for if b=0 we see
that a is copied onto line »'. This COPY function will be important later
on. It also supplies us with EXCHANGE, for three of them used

b I l SUM
0 L CARRY

Fig. 4. Adder.

Quantum Mechanical Computers 511

o——f——i a---0---a=a’
b b S o—0 S'---i-——b =b
c T % ¢ r — SUM = ¢’

d =.0 L ¢ 74 CARRY = dl

Fig. 5. Full adder.

successively on a pair of lines, but with alternate choice for control line,
accomplishes an exchange of the information on the lines (Fig. 3b).

It turns out that combinations of just these two elements alone
are insufficient to accomplish arbitrary logical functions. Some element
involving three lines is necessary. We have chosen what we can call the
CONTROLLED CONTROLLED NOT. Here (see Fig. 3c) we have two
control lines a, b, which appear unchanged in the output and which change
the third line ¢ to NOT ¢ only if both lines are activated (a=1 and b=1).
Otherwise ¢’ =c. If the third line input ¢ is set to 0, then evidently it
becomes 1(c’ = 1) only if both a and b are 1 and therefore supplies us with
the AND function (see Table I).

Three combinations for (a, b), namely (0, 0), (0, 1), and (1, 0), all give
the same value, 0, to the AND (a, b) function so the ambiguity requires
two bits to resolve it. These are kept in the lines a, b in the output so the
function can be reversed (by itself, in fact). The AND function is the carry
bit for the sum of a and b.

From these elements it is known that any logical circuit can be put
together by using them in combination, and in fact, computer science

Table 1.
a b c a b c
0o 0 0 0o 0 0
0o 0 1 0o 0 1
0 1 0 0o 1 0
0 1 1 0o 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1, 1 1
1 1 1 1 1 0 ~

512 Feynman

shows that a universal computer can be made. We will illustrate this by a
little example. First, of course, as you see in Fig. 4, we can make an adder,
by first using the CONTROLLED CONTROLLED NOT and then the
CONTROLLED NOT in succession, to produce from a and b and 0, as
input lines, the original a on one line, the sum on the second line, and the
carry on the third.

A more elaborate circuit is a full adder (see Fig. 5), which takes a
carry ¢ (from some previous addition) and adds it to the two lines a and b
and has an additional line d with a 0 input. It requires four primitive
elements to be put together. Besides this total sum, the total of the three,
a, b, and c and the carry, we obtain on the other two lines two pieces of
information. One is the a that we started with, and the other is some inter-
mediary quantity that we calculated on route.

This is typical of these reversible systems; they produce not only what
you want in output, but also a certain amount of garbage. In this par-
ticular case, and as it turns out in all cases, the garbage can be arranged to
be, in fact, just the input, if we would just add the extra CONTROLLED
NOT on the first two lines, as indicated by the dotted lines in Fig. 5; we
see that the garbage would become a and b, which were the inputs of at
least two of the lines. (We know this circuit can be simplified but we do it
this way for illustrative purposes.)

In this way, we can by various combinations produce a general logic
unit that transforms »n bits to n bits in a reversible manner. If the problem
you are trying to do is itself reversible, then there might be no extra gar-
bage, but in general, there are some extra lines needed to store up the
information which you would need to be able to reverse the operation. In
other words, we can make any function that the conventional system can,
plus garbage. The garbage contains the information you need to reverse the
process.

And how much garbage? It turns out in general that if the output data
that you are looking for has k bits, then starting with an input and k bits
containing 0, we can produce, as a result, just the input and the output and
no further garbage. This is reversible because knowing the output and the
input permits you, of course, to undo everything. This proposition is
always reversible. The argument for this is illustrated in Fig. 6.

Suppose we began with a machine M, which, starting with an input,
and some large number of 0’s, produces the desired outut plus a certain
amount of extra data which we call garbage. Now we have seen that the
copy operation which can be done by a sequence of CONTROLLED
NOT'’s is possible, so if we have originally an empty register, with the k bits
ready for the output, we can, after the processor M has operated, copy the
output from the M onto this new register.

Quantum Mechanical Computers 513
TIME
_—
—) .
0 0] R o
8 — 8 — > |y|—>u
L‘L o T T =T 5
) — copy Y — U
OuT PUT 0 T
| 0 0 | 0 o
N u u N - o] T
P T T P - T]
U P P U
7 u vl _ |7 N N
ol M |T| — |T| M Jo J)
(o) + + o} T T
(o] G G (0]
° 3 R S NEW OVERALL
o} B B8 o] MACHINE

(ZEROS NEEDED FOR M
MACHINE COPY REVERSE CAN BE CONSIDERED

MACHINE INTERNAL TO NEW MACH)
Fig. 6. Clearing garbage.

