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Spin relaxation of conduction electrons in metals is significantly influenced by the Fermi surface
topology. Electrons near Brillouin zone boundaries, special symmetry points, or accidental
degeneracy lines have spin flip rates much higher than an average electron. A realistic calculation
and analytical estimates show that these regions dominate the spin relaxation, explaining why
polyvalent metals have much higher spin relaxation rates (up to three orders of magnitude) than
similar monovalent metals. This suggests that spin relaxation in metals can be tailored by

band-structure modifications like doping, alloying, reducing the dimensionality, etc.
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The ability of normal metals to carry a spin-polarized
current has led to the development of spin transistor,' a
ferromagnet-normal metal-ferromagnet sandwich device that
can switch current depending on the relative orientation of
the magnets. Spin polarized currents also flow in the metallic
layers of giant magnetoresistance heterostructures,” sub-
stances promising for magnetic signal processing. A major
limitation of the quality of these devices is imposed by the
time (the so called spin relaxation time 7;)° an unbalanced
spin population in metals persists; the metallic layers used in
these devices cannot be thicker than the spin diffusion length
which is proportional to \/T—l . Finding ways of enhancing T
is technologically important also from the perspective of
quantum computing that represents bits by electronic spins.*
One recent successful attempt to increase 7| in semiconduc-
tors by doping is described in Ref. 5.

We recently reported® on a theoretical study of the spin
relaxation in polyvalent metals where we showed how the
band structure affects 7'; . The physical picture is the one of
a random walk on the Fermi surface: the weakness of the
spin-flipping interactions in a typical metal ensures that an
electron changes its momentum many times (typically a
10000) before its spin flips. At some points (we call them
spin hot spots), however, the spin-flip probability is much
enhanced. Near a Brillouin zone boundary (Bragg plane), for
example, this probability can increase a hundred times. If the
electron jumps in or out of a special symmetry or accidental
degeneracy point, the probability may be even close to one,
that is, the spin-flipping and spin-conserving jumps may be
almost equally frequent! Although an electron jumping into a
spin hot spot is a rare event, it may nevertheless dominate
the spin relaxation.

The above picture solves a longstanding experimental
puzzle formulated first by Monod and Beuneu:” Why spin in
some metals decays unexpectedly fast? Experiments show
that alkali and noble metals have spin relaxation times con-
sistent with the predictions of the theory of Elliott*® and
Yafet,” when the spin-flip rates are calculated from the
atomic state parameters. Metals Al, Pd, Mg, and Be, on the
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other hand, have spin relaxation times much smaller (up to 3
orders of magnitude for Mg and Be) than estimated. This
discrepancy is disturbing since it shows that otherwise simi-
lar metals may have very different spin relaxation times.
Silsbee and Beuneu'® were first to notice that accidental de-
generacy points can significantly increase the spin relaxation
of aluminum. We substantiated this idea by a rigorous cal-
culation, and extended it to include all band-structure degen-
eracies. The experimental puzzle is then resolved by recog-
nizing the fact that the two groups of metals have different
valency. Alkali and noble metals are monovalent—their
Fermi surface lies completely within the first Brillouin zone.
The spin-flip rates are more or less uniform with the values
close to the ones derived from atomic physics (there are no
spin hot spots). On the other hand polyvalent Al, Pd, Mg,
and Be have numerous Fermi surface anomalies where spin
hot spots can be formed. Aluminum, for example, have spin
relaxation rates determined primarily by the Fermi surface
regions near the Brillouin zone boundaries and around the
accidental degeneracy points.®'® In beryllium, the Fermi sur-
face cuts through a degeneracy plane!

Since no polyvalent metals other than Al, Pd, Mg, and
Be have been measured for 7'y so far, our explanation of the
experimental puzzle becomes a prediction for future 7'y mea-
surements. In addition, the spin-hot-spots picture suggests a
way of altering 7’| via band-structure modifications. Doping
into the conduction band, for example, may shift the Fermi
surface away from some special symmetry points and in-
crease T . Similarly, alloys or systems with reduced dimen-
sionality will have spin relaxation rates different from those
of the corresponding elemental or bulk metals, respectively.
A general rule of thumb for increasing 7| of electrons in a
conduction band is washing out the spin hot spots from the
Fermi surface. In what follows we introduce the basic con-
cepts of our theory and discuss the results in a qualitative
fashion.

