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Preserving Coherence in Quantum Computation by Pairing Quantum Bits
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A scheme for protecting quantum states from both independent and cooperative decoherence is
proposed. The scheme operates by pairing each qubit (two-state quantum system) with an ancilla qubit
and by encoding the states of the qubits into corresponding coherence-preserving states of qubit pairs.
In this scheme, amplitude damping (loss of energy) as well as phase damping (dephasing) is prevented
by a strategy called “free-Hamiltonian elimination.” We further extend the scheme to include quantum
gate operations and show that loss and decoherence during such operations can also be prevented.
[S0031-9007(97)03897-0]
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Soon after the idea of quantum computation became
an active part of current research, through the innova-
tive work of Shor on factorization [1,2], decoherence was
recognized as a major problem that cannot be ignored
[3], especially when one is interested in practical appli-
cations. Quantum computers act as sophisticated non-
linear interferometers. The coherent interference pattern
between the multitude of superpositions is essential for
taking advantage of quantum parallelism. However, de-
coherence of the qubits caused by the interaction with
environment will collapse the state of the quantum com-
puter and make the information no longer correct. To
overcome this fragility of quantum information, Shor, and
independently Steane, inspired by the theory of classical
error correction, proposed the first two quantum error-
correcting codes (QECCs), i.e., the nine-bit code [4] and
the seven-bit code [5], which are able to correct errors
that occur during the storage of qubits. Furthermore, a
general theory for quantum error correction was presented
by Calderbank and Shor [6], and independently by Steane
[7]. Following this work, many new QECCs have since
been discovered [8–21]. The discovery of QECCs has
revolutionized the field of quantum information.
Quantum errors are induced by the interaction of the

qubits with environment. If we know more about this
interaction, simpler codes can be found. In the previ-
ous analyses of decoherence [3], the qubits are assumed
to interact independently with separate environments. In
practice, however, cooperative effects may take place be-
tween the qubits. For example, the qubits in ion-trapped
computers are believed to be decohered cooperatively
[22,23]. References [24,25] considered another extreme
case, i.e., all the qubits interact with the same environ-
ment. If only the phase damping is considered, as the
result, the qubits are found to be decohered collectively.
For some of the input states (called the subdecoherent
states), the qubits are decohered much slower; and for
some others (called the superdecoherent states), they are
decohered much faster. The phenomenon of superdeco-
herence vs subdecoherence is very similar to, but not

the same as, the process of superradiance vs subradiance
more commonly encountered in literature [26]. As was
pointed out in Ref. [24], superradiance is a process of
collective radiation by a group of closely spaced atoms,
while superdecoherence is due to collective entangle-
ment between qubits and environment. A simple code
has been suggested in [24] for reducing this collective
decoherence.
Independent decoherence and collective decoherence

are extreme cases. With these two ideal circumstances,
we ask, what about the real situation? It seems a com-
bination of these two cases may be more practical. If the
qubits are close, they tend to be decohered collectively; and
if they are departed, the assumption of independent deco-
herence may be more reasonable. In this Letter, we pro-
pose a scheme for reducing decoherence in general cases.
The scheme operates by pairing each qubit with an ancilla.
The two qubits in each pair are set close so that they in-
teract with the same modes of the environment. But the
qubits in different pairs are allowed to be decohered in-
dependently or cooperatively. Because of the collective
dissipation in each pair, coherence-preserving states of the
qubit pairs are found to exist. The stored information is
protected from decoherence by encoding the states of the
qubits into the corresponding coherence-preserving states
of the qubit pairs. In fact, the use of coherence-preserving
states for preventing errors induced by the pure dephasing
has been described by Chuang and Yamamoto [27,28] and
also by Palma et al. [24]. Here we adopt the previously
known idea of using such states of qubit pairs. We propose
a strategy called the “free-Hamiltonian elimination” to pro-
vide a general method to set up the coherence-preserving
states. By this strategy, amplitude damping is prevented as
well as phase damping. Amplitude damping sometimes is
the main source of decoherence [23,29,30]. Furthermore,
we show in this Letter that the scheme can be extended
to prevent decoherence in quantum gate operations. Co-
herence is preserved in the gate operations by substituting
the logic gates for the qubits with those for the qubit pairs.
Preserving coherence during quantum gate operations is a
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significant step towards realizing the fault-tolerant quan-
tum computation [15].
First, we consider the stored information, i.e., the qubits

in quantum memory, which can be described by Pauli’s
operators �sl (l marks different qubits). The environment
is modeled by a bath of oscillators with infinite degrees of
freedom. Each qubit interacts with some (usually infinite)
modes of the environment. The bath modes coupling
with the l qubit are indicated by avl (v varies from