After that, we can build the opposite machine, the M in reverse, the
reverse machine, which would take this output of M and garbage and turn
it into the input and-0’s. Thus, seen as an overall machine, we would have
started with the k 0’s of the register for the output, and the input, and
ended up with those k 0’s occupied by the output data, and repeat the inut
as a final product. The number of 0’s that was originally needed in the M
machine in order to hold the garbage is restored again to 0, and can be
considered as internal wires inside the new complete machine (M, M and
copy).

Overall, then, we have accomplished what we set out to do, and
therefore garbage need never be any greater than a repetition of the input
data.

3. A QUANTUM MECHANICAL COMPUTER

We now go on to consider how such a computer can also be built
using the laws of quantum mechanics. We are going to write a
Hamiltonian, for a system of interacting parts, which will behave in the
same way as a large system in serving as a universal computer. Of course
the large system also obeys quantum mechanics, but it is in interaction
with the heat baths and other things that could make it effectively irrever-
sible. i

What we would like to do is make the computer as small and as

514 Feynman

simple as possible. Our Hamiltonian will describe in detail all the internal
computing actions, but not, of course, those interactions with the exterior
involved in entering the input (preparing the initial state) and reading the
output.

How small can such a computer be? How small, for instance, can a
number be? Of course a number can be represented by bits of 1’s and 0’s.
What we are going to do is imagine that we have two-state systems, which
we will call “atoms.” An n bit number is then represented by a state of a
“register,” a set of n two-state systems.

Depending upon whether or not each atom is in one or another of its
two states, which we call |1) and |[0), we can of course, represent any
number. And the number can be read out of such a register by determining,
or measuring, in which state each of the atoms are at a given moment.
Therefore one bit will be represented by a single atom being in one of two
states, the states we will call [1) and |0).

What we will have to do then can be understood by considering an
example; the example of a CONTROLLED CONTROLLED NOT. Let G
be some sort of an operation on three atoms a, b, and ¢, which converts
the original state of a, b, and ¢ into a nex appropriate state, a’, b’, ¢, so
that the connection between a’, b, and ¢’ and a, b, c, are just what we
would have expected if a, b, and ¢ represented wires, and the a', b', and ¢’
were the output wires of a CONTROLLED CONTROLLED NOT.

It must be appreciated here that at the moment we are not trying to
move the data from one position to another; we are just going to change it.
Unlike the situation in the actual wired computer in which the voltages on
one wire then go over to voltages on another, what we are specifically
making is something simpler, that the three atoms are in some particular
state, and that an operation is performed, which changes the state to new
values, a', b', ¢'.

What we would have then is that the state, in the mathematical form
la’, b', ¢', is simply some operation G operating on |a, b, ¢>. In quantum
mechanics, state changing operators are linear operators, and so we’ll sup-
pose that G is linear. Therefore, G is a matrix, and the matrix elements of
G, G, p o ap. are all 0 except those in Table I, which are of course 1. .

This table is the same table that represents the truth value table for the
CONTROLLED CONTROLLED NOT. It is apparent that the operation
is reversible, and that can be represented by saving that G*G = 1, where the
* means Hermitian adjoint. That is to say, G is a unitary matrix. (In fact G
is also a real matrix G* =G, but that’s only a special case.) To be more
specific, we are going to write A, . for this special G. We shall use the same
matrix A with different numbers of subscripts to represent the other
primitive elements.

Quantum Mechanical Computers 515

To take a simple example, the NOT, which would be represented by
A,, is the simple matrix
0 1
10 N

This is a 2 x2 matrix and can be represented in many ways, in different
notations, but the particular one we will use to define these is by the
method of creation and annihilation operators. Consider operating in this
case, on a single line a. In order to save alphabets, let us call g the matrix

=[5 o]

which annihilates the 1 on atom a and converts it to 0; a is an operator
which converts the state [1) to |0). But, if the state of the atom were
originally |0}, the operator a produces the number 0. That is, it doesn’t
change the state, it simply produces the numerical value zero when
operating on that state. The conjugate of this thing, of course, is

|00
— |10

which creates, in the sense that operating on the O state, it turns it to the 1
state. In other words, it moves from [0) to |1). When operating on the |1)
state there is no further state above that which you can create, and
therefore it gives it the number zero. Every other operator 2 x 2 matrix can
be represented in terms of these @ and a*. For example, the product a*a is

equal to the matrix
a*a— 1 0
— 10 0

}vhich you might call N,. It is 1 when the state is |1 and O when the state
is |0). It gives the number that the state of the atom represents. Likewise

the product
aa* — 00
— [0 1

is 1 —N,, and gives 0 for the up-state and 1 for the down-state. We'll use 1
to represent the diagonal matrix,

[0 1] |

As a consequence of all this, aa* +a*a=1.

