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Abstract

Quantum simulation offers the possibility of using a controllable quantum-mechanical sys-
tem to implement the dynamics of another quantum system, performing calculations that
are intractable on classical computers for all but the smallest systems. This great possibility
carries with it great challenges, two of which motivate the experiments with nuclear spins
and trapped ions presented in this thesis.

The first challenge is determining the bounds on the precision of quantities that are
calculated using a digital quantum simulator. As a specific example, we use a three-qubit
nuclear spin system to calculate the low-lying spectrum of a pairing Hamiltonian. We find
that the simulation time scales poorly with the precision, and increases further if error
correction is employed. In addition, control errors lead to yet more stringent limits on the
precision. These results indicate that quantum simulation is more efficient than classical
computation only when a limited precision is acceptable and when no efficient classical
approximation is known.

The second challenge is the scaling-up of small quantum simulators to incorporate tens
or hundreds of qubits. With a specific goal of analog quantum simulation of spin models in
two dimensions, we present novel ion trap designs, a lattice ion trap and a surface-electrode
elliptical ion trap. We experimentally confirm a theoretical model of each trap, and evaluate
the suitability of each design for quantum simulation. We find that the relevant interaction
rates are much higher in the elliptical trap, at the cost of additional systematic control
errors.

We also explore the interaction of ions over a wire, a potentially more scalable system
than the elliptical trap. We calculate the expected coupling rate and decoherence rates,
and find that an extremely low capacitance (O(fF)) between the coupling wire and ground
is required, as well as ion-wire distances of O(50 µm) to realize a motional coupling of
O(1 kHz). In pursuit of this situation, we measure the effect on a single ion of a floating
wire’s static and induced ac voltages as a function of the ion-wire distance.

Thesis Supervisor: Isaac L. Chuang
Title: Associate Professor of Electrical Engineering and Computer Science
and Associate Professor of Physics
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Chapter 1

Introduction

The growth of computing technology over the past century has revolutionized how much

of the human race lives, works, and interacts with itself. Although the miniaturization of

transistors has enabled phenomenal computational feats, the same basic principles apply

to modern devices that applied to Babbage’s difference engine, and to the model system of

Turing. These principles are those of classical physics, in which any given physical system

exists in one and only one state at one time, evolves under the laws of Newton and Maxwell,

and can remain in the same state upon being measured. What this means is that classical

mechanics can be efficiently simulated on a computer: you need keep track only of the

degrees of freedom of each subsystem separately. For instance, in a system of 100 two-level

systems, you need only to keep track of the state (say, 0 or 1) of each individual system to

completely specify the state of the entire system.

The discovery of quantum mechanics has led to a more correct, but rather more unintu-

itive view of the workings of the universe. In the quantum world, systems can be thought

to exist in many possible configurations at once, evolve under a different dynamics, and are

irreversibly altered when measured. This quantum strangeness of the world has posed a

difficult problem for classical computers: given the laws of quantum mechanics, the number

of numbers needed to specify a given system scales not linearly, but exponentially with the

number of interacting subsystems. Our example of 100 systems is suddenly intractable,

because now not 100 but roughly 2100 numbers (and complex ones at that) are required to

specify the state of the system. Thus, even printing the complete state of the system cannot

be done efficiently with respect to the number of particles. A host of problems that are

described by quantum mechanics are thus intractable, from chemistry to solid-state physics

and many others. Although the clever use of approximations, symmetries, and probabilistic

algorithms yields satisfactory solutions to many problems, the full quantum dynamics of

most systems cannot be simulated.

The first sign that this hopeless situation could be rectified came in 1982, when Richard

Feynman suggested that perhaps one quantum mechanical system could be used to calcu-

late the behavior of another. This visionary conjecture was confirmed by Seth Lloyd in
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1996, right on the heels of Peter Shor’s 1994 factoring algorithm. Factoring and quantum

simulation were the first two practical (and classically intractable) problems that quantum

computers were shown to be able to efficiently solve. Since that time, numerous proposals

have been set forth to do quantum simulation of physical systems. And, slowly but surely,

experiments have started to catch up. Throughout this thesis, we will encounter several

small-scale implementations of quantum simulation.