0 to `). For different l1 and l2, some of the modes
avl1 and avl2 are possibly the same and some of them
are different. We use the notation

SL
l�1 Al to indicate

the joint sum of Al , where all Al are bath operators.
For example,

S2
l�1 Al � A1 1 A2 if A1 and A2 belong

to different modes; and
S2

l�1 Al � A1 if A1 and A2 are
the same. With this notation, the whole Hamiltonian
describing the general dissipation of the qubits, including
the phase damping and the amplitude damping, has the
following form (setting h̄ � 1):

HL � v0

LX
l�1

sz
l 1

X
v

L[
l�1

�va1
vlavl� 1

LX
l�1

X
v

��l�1�sx
l 1 l�2�s

y
l 1 l�3�sz

l �gvl�a1
vl 1 avl�� , (1)

where L is the number of qubits and the coupling constants gvl may be dependent of v and l. The ratio l�1�:l�2�:l�3� is
determined by the type of dissipation. For example, if l�1� � l�2� � 0, it describes the phase damping; and if l�3� � 0,
it is the amplitude damping.
Now we pair each qubit with an ancilla. The ancilla of the l qubit is indicated by l0. The two qubits l and l0 in the

pair are set close so that they interact with the same modes of the environment. With this condition, the dissipation of
the L qubit pairs is described by the Hamiltonian

H2L � v0
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l0� 1
X
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vlavl�

1
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l0� 1 l�2��sy
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y
l0� 1 l�3��sz

l 1 sz
l0��gvl�a1

vl 1 avl�� . (2)

The following step of our strategy is to eliminate the in-
fluence of the free Hamiltonian H0 � v0

PL
l�1�sz

l 1 sz
l0�

of the qubits. To attain this goal, we introduce a homo-
geneous classical driving electromagnetic field which acts
on all the qubit pairs. The ancillary Hamiltonian describ-
ing the driving process is

Hdrv �
LX

l�1
�g�s1

l 1 s1
l0 � 1 g��s2

l 1 s2
l0 ��

�
LX

l�1
�g1�sx

l 1 sx
l0� 1 g2�sy

l 1 s
y
l0�� .

(3)

By adjusting the intensity and the phase of the driving
field, we can choose the driving constants g1 and g2 to

satisfy g1:g2:v0 � l�1�:l�2�:l�3�. Then the whole Hamil-
tonian is simplified to

H � H2L 1 Hdrv

�
LX
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(
�Sl 1 Sl0�

"
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#)

1
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L[
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vlavl� , (4)

where we have let Sl � l�1�sx
l 1 l�2�s

y
l 1 l�3�sz

l .
Suppose the initial state of the qubit pairs is a co-

eigenstate of all the operators Sl 1 Sl0 , with the eigenval-
ues ml , respectively. The environment state is indicated
by jCenv�0��. Under the Hamiltonian (4), at time t the
state of the whole system evolves into

jC�t�� � e2iHt�jC�0�� ≠ jCenv �0��� � jC�0�� ≠ e
2it

nPL
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ml

h
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i
1

P
v

SL

l�1
�va1
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o
jCenv�0�� . (5)

So in this case all the qubit pairs undergo no deco-
herence, though they are interacting with the environ-
ment. Because of this property, we call the eigenstates
of all the operators Sl 1 Sl 0 the coherence-preserving
states.
We briefly discuss the coherence-preserving states. The