516 Feynman

It is evident then that our matrix for NOT, the operator that produces
NOT, is A,=a+ a* and further of course, that’s reversible, A,*4,=1, 4,
is unitary.

In the same way the matrix 4, , for the CONTROLLED NOT can be
worked out. If you look at the table of values for CONTROLLED NOT
you see that it can be written this way:

a*a(b+b*)+aa*

In the first term, the a*a selects the condition that the line a =1, in which
case we want b+ b* the NOT to apply to b. The second term selects the
condition that the line a is 0, in which case we want nothing to happen to b
and the unit matrix on the operators of b is implied. This can also be writ-
ten as 1 +a*a(b+b* —1), the | representing all the lines coming through
directly, but in the case that a is 1, we would like to correct that by putting
in a NOT instead of leaving the line b unchanged.
The matrix for the CONTROLLED CONTROLLED NOT is

Age=1+a*ab*blc+c*—1)

as, perhaps, you may be able to see. :

The next question is what the matrix is for a general logic unit which
consists of a sequence of these. As an example, we’ll study the case of the
full adder which we described before (see Fig. 5). Now we’ll have, in the
general case, four wires represented by q, b, ¢, and d; we don’t necessarily
have to have d as 0 in all cases, and we would like to describe how the
object operates in general (if 4 is changed to 1 d’ is changed to its NOT). It
produces new numbers a’, b’, ¢’, and d’, and we could imagine with our
system that there are four atoms labeled a, b,c,d in a state labeled
la, b, ¢, d) and that a matrix M operates which changes these same four
atoms so that they appear to be in the state |a’, b’,c¢’,d’> which is
appropriate for this logic unit. That is, if |¢;,) represents the incoming
state of the four bits, M is a matrix which generates an outgoing state
[ou> = MY, > for the four bits.

For example, if the input state were the state |1, 0, 1,0), then, as we
know, the output state should be |1, 0, 0, 1); the first two a’, b’ should be
1, 0 for those two first lines come streight through, and the last two ¢’, d’
should be 0, 1 because that represents the sum and carry of the first three,
a, b, ¢, bits in the first input, as d=0. Now the matrix M for the adder can
easily be seen as the result of five successive primitive operations, and
therefore becomes the matrix product of the five successive matrices
representing these primitive objects.

M=4 a,bA b,zA bc,dA a,bA ab,d

——

Quantum Mechanical Computers 517

The first, which is the one written farthest to the right, is 4, , for that
represents the CONTROLLED CONTROLLED NOT in which a and b
are the CONTROL lines, and the NOT appears on line d. By looking at -
the diagram in Fig. 5 we can immediately see what the remaining factors in
the sequence represent. The last factor, for example, 4,,, means that
there’s a CONTROLLED NOT with a CONTROL on line & and NOT on
line b. This matrix will have the unitary property M*M =1 since all of the
A’s out of which it is a product are unitary. That is to say, M is a reversal
operation, and M* is its inverse. -

Our general problem, then, is this. Let Ay, Ay, As,,,,° A, be the suc-
cession of operations wanted, in some logical unit, to operate on n lines.
The 2" x2" matrix M needed to accomplish the same goal is a product
Ay e A3A4,A,, where each 4 is a simple matrix. How can we generate this
M in a physical way if we know how to make the simpler elements?

~ In general, in quantum mechanics, the outgoing state at time ¢ is
ey, where y,_ is the input state, for a system with Hamiltonian H. To
try to find, for a given special time f, the Hamiltonian which will produce
M =e™" when M is such a product of noncommuting matrices, from some
simple property of the matrices themselves, appears to be very difficult.

We realize however, that at any particular time, if we expand the e'#'
out (as 1+iHt— H**/2— ---) well find the operator H operating an
innumerable arbitrary number of times, once, twice, three times, and so
forth, and the total state is generated by a superposition of these
possibilities. This suggests that we can solve this problem of the com-
position of these A’s in the following way.

We add to the n atoms, which are in our register, an entirely new set
of k+ 1 atoms, which we’ll call “program counter sites.” Let us call ¢; and
q; the annihilation and creation operators for the program site i for i=0
to k. A good thing to think of, as an example, is an electron moving from
one empty site to another. If the site i is occupied by the electron, its state
is |1), while if the site is empty, its state is |0).

We write, as our Hamiltonian

k—1

H= Y g¢¥ ,q,4,,, +complex conjugate

i=0
=q190A,+qF 9, A+ qF A5+ -+ +q2q, AF

14t A3 +q¥q; A3 + -
The first thing to notice is that if all the program sites are unoccupied,
that is, all the program atoms are initially in the state 0, nothing happens

3 Feynman

cause every term in the Hamiltonian starts with an annihilation operator
d it gives 0 therefore.