There remain difficult problems to be solved, however, before a quantum simulator that

can outperform classical computation is realized. In this thesis we address some of these

problems. Our journey takes us across two different physical systems, nuclear spins and

trapped ions, as we explore two of the most important problems facing quantum simulation:

precision and scalability. The question of precision asks, for a given quantum simulation

algorithm, how many digits of precision can be obtained, in principle, and how does this

number scale with the space and time resources required? Also, in practice, how do the

real-world effects of decoherence and control errors impact this precision? The exploration

of this question in the context of solution-state nuclear magnetic resonance (NMR) forms

the first part of this thesis.

Quantum systems are generally hard for classical computers to simulate, although there

do exist classical techniques for solving some large quantum systems either exactly or ap-

proximately. To solve the exact dynamics of a general quantum system, however, requires

a quantum simulator of the same number of interacting subsystems as the model being

simulated. Moreover, each small quantum system is subject to the effects of decoherence

and control errors. The question of scalability is: how do you build a reliable large-scale

quantum simulator out of faulty small-scale quantum simulators? This is a highly nontrivial

question, but trying to answer it for the case of trapped ions occupies the second and third

parts of this work.

This chapter is organized as follows. In Sec. 1.1, we present a brief overview of the con-

cepts of quantum information processing, including motivations and experiments. Sec. 1.2

is an introduction to quantum simulation, including its history, most important literature,

and most enticing applications. In Sec. 1.3, we discuss two different approaches to quantum

simulation, termed digital and analog, both of which are of importance to this thesis. Some

of the outstanding challenges in quantum simulation, focusing on the issues of precision

and scaling mentioned above, are then discussed in Sec. 1.4, which in turn motivate the

main results and content of the thesis, presented in Sec. 1.5. The final section, Sec. 1.6,

enumerates the contributions of the author and coworkers to this thesis, as well as resulting

publications.

22



1.1 Quantum information

The concept of using the information contained in quantum states has led to the discovery

of many new technologies, including computation, cryptography, communication, precision

measurement, and simulation.

The possibility of exponential speedups for tasks such as factoring and discrete loga-

rithms [Sho94], in addition to the square-root (but nonetheless attractive) speed-up of the

quantum search algorithm [Gro97], has spurred a huge effort from theoretical and experi-

mental research groups toward developing a practical quantum information processor. Many

experimental successes using NMR, trapped-ion, and other physical systems have demon-

strated all the basic protocols of quantum computation and quantum communication. The

theoretical breakthrough of the discovery of quantum error correction [CS96, Ste96], and

with it fault-tolerant quantum computation [Sho96, DS96, Got97], has provided a way to

overcome the unavoidable errors that will afflict the delicate information encoded in quan-

tum states. With error correction, however, comes a large overhead in the number of qubits

(quantum bits) that must be employed.

The discovery of these algorithms has been accompanied by other interesting possibilities

that make use of the tools of quantum information. One of these is quantum cryptography,

which is a provably secure protocol for private key distribution [BB84]. A series of qubits is

used in this scheme to transmit a key which can be used to decode a message; attempting

to intercept the quantum message leads to a loss of the coherence of the message, and this

can be detected and the key discarded in the event of eavesdropping. It is remarkable that

the laws of physics guarantee privacy that no one may breech. This is to date the most

technologically advanced application of quantum information, in that commercial quantum

cryptography systems are already available 1.

Another exciting application of quantum information has been to precision measure-

ment. There are two main approaches: the first has shown that phase measurement on a

set of N entangled qubits has an error that scales as 1/N , whereas the best that is pos-

sible classically is 1/
√

N . Another more recent technique uses a two-qubit quantum logic

gate in an ion trap to probe the structure of an ion that itself has no “cycling transition”

and thus cannot be directly probed [SRL+05]. Such techniques have improved our measure-

ment of time and frequency, and perhaps also enable more-precise measurements of physical

constants such as the fine structure constant.