Hermitian operator Sl satisfies tr�Sl� � 0, so its two eigen-
states, without loss of generality, can be indicated by j61�l ,
with the eigenvalues 6a, respectively. The computation
basis states j6�l are eigenstates of the operator sz

l . The

states j61�l may differ with j6�l by a single-qubit rotation
operationRl�u�, i.e., j61�l � Rl�u� j6�l , where u depends
on the type of the dissipation. The coherence-preserving
states can be easily constructed from the states j61�l .
The largest eigenspace of the operator Sl 1 Sl0 is a two-
dimensional space spanned by the eigenstates j11, 21�l
and j21, 11�l, with the eigenvalue ml � 0. So there ex-
ists a one-to-one map from the two-dimensional space of a
qubit onto the two-dimensional coherence-preserving state
space of a qubit pair. The general input states of L qubits
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can be expressed as

jCL� �
X
�il �

c�il�j�il�� , (6)

where �il� is an abbreviation of the notation i1, i2, . . . , iL
and il � 61, l � 1, 2, . . . , L. We encode the state (6) into
the following coherence-preserving state of L qubit pairs

jC2L�coh �
X
�il�

c�il�j�il , 2il�� , (7)

where �il , 2il� indicates i1, 2i1, i2, 2i2, . . . , iL, 2iL. The
encoding can be fulfilled by the quantum CNOT (Con-
trolled NOT) operationsCij , where the first subscript ofCij
refers to the control bit and the second to the target. The
ancillas are prearranged in the state jC1020···L0� � j11�10 ≠
j11�20 ≠ · · · ≠ j11�L0 . Let the joint operation C0

ij�u� �
Ri�u�Rj�u�CijRi�2u�Rj�2u�, where Ri�u� is the rotation
operation acting on the i qubit, we thus have

jCL� ≠ jC1020···L0�
C0

110 �u�C0
220 �u�···C0

LL0 �u�! jC2L�coh . (8)
The decoding can be similarly realized by applying the
operation C0

110�u�C0
220�u� · · · C0

LL0�u� again. The encoded
states jC2L�coh undergo no decoherence in the memory.
By pairing the qubits, the number of qubits is expanded

from L to 2L. So the efficiency h of this scheme is 1
2 .

There is a possible way to raise the efficiency. If 2m qubits
are set close so that they all interact with the same modes
of the environment, the largest eigenspace of the operator

S1 1 S2 1 · · · 1 S2m becomes a � 2m
m �-dimensional state

space, with the eigenvalueml � 0. By encoding the input
states of 2mL qubits into the coherence-preserving states of
the qubit clusters, each cluster consisting of 2m qubits, the
maximum efficiency hm attains

hm �
L

2mL
log2

µ
2m
m

∂
� 1 2

1
4m

log2�pm� , (9)

where the approximation is taken under the condition
m ¿ 1. So the efficiency hm is near to one if m is
large. Of course, with m increasing, it becomes harder
and harder to set all the m qubits close so that they are
decohered collectively.
In the above, we have dealt with the qubits in the

memory. Now we extend the scheme to include quantum
gate operations. In quantum error-correction schemes,
a significant step forward in this direction has recently
been made by the idea of fault-tolerant implementation
of quantum logic gates [15–17]. Here we show our
coherence-preserving scheme can, at least in principle,
prevent decoherence during the gate operations as well as
during the storing process. The Hamiltonian for the gate
operation is indicated by Hg. The initial state jC�0���ml �
of the qubit pairs is a co-eigenstate of all the operators
Sl 1 Sl0 , with the eigenvalue ml , respectively. If the gate
Hamiltonian Hg satisfies the following condition:

�Hg, Sl 1 Sl0� � nl , l � 1, 2, . . . , L , (10)
where all nl are numbers, at time t the whole system,
including the environment, will evolve into

jC�t�� � e2iHgtjC�0���ml� ≠ e
2it

nPL

l�1
�ml2�1�2�nl�

h
v0�l�3�1

P
v
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vl1avl�

i
1

P
v

SL

l�1
�va1

vlavl�
o
jCenv�0�� . (11)

Therefore, in this case no decoherence occurs during the
gate operation. Equation (10) is also a necessary condi-
tion for preserving coherence during the gate operation.
Now we show, with the constraint (10), any unitary

transformations can still be constructed. To demonstrate
this, we need only give a universal gate operation satisfy-
ing Eq. (10). It has been proven that almost any two-bit
gates are universal [31,32]. In particular, the following is
a universal gate operation [33]:

Ul1l2 � j21�l1l1 �21jIl2 1 j11�l1l1 �11jVl2 , (12)
where Il2 is a 2 3 2 unit matrix and the unitary matrix Vl2

is given by

Vl2 �a, u, f� �
µ

eia cos�u� 2iei�a2f� sin�u�
2iei�a1f� sin�u� eia cos�u�

∂
.