If the periodic potential due to ions in a crystal lattice
contains spin-orbit coupling (a term proportional to the sca-
lar product of the orbital and spin momentum operators,

L.-S), the electronic Bloch states are a mixture of spin up |1)
and down ||) species:®
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Wl (1) =[ g, (1) 1)+ by, (1) | | ) exp(ik-1) , (1)
Wi, (r)=[a*,(r)]1)=b%,,(r)|1)]exp(ik-r). )

The lattice momentum and band index are k and n, respec-
tively, and ay,(r) and by, (r) are complex periodic functions
with the period of the lattice: if G denotes the reciprocal
lattice vectors, then ay,(r) =2 gay,(G)exp(iG-r) and simi-
larly for by, (r). Both states have the same energy Ey,, , as
follows from time and space inversion symmetry;® the num-
bering of bands is therefore the same as without the spin
notation. The degenerate states ‘Iflln and ‘I’]lm are chosen to
represent electrons with spins polarized along z direction:’
(PLIS Wi )=—(¥L|S.|¥])<0 and the off-diagonal
matrix elements are zero. This condition implies that a,,(r)
have values close to one, while b, (r) are much smaller,
decreasing with the decrease of the strength of the spin-orbit
interaction (with the exception of the points where the spin-
orbit interaction lifts a degeneracy).

Elliott® pointed out that ordinary (spin conserving) im-
purity or phonon scattering can induce transitions between
W, and \If]l(,n, (either their spin up or down amplitudes),
leading to the flip of a spin polarization and thus spin relax-
ation. Simplifying assumptions lead to the formula®

VT, ~4(b?)/, 3)

where (b?) is the Fermi surface average of

2 4)

|bkn|2:% |bkn(G)

and 7is the momentum relaxation time. The weakness of the
spin-orbit interaction makes the average spin-mixing param-
eter (b*) much smaller than one and 1/T,<1/7. At low tem-
peratures, in a very pure sodium, for example, 7; can reach
a microsecond,'' much larger than momentum relaxation
times which would reach a fraction of a nanosecond in simi-
lar samples. Note that Eq. (3) implies a series ‘‘spin resistor’’
model (scattering rates are additive) for the spin relaxation, if
|bya|?/ 7 is interpreted as the spin-flip rate for the scattering
from, or to state kn. The reason is that because 1/T;<<1/7, a
single electron experiences many different (‘‘series’”) scat-
tering events before changing its spin. Therefore the Fermi
surface states with the highest spin-flip rates count most. (A
counterexample is conductivity which is monopolized by the
states with the lowest scattering rates.)

In addition to the FElliott’s mechanism, impurities and
phonons affect the spin relaxation in other ways. Impurities
induce the spin-orbit interaction which allows a direct tran-
sition between the spin up part of ‘I’Im and the spin down
part of ‘Ifll(,n, . The resulting spin relaxation is independent
of temperature (as is the Elliot’s impurity relaxation) and can
be experimentally controlled. Similar transitions can be in-
duced by the phonon-modulated spin-orbit interaction. This
intrinsic effect leads, in principle, to a spin relaxation that is
as effective as the Elliott’s phonon-induced spin relaxation,
but as we show below, becomes unimportant in many poly-
valent metals where the Elliott’s mechanism is enhanced by
band structure.
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FIG. 1. Calculated distribution p (in arbitrary units) of the spin-mixing
parameters |by,|> for aluminum. The corresponding average (b?)~2.0
X 107° is indicated by a solid arrow. The linear tail of the distribution is
shown in the inset. The dashed line shows what the distribution would be if
aluminum were monovalent ((b>)~3.4X 1077, dashed arrow).

In most cases the spin-orbit interaction can be incorpo-
rated into the band structure as a perturbation, leading to the
estimate (b2)~(\/A)2. Parameter \ is some effective spin-
orbit coupling and A is a typical (unperturbed) energy differ-
ence between neighboring bands. Monod and Beuneu’ esti-
mated both A and A from their atomic values and found
widely varying results for different metals. While this atomic
substitution works well for alkali and noble metals, other
metals (Al, Pd, Mg, and Be) seem to have {(b?) much larger
than calculated. The case of aluminum and sodium is instruc-
tive. These metals have similar atomic numbers so their
atomic N/A are also similar (within 10%).” Yet their spin
relaxation times differ by two orders of magnitude.®'>~!?
The reason is the very different band structure of the two
metals that gives very different values for A. In sodium, A is
of order E, the Fermi energy. In aluminum, A varies be-
tween zero (here perturbation theory for degenerate states
gives |bi,|~0.5) and E.. Remarkably, the regions with
small A (the spin hot spots) have enough weight to signifi-
cantly increase the average (h*) beyond the naive estimate
(NE F)2 which works so well for monovalent metals. A solid
state environment greatly influences (b*) and T, leading to
what we call the band renormalization of the spin-orbit mix-
ing (b?).