The field of quantum communication is integral to many of the applications above, and is

also interesting in its own right. The most noteworthy protocol for transmission of quantum

information is quantum teleportation, in which a quantum state may be sent between two

arbitrarily distant persons if they share a single entangled state in advance, and use two

bits of classical communication per quantum bit [BBC+93]. A related technique, superdense

coding, permits the transmission of two classical bits using one qubit of a two-qubit entangled

1For example, see MagiQ: http://www.magiqtech.com
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state [BW92]. Quantum communication also enables unconditional exponential gains in

communication complexity for certain problems, e.g. as discussed in Refs. [HBW98, Raz99,

BCWdW01, GKK+08].

The application of quantum information processing that is of most interest to many

physicists, and that motivates the work of this thesis, is quantum simulation. It is presented

in its own section below.

Quantum information primitives have been implemented in a number of different phys-

ical systems, including trapped ions ([LBMW03], and many others cited in this thesis), nu-

clear spins ([VSB+01, VC05], and many others cited in this thesis), superconducting circuits

[MNAU02, MOL+99, NPT99, HSG+07], neutral atoms [ALB+07, BCJD99, MGW+03], and

quantum dots [LD98, KBT+06, PJT+05]. Each of these systems carries certain advantages

and disadvantages. Solution-state NMR was the first system in which small algorithms,

including the simplest nontrivial case of Shor’s algorithm, were implemented [VSB+01].

The long coherence times of nuclear spins combined with the superb control techniques

already developed (and developed further still by quantum information researchers [VC05])

enabled this system to get off the ground fairly quickly. However, NMR cannot scale to

large numbers of qubits. Trapped ions have now emerged instead as the leading technology,

because they combine coherence times even longer than nuclear spins in solution with a now

highly-developed control apparatus, superior measurement accuracy, and several promising

avenues to scalability.

Of course, no technology has yet been scaled up to even more than ten qubits, meaning

that a quantum computer or simulator that can outperform classical computation has not

yet come close to being realized.

1.2 What is quantum simulation?

We now begin to explore the overarching theme of this thesis, quantum simulation. Quan-

tum simulation is the use of one controllable quantum system, referred to in this thesis as

the model system, to calculate properties of some other quantum system that is more diffi-

cult to control, which we call the target system. For instance, one may map a Hamiltonian

that describes a set of interacting fermions to a set of spin-1/2 systems which an experi-

menter can control well, such as (in this thesis) nuclear spins in molecules or the electronic

states of trapped ions. If controls are available to apply the same effective dynamics on the

model system that is thought to govern the target system, then predictions regarding the

target system can be inferred by performing experiments on the model system. Although

deceptively simple as stated here, in practice it is difficult to discover good methods for

performing quantum simulation. Of course, the person carrying out the quantum simula-

tion also must make the assumption that the target system obeys a specific Hamiltonian.

This could be stated in a positive light, in that simulation by model systems may inform
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us whether the target system obeys a given Hamiltonian at all!

The concept of quantum simulation was first conjectured by Feynman in 1982 [Fey82],

and subsequently rigorously proven by Lloyd in 1996 [Llo96]. Following this, a number of

significant papers presented in detail methods for simulating a variety of physical systems.

Abrams and Lloyd discovered algorithms for calculating the eigenvalues and eigenvectors of

a Hamiltonian on a quantum computer [AL97] and for simulating the dynamics of fermionic

many-body systems [AL99]. Following this, a 2001 paper presented a method for efficiently

simulating quantum chaos and localization [GS01]. In 2002, a paper of great importance to

our work was published by Wu et al., which proposed a method for simulating pairing models

on an NMR-type quantum computer [WBL02]. Jumping ahead a bit, in 2005 an interesting

report was published, detailing classical simulations of a quantum computer calculating

molecular energies [AGDLHG05]. This paper suggested that, using only tens of qubits,

a quantum computer might indeed be able to solve certain problems in chemistry more

efficiently than a classical computer can. This paper was followed-up by an article detailing

a general polynomial-time algorithm for the simulation of chemical dynamics [KJL+08].

The above partial listing of the important literature is meant to illustrate the breadth

of interest in quantum simulations, but also an important caveat: it is not trivial to de-

sign a quantum simulation algorithm for a given quantum system. There is no “general

purpose” quantum algorithm that can solve any problem in quantum mechanics efficiently.