The second thing we notice is that if only one or another of the
ogram sites is occupied (in state |1)), and the rest are not (state lO>‘),
en this is always true. In fact the number of program sites that are 1n
ate |1) is a conserved quantity. We will suppose that in the operation of
is computer, either no sites are occupied (in which case nothing happens)
- just one site is occupied. Two or more program sites are never both
ccupied during normal operation.

Let us start with an initial state where site 0 is occupied, is in the |1)
ate, and all the others are empty, |0) state. If later, at some time, the final
te k is found to be in the |1) state, (and therefore all the others in [0))
\en, we claim, the n register has been multiplied by the matrix M, which is
" Ay A, as desired. . ‘

Let me explain how this works. Suppose that the register starts in any

itial state, Y,,, and that the site, 0, of the program counter is occupied.
“hen the only term in the entire Hamiltonian that can first operate, as the
f{amiltonian operates in successive times, is the first term, ¥ qoA,- The g,
vill change site number 0 to an unoccupied site, while g will change the
ite number O to an occupied site. Thus the term g g, is a term which
imply moves the occupied site from the location O to the location 1. ‘But
his is multiplied by the matrix 4, which operates only on the n register
ytoms, and therefore multiplies the initial state of the n register atoms by
A,.
l Now, if the Hamiltonian happens to operate a second time, this ﬁfst
term will produce nothing because go produces 0 on the number 0 site
because it is now unoccupied. The term which can operate now is the
second term, g¥q, A,, for that can move the occupied point, which 1 shall
call a “cursor.” The cursor can move from site 1 to site 2 but the matrix A4,
now operates on the register; therefore the register has now got the matrix
A, A, operating on it.

So, looking at the first line of the Hamiltonian, if that is all there was
to it, as the Hamiltonian operates in successive orders, the cursor would
move successively from O to k, and you would acquire, one after the other,
operating on the n register atoms, the matrices, 4, in the order that we
would like to construct the total M.

However, a Hamiltonian must be hermitian, and therefore the com-
plex conjugate of all these operators must be present. Suppose that at a
given stage, we have gotten the cursor on site number 2, and we have the
matrix 4,4, operating on the register. Now the ¢, which intends to move
that occupation to a new position need not come from the first line, but
may have come from the second line. It may have come, in fact, from

Quantum Mechanical Computers 519

gtq,A*¥ which would move the cursor back from the position 2 to the
position 1.

But note that when this happens, the operator A3 operates on the
register, and therefore the total operator on the register is A 4,4, in this
case. But A¥ A, is 1 and therefore the operator is just A;. Thus we see that
when the cursor is returned to the position 1, the net result is that only the
operator A4, has really operated on the register. Thus it is that as the
various terms of the Hamiltonian move the cursor forwards and
backwards, the 4’s accumulate, or are reduced out again.

At any stage, for example, if the cursor were up to the j site, the
matrices from A4, to A; have operated in succession on the n register. It
does not matter whether or not the cursor on the j site has arrived there,
by going directly from 0 to j, or going further and returning, or going back
and forth in any pattern whatsoever, as long as it finally arrived at the
state j.

Therefore it is true that if the cursor is found at the site k, we have the
net result for the n register atoms that the matrix M has operated on their
initial state as we desired.

How then could we operate this computer? We begin by putting the
input bits onto the register, and by putting the cursor to occupy the site 0.
We then check at the site k, say, by scattering electrons, that the site k is
empty, or that the site k has a cursor. The moment we find the cursor at
site k we remove the cursor so that it cannot return down the program line,
and then we know that the register contains the output data. We can then
measure it at our leisure. Of course, there are external things involved in
making the measurements, and determining all of this, which are not part
of our computer. Surely a computer has eventually to be in interaction with
the external world, both for putting data in and for taking it out.

Mathematically it turns out that the propagation of the cursor up and
down this program line is exactly the same as it would be if the operators
A were not in the Hamiltonian. In other words, it represents just the waves
which are familiar from the propagation of the tight binding electrons or
spin waves in one dimension, and are very well known. There are waves
that travel up and down the line and you can have packets of waves and so
forth.

We could improve the action of this computer and make it into a
ballistic action in the following way: by making a line of sites in addition to
the ones inside, that we are actually using for computing, a line of say,
many sites, both before and after. It's just as though we had values of the
index i for g;, which are less than 0 and greater than k, each of which has
no matrix A, just a 1 multiplying there. Then we had have a longer spin
chain, and we could have started, instead of putting a cursor exactly at the

.

520 : Feynman

beginning site 0, by putting the cursor with different amplitudes on dif-
ferent sites representing an initial incoming spin wave, a wide packet of
nearly definite momentum.