Figure 1 shows our calculation® of the distribution p of
the values attainable by |by,|> over the Fermi surface of
aluminum. The width of the distribution is impressive—
almost 7 decades! Most states have |by,|> below 1075,
Higher values are much less frequent but they stretch up to
about 10~ ! (we lacked enough precision to reach the upper
limit 0.5) with p decreasing linearly, as seen in the inset.
This long tail, however, has a marked influence on the aver-
age (b*)~2.0Xx 10" which is an order of magnitude larger
than the value where p is maximal. The unusual character of
the distribution is further emphasized by the plot (also in Fig.
1) of p for a hypothetical case of monovalent aluminum. The
band structure parameters (like the lattice structure or the
form of the electron-ion potential) are unchanged so that any
difference in p between the two metals is caused solely by
their different valencies, and therefore different Fermi sur-
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face geometries. The distribution of b is now relatively nar-
row with the average (b?)~3.4X10~7 coinciding with the
center of the distribution; this value is about 50 times smaller
than the average for (trivalent) aluminum. Adjusting for the
density of states (monovalent aluminum would have 1/7 re-
duced ~3'” times) the spin relaxation would be about 70
times slower. This is about the measured difference between
sodium, which has similar Fermi surface as monovalent alu-
minum, and aluminum.®

The difference between the two very different forms of p
in Fig. 1 is clearly attributed to the subtleties of the band
structure of aluminum. The Fermi surface of monovalent alu-
minum is nearly spherical and lies entirely within the first
Brillouin zone; the protuberances near the zone boundaries
do not touch the planes as in the case of the noble metals. On
the other hand, the Fermi surface of aluminum crosses the
Brillouin zone boundaries and accidental degeneracy lines.'®
The distorted electronic states near the crossings are respon-
sible for the long tail of p. Consider a band structure com-
puted without the spin-orbit interaction. The spin-orbit inter-
action, being a part of the periodic lattice potential can
induce transitions only between states whose k differ by a
reciprocal lattice vector, or, in a reduced-zone scheme, be-
tween the states with the same Kk but different n. Let, for a
state kn on the Fermi surface, the closest band to n is sepa-
rated from n by A. The spin-orbit interaction mixes the spin
amplitudes from the two bands (more distant bands to n will
have smaller contribution and we neglect them) leading to
the spin-mixing parameter |by,|>~(1—A/JAT+4N?)/2.
Three cases can occur. (A) For a general point on the Fermi
surface, the band separation is of order E, the Fermi en-
ergy, so that A>Vgy and |by,|?>~(Vso/Ep)?. This is the
case of monovalent aluminum: parameters A=~3 meV (same
as for trivalent aluminum)® and E ~6 meV give |by,|*>~3
X107 7(~107%%) in accordance with Fig. 1. In (trivalent)
aluminum typical spacings between bands are somewhat
smaller than Er~12eV; the estimate of A~3 eV is in rea-
sonable agreement with Fig. 1. (B) If the state is close to a
Brillouin zone boundary associated with G, the band separa-
tion is ~2V (Vg is the Gth Fourier coefficient of the non-
spin part of the lattice potential). Since typically Vo> Vg,
|bial >~ (Vso/2V)?; this can be a few orders larger than in
(A). Aluminum has V,;;~0.2eV which gives |by,|> about
6X107°(~10"4?) coinciding with the onset of the tail in
Fig. 1. Curiously, the Fermi surfaces of the noble metals too
come in contact with some zone boundaries. The noble met-
als, however, have unusually large VG17 so the estimate (A)
works equally well. Finally, (C) the spin-orbit interaction can
lift the degeneracy of two or more bands. The mixing of
spins is complete and |by,|*~|ay,|*~0.5. Even this case
occurs in aluminum, where the second and third band acci-
dentally coincide at some Fermi surface points (the acciden-
tal degeneracy points). The neighborhood of these points is
responsible for the long tail of p in Fig. 1. The spin hot spots
are the states with the properties (B) and (C).