Although it may be efficient to implement a given simulated Hamiltonian, it is not, in gen-

eral, straightforward to design an efficient measurement. It is fairly easy to see why: the

length of the state vector for n qubits is of length 2n. Even if the state could be measured

without collapse, inquiring as to the state of the whole system is intractable. Part of the

art of designing quantum simulations is asking the right questions.

We would like to note a common theme throughout this thesis and a dominant one in

the current effort of researchers worldwide. Some of the most interesting and classically-

intractable models occur within the realm of solid-state physics, especially with regard to

superconductivity. The BCS Hamiltonian is a model for which some good approximate

methods (such as the density matrix renormalization group) exist, but which eludes a full

quantum-mechanical description on a classical computer. The paper of Wu et al. [WBL02]

provides a way for a quantum simulator to calculate the low-lying spectrum of this Hamil-

tonian in polynomial time.

This is only the beginning, though. BCS theory works well for Type-I superconductors,

and the main advantage of quantum simulation of this model would be in calculating the

spectra to greater precision. However, the mechanism behind Type-II superconductivity is

still poorly understood. It has been conjectured that the phenomenon of spin frustration

in a 2-D lattice of antiferromagnetically interacting spins may hold some insight into the

dynamics of high-temperature superconductors [GP00, NGB92, BDZ08]. Research is active

into using both neutral atoms and trapped ions to realize such spin Hamiltonians [DDL03,
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PC04b]. In both cases, the idea differs from those mentioned above, in that rather than

employing a sequence of discrete control pulses, they instead propose the creation of model

Hamiltonians using a limited set of continuously-varying controls. Similar ideas have been

set forth for the simulation of Bose-Hubbard models, also using trapped ions or neutral

atoms [GME+02, PC04a]. In these examples, the opportunity arises to observe whether the

target system behaves qualitatively like the model system being studied for similar sets of

parameters.

1.3 Models of quantum simulation

The quantum simulations introduced above may be divided into two distinct types, or

models: in the first, of which the paper of Wu et al. [WBL02] is a fine example, a quantum

simulator is prepared in some initial state and then manipulated with a set of discrete

pulses, a situation akin to a digital computer. In fact, this type of simulation bears other

resemblances to classical digital computation, such as the fact that error correction codes

may be used [CS96, Ste96, Sho96, DS96, Got97]. We refer to this type of simulation as digital

quantum simulation. The second type, which the neutral atom community has recently

excelled at, involves creating an effective Hamiltonian that is controlled by continuously

adjusting the relevant parameters. This type is akin to classical analog computation, and

we refer to it as analog quantum simulation. This approach lends itself to more qualitative

questions, such as what phase (superfluid, insulator, etc.) the particles occupy within some

region of parameter space. Let us dig a bit more deeply into this distinction, because both

types are of interest in this work.

1.3.1 “Digital” quantum simulation

Digital quantum simulations are characterized by the use of discrete quantum gates to im-

plement the desired Hamiltonian. To clarify the terminology, a quantum gate is a (usually)

unitary operation that is applied to some set of qubits for a finite amount of time; any gate

involving more than two qubits may be decomposed into a sequence of one- and two-qubit

gates. Measurement is also considered a quantum gate, and is typically assumed to be of

the strong, projective variety. The weak measurements used in nuclear magnetic resonance

(NMR) are a notable exception.

This approach has some very appealing advantages: for one, any region of parameter

space may be probed, since the interactions are entirely engineered by control pulses from

the experimenter. The other very big advantage is that quantum error correction techniques

may be applied, and indeed will be necessary when the system grows to a large enough size.

However, quantum error correction schemes generally require a substantial increase in the

required number of control pulses, increasing the likelihood that systematic control errors

will reduce the accuracy of the simulation.
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Nevertheless, there are a number of interesting problems in quantum simulation that

will require the ultimate digital quantum simulator, a universal quantum computer. A

quantum computer (or simulator) is universal if it employs a set of gates that can approx-

imate any unitary transform to arbitrary precision. It was shown in Ref. [FKW02] that

quantum computers can efficiently simulate topological field theories. Intimately related

to such theories is the Jones polynomial, which is a knot invariant of knots in R3 which

is invariant under transformations of the knot. A quantum algorithm for approximately

evaluating certain instances of this polynomial is presented in Ref. [AJL08], whereas no

efficient classical algorithm is known to solve the same problem. Together, these results

imply the possibility of using quantum computers to model some of the most fundamental

aspects of nature.