This spin wave would then go through the entire computer in a
ballistic fashion and out the other end into the outside tail that we have
added to the line of program sites, and there it would be easier to deter-
mine if it is present and to steer it away to some other place, and to cap-
ture the cursor. Thus, the logical unit can act in a ballistic way.

This is the essential point and indicates, at least to a computer scien-
tist, that we could make a universal computer, because he knows if we can
make any logical unit we can make a universal computer. That this could
represent a universal computer for which composition of elements and
branching can be done is not entirely obvious unless you have some
experience, but I will discuss that to some further extent later.

4. IMPERFECTIONS AND IRREVERSIBLE FREE ENERGY LOSS

There are, however, a number of questions that we would like to
discuss in more detail such as the question of imperfections.

There are many sources of imperfections in this machine, but the first
one we would like to consider is the possibility that the coéfficients in the
couplings, along the program line, are not exactly equal. The line is so long
that in a real calculation little irregularities would produce a small
probability of scattering, and the waves would not travel exactly
ballistically, but would go back and forth.

If the system, for example, is built so that these sites are built on a
substrate of ordinary physical atoms, then the thermal vibrations of these
atoms would change the couplings a little bit and generate imperfections.
(We should even need such noise for with small fixed imperfections there
are shallow trapping regions where the cursor may get caught.) Suppose
then, that there is a certain probability, say p per step of calculation (that
is, per step of cursor motion, i — i+ 1), for scattering the cursor momen-
tum until it is randomized (1/p is the transport mean free path). We will
suppose that the p is fairly small.

Then in a very long calculation, it might take a very long time for the
wave to make its way out the other end, once started at the beginning
—because it has to go back and forth so many times due to the scattering.
What one then could do would be to pull the cursor along the program
line with an external force. If the cursor is, for example, an electron moving
from one vacant site to another, this would be just like an electric field
trying to pull the electron along a wire, the resistance of which is generated

Quantum Mechanical Computers : 521

by the imperfection or the probability of scattering. Under these circum-
stances we can calculate how much energy will be expended by this
external force.

This analysis can be made very simply: it is an almost classical
analysis of an electron with a mean free path. Every time the cursor is scat-
tered, I am going to suppose it is randomly scattered forward and
backward. In order for the machine to operate, of course, it must be
moving forward at a higher probability than it is moving backward.
When a scattering occurs therefore, the loss in entropy is the logarithm of
the probability that the cursor is moving forward, divided by the
probability the cursor was moving backward.

This can be approximated by (the probability forward — the
probability backward)/(the probability forward + the probability
backward). That was the entropy lost per scattering. More interesting is the
entropy lost per net calculational step, which is, of course, simply p times
that number. We can rewrite the entropy cost per calculational step as

PVo/Vr

where v, is the drift velocity of the cursor and v, its random velocity.

Or if you like, it is p times the minimum time that the calculation
could be done in (that is, if all the steps were always in the forward direc-
tion), divided by the actual time allowed.

The free energy loss per step then, is kT x p x the minimum time that
the calculation could be done, divided by the actual time that you allow
yourself to do it. This is a formula that was first derived by Bennett. The
factor p is a coasting factor, to represent situations in which not every site
scatters the cursor randomly, but it has only a small probability to be thus
scattered.

It will be appreciated that the energy loss per step is not kT but is that
divided by two factors. One, (1/p), measures how perfectly you can build
the machine and the other is proportional to the length of time that you

~ take to do the calculation. It is very much like a Carnot engine, in which in

order to obtain reversibility, one must operate very slowly. For the ideal
machine where p is 0, or where you allow an infinite time, the mean energy
loss can be 0. ’

The uncertainty principle, which usually relates some energy and time
uncertainty, is not directly a limitation. What we have in our computer is a
device for making a computation, but the time of arrival of the cursor and
the measurement of the output register at the other end (in other words,
the time it takes in which to complete the calculation) is not a define time.
It’s a question of probabilities, and so there is a considerable uncertainty in
the time at which a calculation will be done.

522
Feynman

There is no loss associated with the uncertainty of cursor energy; at
least no loss depending on the number of calculational steps. Of coursé if
you want to do a ballistic calculation on a perfect machine, some encr,gy
would have to be put into the original wave, but that energy, of course, can
be removed from the final wave when it comes out of the tail of: the
program line. All questions associated with the uncertainty of operators
and the irreversibility of measurements are associated with the input and
output functions.

No further limitations are generated by the quantum nature of the

computer per se, nothing that is proportional to the number of com-
putational steps.
‘ Ina 'machine such as this, there are very many other problems, due to
imperfections. For example, in the registers for holding the data, there will
be prob'lems of cross-talk, interactions between one atom and another in
that register, or interaction of the atoms in that register directly with things
that are happening along the program line, that we did not exactly bargain
for. In other words, there may be small terms in the Hamiltonian besides
the ones we have written.