As Fig. 1 reveals, the spin hot spots essentially deter-
mine the average (b?). We give a simple example demon-
strating that this is reasonable. Consider electrons in the
presence of a single Brillouin zone plane that is associated
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with the reciprocal vector G. If the electron-ion potential (or,
rather, pseudopotential) is weak, the band structure of such a
system is found by using just two plane waves, exp(ik-r)
and exp[i(k—G)-r]; this is sometimes known as the two
orthogonalized-plane-wave (OPW) method.'® The problem
has axial symmetry along the direction of G, so we conve-
niently shift the origin of k to G/2 and decompose k into the
components parallel (z) and perpendicular (r) to G: k=G/2
+r+z. To further simplify the notation, energy and momen-
tum will have the units of #2(G/2)%/(2m) and G/2, respec-
tively; m will be the electron mass. The band structure is
formed by two energy levels with the dispersion (see, for
example, Ref. 18)

E*=1+4r>+z2+1sgn(2)A(z), %)

A(z)= 1622 +4VE. )

We allow z which measures the distance from the plane, both
negative and positive values (repeated-zone scheme) and
take E* as the reference level. The Fermi surface is then the
revolution of the curve

E*(rz)=Ep ™

about G. If z is negative (states inside the first Brillouin
zone) E~ is the upper band, if z is positive E~ is smaller
than E™; the spacing between the two bands A(z) depends
only on z.

The spin-orbit interaction will mix the spin amplitudes
of the two bands. In most cases A<V and we can use the
estimate (B):

|bial*=161>~[N/A(2) 2. (8)

A proper evaluation of |by,|? would, instead of effective \,
have the matrix elements of the spin-orbit interaction be-
tween the band states with energies E~ and E™. Such matrix
elements, in general, depend on both r and z, and for spin
quantized not along G, also on the angle of revolution ¢. In
particular, the spin mixing would vanish at k=G/2 (that is,
r=z=0). This follows from group-theoretical arguments'
or, more simply, from the fact that the spin-mixing matrix
elements between the plane waves exp(ik-r) and exp[i(k
—G)-r], out of which the band states are formed, are pro-
portional to the vector product kX (k— G); this product van-
ishes for k= G/2. Incidently, this vanishing of spin mixing is
another reason why the band structure does not affect 7'; for
the noble metals despite the fact that some of their states
come into contact with zone boundaries at G/2. Introducing
effective \ therefore overestimates the region around G/2. In
most interesting cases of polyvalent metals, however, the
Fermi surface crosses the plane far enough from this point
(that is, if z=0 radius r is a significant fraction of G/2) and
our approach is justified.
The Fermi surface average of |b_|* given by Eq. (8) is

N 2 A2
(b >_22_Z1 Ll “Ry ©

The limits of the integration, z; and z,, are the minimum
and maximum value of z reached by the Fermi surface; they
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FIG. 2. Two OPW calculation (with the parameters V; and \ suitable for
aluminum) of the average spin-mixing parameter {(b?) as a function of the
Fermi energy Er . The values of (h%) that correspond to monovalent (open
circle, Er=0.81) and trivalent (filled circle, Ez=1.7) aluminum are 4.1
X1077 and 6.2X107°, respectively. The vertical line indicates the case
where the free-electron Fermi sphere comes into contact with the Brillouin
zone boundaries.

are obtained by putting =0 and solving Eq. (7) for z. We
are interested in how (b?) depends on the Fermi surface
geometry. The Fermi energy which determines z; and z, will
now be a variable parameter (simulating doping). Although
the integral in Eq. (9) can be evaluated analytically it is more
instructive to consider some limiting cases only. The numeri-
cal estimates will be done with the band-structure parameters
appropriate for aluminum so that the results can be directly
compared with the full band structure calculation of Fig. 1.
The parameters are A\~4.3X 10"% and V5= V,,;~0.035 (we
now use the dimensionless units for energy). Although the
aluminum Fermi surface crosses both (111) and (200) zone
boundaries, we choose as Vg the Fourier coefficient V;;;
which is much smaller than V,q, and has therefore greater
impact on (b?).

If E is small, the Fermi surface is a small, almost un-
distorted sphere. Both z, and z, are close to —1 so we can
neglect Vg in Eq. (6) and obtain (h*)~N\%/16~1.2X10"5.
This number is not affected by the presence of the Brillouin
zone boundaries and can be thought of as an atomic limit for
the spin mixing. When E is large enough for the Fermi
surface to cross the zone boundary, z,= — Vg and the small
region of the states around the plane gives the dominant
contribution to {(b?). Indeed, when taking the integral in Eq.
(9) from —Vg to Vg only, A(z)=2Vg and (b?)
~\%/(4Vgkp); the Fermi momentum k= JE is given by
7,—27~2kf . Before substituting numerical values we note
that there are eight (111) planes in aluminum. They contrib-
ute independently to (b?) giving the estimate (h?)~8
X 10~%. The full calculation in Fig. 1 gives the value which
is more than twice larger. This is explained partly by our
neglect of the (200) planes and, more important, by ignoring
the accidental degeneracy points.