(13)
The parameters a, u, f are irrational multiples of p and
of each other. Now we consider the following gate
operation for two qubit pairs l1l01, l2l02:

Ul1l01l2l02 � j21, 11�l1l01l1l01�21, 11jIl2l02

1 j11, 21�l1l01l1l01�11, 21jVl2l02 , (14)

where Il2l02 is a 4 3 4 unit matrix and Vl2l02 becomes (in
the basis �j21, 21�, j21, 11�, j11, 21�, j11, 11��)

Vl2l02�a, u, f�

�

0
BBB@

1
eia cos�u� 2iei�a2f� sin�u�

2iei�a1f� sin�u� eia cos�u�
1

1
CCCA .

(15)

After decoding the coherence-preserving states of the
qubit pairs into the original states of the qubits, the
operation (14) for the qubit pairs just corresponds to
the operation (12) for the qubits. So Eq. (14) gives a
universal gate operation for the qubit pairs. For any
parameters a, u, f, it is easy to check that Ul1l01l2l02 satisfies

�Ul1l01l2l02 , Sl1 1 Sl01� � �Ul1l01l2l02 , Sl2 1 Sl02� � 0 , (16)

so the generators of Ul1l01l2l02 , i.e., the gate Hamiltonians,
also commute with the operators Sl 1 Sl0 . The constraint
(10) is therefore satisfied.
In the above, we have shown coherence can be pre-

served during gate operations if one substitutes the gates
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for the qubits with those for the qubit pairs. Of course, af-
ter this substitution, the demonstration of these logic gates
becomes more involved.
Finally, we compare this scheme with quantum error

correction. In the error correction schemes, the decoher-
ence time for a qubit is not increased. One retrieves the
useful information from the decohered state by introduc-
ing some redundancy. Contrary to this, in our scheme,
the decoherence time for the qubits is much increased. (In
the ideal case, it is increased to infinity.) We prevent er-
ror rather than correct error. So, like Refs. [34,35], this
scheme belongs to the class of error prevention schemes.
The schemes of Refs. [34,35] are based on the quantum
Zeno effect. The decoherence is reduced by continuously
measuring the qubits in some basis. The critical idea of
our scheme is pairing the qubits and substituting the gate
operations for the qubits with those for the qubit pairs.
This scheme has some attractive features. First, it covers a
large range of decoherence, including the cooperative de-
coherence and the independent decoherence. The scheme
works whether the decoherence is caused by the amplitude
damping or by the phase damping. Second, it has a high
efficiency. We need at most two qubits to encode a qubit.
Third, the encoding and the decoding in this scheme is
quite simple. It needs only L times quantum CNOT op-
erations and some single-bit rotation operations to encode
and decode the qubits. Last, the scheme is relatively easy
to extend for preventing decoherence in quantum gate op-
erations. Of course, compared with QECCs, this scheme
also has an obvious disadvantage, that is, the noise parame-
ters l�i� in the Hamiltonian (1) should be known accurately
and must not change in an unknown way.
A crucial assumption for this scheme is that two qubits

can be set close so that they are decohered collectively.
Reference [36] shows this is the case if distance d between
the two qubits satisfies d ø l, where l is the mean
effective wave length of the noise field. In practice,
such as in the ion-trapped quantum computers, where the
noise is from the thermal variation of the qubits [23], this
assumption seems reasonable. It is now well understood
that quantum errors are harder to correct than classical
errors, since there appear new kinds of errors, such as phase
errors and bit-phase errors. Here we show, if we have
some knowledge of the interaction of the qubits with the
environment, quantum errors are easier to prevent. This
supports a commonplace, but fundamentally important,
observation that the more one knows about the noise, the
easier it is to correct for it.
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