Until we propose a complete implementation of this, it is very difficult
to analyze. At least some of these problems can be remedied in the usual
way by techniques such as error correcting codes, and so forth, that have
begn studied in normal computers. But until we find a specific implemen-
tation for this computer, I do not know how to proceed to analyze these
effepts. However, it appears that they would be very important, in practice.
This computer seems to be very delicate and these imperfections may
produce considerable havoc.

The time needed to make a step of calculation depends on the strength
or the energy of the interactions in the terms of the Hamiltonian. If each of
the terms in the Hamiltonian is supposed to be of the order of 0.1 electron
yolts, then it appears that the time for the cursor to make each step, if done
in a ballistic fashion, is of the order 6 x 10~ "% sec. This does not r;present

c .
i 0
: q IF-c=1 GO p TO q AND PUT ¢

=0

]

p 0 | ch=OGOpTOrANDPUTc=I
r IFc=IGOrTOpANDPUTc=O

H=q"cp + r'c*p IF ¢=0GO q TOp AND PUT ¢ = |

+ p*c*q + p*cr

Fig. 7. Switch.

Quantum Mechanical Computers 523

an enormous improvement, perhaps only about four orders of magnitude
over the present values of the time delays in transistors, and is not much
shorter than the very short times possible to achieve in many optical
systems.

5. SIMPLIFYING THE IMPLEMENTATION

We have completed the job we set out to do—to find some quantum
mechanical Hamiltonian of a system that could compute, and that is all
that we need say. But it is of some interest to deal with some questions
about simplifying the implementation. The Hamiltonian that we have writ-
ten involves terms which can involve a special kind of interaction between
five atoms. For example, three of them in the register, for a CON-
TROLLED CONTROLLED NOT, and two of them as the two adjacent
sites in the program counter.

This may be rather complicated to arrange. The question is, can we do
it with simpler parts. It turns out that we can indeed. We can do it so that
in each interaction there are only three atoms. We are going to start with
new primitive elements, instead of the ones we began with. We’'ll have the
NOT all right, but we have in addition to that simply a “switch” (see also
Priese(®).

Supposing that we have a term, g*cp + r*c*p + its complex conjugate
in the Hamiltonian (in all cases we’ll use letters in the earlier part of the
alphabet for register atoms and in the latter part of the alphabet for
program sites). See Fig. 7. This is a switch in the sense that, if ¢ is
originally in the |1) state, a cursor at p will move to g, whereas if ¢ is in
the |0) state, the cursor at p will move to r.

During this operation the controlling atom ¢ changes its state. (It is
possible also to write an expression in which the control atom does not
change its state, such as g*c*cp+ r*cc*p and its complex conjugate but,
there is no particular advantage or disadvantage to this, and we will take
the simpler form.) The complex conjugate reverses this.

If, however, the cursor is at g and c is in the state |1) (or cursor at r, ¢
in |0)), the H gives 0, and the cursor gets reflected back. We shall build all
our circuits and choose initial states so that this circumstance will not arise
in normal operation, and the ideal ballistic mode will work.

With this switch we can do a number of things. For example, we could
produce a CONTROLLED NOT as in Fig. 8. The switch a controls the
operation. Assume the cursor starts at s. If =1 the program cursor is
carried along the top line, whereas if a=0 it is carried along the bottom
line, in either case terminating finally in the program site .

524 Feynman

Q
(@]

NOT b
s — 1 =b+b" | t

| SN tN |

Fig. 8. CONTROLLED NOT by switches.

In these diagrams, horizontal or vertical lines will represent program
atoms. The switches are represented by diagonal lines and in boxes we'll
put the other matrices that operate on registers such as the NOT 5. To be
specific, the Hamiltonian for this little section of a CONTROLLED NOT,
thinking of it as starting at s and ending at t, is given below:

H (s, 1) =s¥as+t*a*1,, + 14(b+b*) s, +sta*s

+1*aty +t¥s, +cc

(The c.c means to add the complex conjugate of all the previous terms.)

Although there seem to be two routes here which would possibly
produce all kinds of complications characteristic of quantum mechanics,
this is not so. If the entire computer system is started in a definite state for
a by the time the cursor reaches s, the atom a is still in some definite state
(although possibly different from its initial state due to previous computer
operations on it). Thus only one of the two routes is taken. The expression
may be simplified by omitting the s*r, term and putting ¢, =s,.

One need not be concerned in that case, that one route is longer (two
cursor sites) than the other (one cursor site) for again there is no inter-
ference. No scattering is produced in any case by the insertion into a chain
of coupled sites, an extra piece of chain of any number of sites with the
same mutual coupling between sites (analogous to matching impedances in
transmission lines).