Figure 2 plots the full dependence of (b*) on E within
the two OPW approximation for the eight (111) aluminum
planes. Doping, or increasing the size of the Fermi surface
can increase (h*) by almost 3 orders of magnitude. As the
Fermi surface expands towards the zone boundaries, the
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Bloch states that are closest to the planes (they have smallest
A) become more and more important. Once the Fermi sur-
face reaches the plane (at the energy 1 —Vg~0.97) the av-
erage (b?) goes through a maximum and then slightly de-
creases. The decrease is tied to the saturation of the integral
in Eq. (9): only the states in the small neighborhood of the
plane are dominant and (b?)~1/(z,—z,). The quantity z,
— 2z, is up to a numerical factor the density of states. As Fig.
1 shows, in this toy calculation monovalent aluminum would
have (b*) about 15 times smaller than aluminum, in good
agreement with the results of Fig. 1.

The qualitative understanding of the above estimates for
the impact of a Brillouin zone boundary on (b?) is quite
simple. We need to estimate the probability with which an
electron in its random walk on the Fermi surface jumps into
a state close to a Brillouin zone boundary. Alternatively, we
can ask what is the portion of the free-electron Fermi surface
states that have A<2V (these states will be significantly
perturbed by the presence of the boundary). The answer is
~V and the reason that this number is linear in V¢ (the
linearity is crucial) is that A increases linearly away from the
plane, as in Eq. (6). The average value (b?) is then ~ Vg
X N2/ Vé%)\z/VG. The enhancement of the spin mixing due
to the presence of a single Brillouin zone boundary is then
~1/Vg, as in Fig. 2.

To estimate how accidental degeneracy points affect
(b?) is more difficult.'’ Consider two bands coming into
contact at a single point R, different from the symmetry
points, on the Fermi surface. As noted in Ref. 18 the band
spacing A grows linearly as we go away from R in almost all
directions (the exception is the direction along the corre-
sponding accidental degeneracy line). We need to divide the
region around R in two: the first has states with 0<A
=<2\, the second with 2A<A=<2V. Since A~ 6k, where
Sk measures the distance from R, there are ~\?2 points in the
first region, all with (approximately) the same value of by,
~1 from estimate (C). The average (b?) therefore scales as
A2, The second region is different in that we have by, de-
pending on A [estimate (B)]. The average (b?) is thus pro-
portional to

Ve A2
<bz>~JA dAAp. (10)

This integral evaluates to \?In(Vg/\) giving a weak en-
hancement of about In(V;/N)=~4. More accurate evaluation
based on a four OPW approximation would give an addi-
tional enhancement of (V,g/V )%~ 10° As Vs becomes
smaller the importance of accidental degeneracy points di-
minishes.

Another type of a spin hot spot, not relevant for alumi-
num though, is the region around a special symmetry point.
It may happen that the Fermi energy coincides with a set of
two or more degenerate levels at a symmetry point. This is
the case, for example, of the (fcc) palladium and platinum,
whose Fermi surfaces go through the fcc L points.®® If the
spin-orbit interaction lifts this degeneracy, the renormaliza-
tion of (b?) can be significant. This effect is, however, not
easy to estimate qualitatively. For the fcc W point we find
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that the enhancement of (b?) relative to the atomic value of
~\? is about V¢ /\." This can range from a 10 to a 1000.

Our final note concerns the hexagonal Mg and Be, where
the deviation of 7, from the simple estimates is most
striking.” We argue that this is also a manifestation of the
band renormalization of {(b?). Without the spin-orbit interac-
tion, all the states at the hexagonal faces of the first Brillouin
zone of a simple hexagonal structure are degenerate.”! The
spin-orbit interaction lifts this degeneracy® (except at some
symmetry points and lines), presumably by the amount Vg\,
the largest second-order term containing the spin-orbit inter-
action (any first order term vanishes since the structure factor
associated with the hexagonal faces is zero).?! The contribu-
tion to (b?) of the points where the Fermi surface intersects
the hexagonal faces is ~VgN: the characteristic value
|bia|?>~1, times the area of the affected part of the Fermi
surface, Vg\. The enhancement measured in terms of A2 s
then V/\; this can be as large as a thousand for light ele-
ments like Mg and Be.
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