. To study these things further, we think of putting pieces together. A
piece (see Fig. 9) M might be represented as a logical unit of interacting
parts in which we only represent the first input cursor site as Sy and the
final one at the other end as ¢ m- All the rest of the program sites that are
between s,, and ¢,, are considered internal parts of M, and M contains its
registers. Only s,, and ¢ m are sites that may be coupled externally.

ssova f Wik

A “

Quantum Mechanical Computers 525

— — — o —— — —

Sm T

Sy = Starting program site for piece

tw = Terminal program site for piece

Hy (sy, t,,) is the part of the Hamiltonian
representing all the "atoms" and program sites

within the box M, and their interactions with Sur T
Fig. 9. One “piece.”

The Hamiltonian for this subsection we’ll call H » and we'll identify s,,
and 1,,, as the name of the input and output program sites by writing
H /(sp5 tas)- So therefore H,, is that part of the Hamiltonian representing
all the atoms in the box and their external start and terminator sites.

An especially important and interesting case to consider is when the
input data (in the regular atoms) comes from one logical unit, and we
would like to transfer it to another (see Fig. 10). Suppose that we imagine
that the box M starts with its input register with 0 and its output (which
may be the same register) also with 0. Then we could use it in the following
way. We could make a program line, let’s say starting with s, whose first
job is to exchange the data in an external register which contains the input,
with M’s input register which at the present time contains 0’s.

Then the first step in our calculation, starting, say, at s’,, would be to
make an exchange with the register inside of M. That puts zero’s into the
original input register and puts the input where it belongs inside the box
M. The cursor is now at s,,. (We have already explained how exchange can
be made of controlled NOTSs.) Then as the program goes from s,, to ,, we
find the output now in the box M. Then the output register of M is now
cleared as we write the results into some new external register provided for
that purpose, originally containing 0’s. This we do from ¢ u to 1, by
exchanging data in the empty external register with the M’s output register.

We can now consider connecting such units in different ways. For
example, the most obvious way is succession. If we want to do first M and
then N we can connect the terminal side of one to the starting side of the
other as in Fig. 11, to produce a new effective operator K, and the
Hamiltonian then for H, is)

Hy(sg, tx)=Hp(sg, 1)+ Hy(1, 1)

526 Feynman

SM’ tM/
0] 0]
| —_—
0]
. N 0 M 8
IN ouT
SM fM
SM' TO SM fM TO tM,

EXCHANGE
"IN" WITH REG.
INSIDE M

EXCHANGE
"OUT" WITH REG.
INSIDE M

Fig. 10. Piece with external input and output.

The general conditional, if a=1 do M, but if a=0 do N, can be made
as in Fig. 12. For this

>

Hcond(sr, t(‘)= (s,tlasc+ t:a*tM'i‘sx/a*sc'f' l'falN+C.C.)
+ Hp(spr, ta) + Hp(sy, Iy)

The CONTROLLED NOT is the special case of this with M = NOT 5
for which H is

Hyors(s, 1) =s*(b+b*) 1 +c.c.

and N is no operation s*.

Hy (sk, tg) = Hm(sy, t) + Hn(t, ty)

Fig. 11. Operations in succession.

e .

2

Quantum Mechanical Computers 527

N

Fig. 12. Conditional if a=1 then M, else N.

As another example, we can deal with a garbage clearer (previously
described in Fig. 6) not by making two machines, a machine and its
inverse, but by using the same machine and then sending the data back to
the machine in the opposite direction, using our switch (see Fig. 13).

Suppose in this system we have a special flag which is originally
always set to 0. We also suppose we have the input data in an external
register, an empty external register available to hold the output, and the
machine registers all empty (containing 0’s). We come on the starting
line s.

The first thing we do is to copy (using CONTROLLED NOT’s) our
external input into M. Then M operates, and the cursor goes on the top
line in our drawing. It copies the output out of M into the external output
register. M now contains garbage. Next it changes f'to NOT f, comes down
on the other line of the switch, backs out through M clearing the garbage,
and uncopies the input again.

When you copy data and do it again, you reduce one of the registers
to 0, the register into which you coied the first time. After the coying, it
goes out (since f'is now changed) on the other line where we restore f to 0

f f
. 0 l lo cCoPY
| COPY " | ouT
0 I 0
t—{nNoT ¢ |- — NOT

Fig. 13. Garbage clearer.

528 Feynman

anq come out at . So between s and ¢ we have a new piece of equipment,
which has the following properties.

When i_ts starts, we have, in a register called IN, the input data. In an
external register which we call OUT, we have 0s. There is an internal flag

empty, and the flag f is reset to 0,

Also important in computer programs is the ability to use the same
subroutine several times. Of course, from a logical point of view, that can
be done by writing that bit of program over and over again, each time it is
to be used, but in a practical computer, it is much better if we could build
that section of the computer which does a particular operation, just once,
and use that section again and again.

To show the possibilities, here, first Just suppose we have an operation
we simply wish to repeat twice in succession (see Fig. 14). We start at s

line where we went in, we come out at the bottom line, which recirculates
the program back into changing a again; it restores it.

This time as we go through M, we come out and we have the a4 to
follow on the uper line, and thus come out at the terminal, t. The
Hamiltonian for this is

Hyp(s, 1) = (ska*s + st(a*+a)s, + x*a*t,, + s*ax

+1*at,, +cc.)+ Hp(spg, 1hy)

Using this switching circuit a number of times, of course, we can
repeat an operation several times. For example, using the same idea three

a a
S O 0
NOT a M

X
Fig. 14. Do M twice.

i il
v
4

Quantum Mechanical Computers 529

Fig. 15. Do M eight times.

times in succession, a nested succession, we can do an operation eight
times, by the apparatus indicated in Fig. 15. In order to do so, we have
three flags, a, b, and c. It is necessary to have flags when operations are
done again for the reason that we must keep track of how many times its
done and where we are in the program or we’ll never be able to reverse
things.

A subroutine in a normal computer can be used and emptied and used
again without any. record being kept of what happened. But here we have
to keep a record and we do that with flags, of exactly where we are in the
cycle of the use of the subroutine. If the subroutine is called from a certain
place and has to go back to some other place, and another time is called,
its origin and final destination are different, we have to know and keep
track of where it came from and where it’s supposed to go individually in
each case, so more data have to be kept. Using a subroutine over and over
in a reversible machine is only slightly harder than in a general machine.
All these considerations appear in papers by Fredkin, Toffoli, and Bennett.

It is clear by the use of this switch, and successive uses of such
switches in trees, that we would be able to steer data to any oint in a
memory. A memory would simply be a place where there are registers into
which you could copy data and then return the program. The cursor will

Fig. 16. Increment counter (3-bit).

530 Feynman

have to follow the data along. I suppose there must be another set of tree
switches set the oposite direction to carry the cursor out again, after
copying the data so that the system remains reversible.

In Fig. 16 we show an incremental binary counter (of three bits a, b, ¢
with ¢ the most significant bit) which keeps track of how many net times
the cursor has passed from s to . These few examples should be enough to
show that indeed we can construct all computer functions with our
'SWITCH and NOT. We need not follows this in more detail.

6. CONCLUSIONS

It’s clear from these examples that this quentum machine has not
really used many of the specific qualities of the differential equations of
quantum mechanics.

What we have done is only to try to imitate as closely as possible the
digital machine of conventional sequential architecture. It is analogous to
the use of transistors in conventional machines, where we do not properly
use all the analog continuum of the behavior of transistors, but just try to
run them as saturated on or off digital devices so the logical analysis of the
system behavior is easier. Furthermore, the system is absolutely sequen-
tial—for example, even in the comparison (exclusive or) of two k bit num-
bers, we must do each bit successively. What can be done, in these rever-
sible quantum systems, to gain the speed available by concurrent operation
has not been studied here.

Although, for theoretical and academic reasons, I have studied com-
plete and reversible systems, if such tiny machines could become practical
there is no reason why irreversible and entropy creating interactions cannot
be made frequently during the course of operations of the machine.

For example, it might prove wise, in a long calculation, to ensure that
the cursor has surely reached some oint and cannot be allowed to reverse

~again from there. Or, it may be found practical to connect irreversible
memory storage (for items less frequently used) to reversible logic or short-
term reversible storage registers, etc. Again, there is no reason we need to
stick to chains of coupled sites for more distant communication where
wires or light may be easier and faster.

At any rate, it seems that the laws of physics present no barrier to
reducing the size of computers until bits are the size of atoms, and quan-
tum behavior holds dominant sway.

Quantum Mechanical Computers 531

REFERENCES®

1. C. H. Bennett, “Logical Reversibility of Computation,” /BM J. Res. Dev. 6, 525-532 (1979).

2. E. Fredkin and T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219-253 (1982).

3. C. H. Bennett, “Thermodynamics of Computation—A Review,” Int. J. Theor. Phys. 21,
905-940 (1982). ;

4. T. Toffoli, “Bicontinuous Extensions of Invertible Combinatorial Functions,” Math. Syst.
Theory 14, 13-23 (1981).

5. L. Priese, “On a Simple Combinatorial Structure Sufficient for Sublying Nontrivial Self-
Reproduction,” J. Cybern. 6, 101-137 (1976).

3T would like to thank T. Toffoli for his help with the references.