1.3.2 “Analog” quantum simulation

Analog quantum simulation consists of preparing a system in some initial state (which

may indeed involve discrete gates), and then applying some global effective Hamiltonian,

perhaps adiabatically, that permits one to mimic the exact dynamics of the target system.

The key difference from digital quantum simulation is that the control variables are varied

continuously. Such approach enables, for instance, the observation of the phases that the

target system exhibits in various regions of parameter space, for a given Hamiltonian. In

some sense, given the Ising-type interaction between spins in NMR, that system could

already be considered to be an effective Hamiltonian system. However, this doesn’t give

one any control over what exactly the effective Hamiltonian is; refocusing pulses that modify

this interaction fall more under the blanket of circuit model simulation, in that they are

discrete control pulses.

The analog approach has shown much promise for trapped ion and neutral atom systems,

leading to a number of stimulating papers. Two 2004 papers, Refs. [PC04b] and [PC04a],

have stimulated much research on analog quantum simulators. The former describes a

method for simulating quantum spin models using trapped ions; they propose the creation

of effective Ising or Heisenberg interactions between ions by using state-dependent optical

forces. In the latter, the quantized motional states of trapped ions are made to simulate

bosons obeying a Bose-Hubbard Hamiltonian. It is predicted that in such a system, among

other phenomena, Bose-Einstein condensation of phonons could be observed.

Neutral atom systems have already had some remarkable experimental success with this

type of quantum simulation, in that several groups have simulated fermionic and bosonic

lattice models in an optical lattice. For example, the superfluid-Mott insulator phase tran-

sition has been observed in ultracold 87Rb atoms in an optical lattice [GME+02]. Other

notable papers include the simulation of the Mott insulator phase of interacting fermions

[JSG+08] and imaging of the Mott insulator shells in a Bose gas [CMB+06]. Remarkably, a

recent analog quantum simulation settled a long-standing question regarding the phase dia-
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gram of an ultracold Fermi gas with respect to temperature and spin polarization [SSSK08].

It is even possible in theory to simulate quantum magnetism in a neutral atom system by

tuning the optical lattice strength [DDL03]. However, such a system has not yet been

realized, in part due to the very low temperatures required to observe it [BDZ08].

Analog simulations offer distinct advantages. In the case of optical lattices, one may

find that the Hamiltonian governing the particles is also an interesting Hamiltonian to

simulate, e.g. a Bose-Hubbard model. This is not true in every case, and sometimes other

forces are added, i.e. in Ref. [JSG+08]. Nevertheless, analog simulations provide a route

to studying many-body phenomena without requiring the degree of control available in a

digital quantum simulator.

The advantages of analog simulation also differ from system to system. One difference

between the neutral atom and ion trap implementations of the Bose-Hubbard model is the

individual control over ions that ion traps offer. For instance, in the proposal of Porras and

Cirac [PC04a], it is possible to adjust the trapping potentials to create site-specific interac-

tions. Although still analog, such control permits a wider variety of simulated Hamiltonians

than neutral atom BEC’s. The advantage, by contrast, of the optical lattice experiments

is the ability to rapidly incorporate many bosons in many (O(105)) sites [GME+02], a

situation that has not yet been realized in ion traps.

The analog approach also has some drawbacks. For one, the ability of an experimenter

to control the Hamiltonian is generally more constrained than it is for digital simulations.

For instance, in the above optical lattice experiments, both the “onsite” terms, which de-

scribe repulsion between atoms at the same site, and the “hopping” terms, which describe

motion of atoms from site to site, depend on the depth of the optical lattice U . Chang-

ing this depth changes the ratio of onsite to hopping interaction strengths, which is what

permits observation of interesting phenomena, e.g. phase transitions. However, the acces-

sible regions of parameter space are also constrained by U . Another drawback of analog

quantum simulation is that quantum error correction (if needed) is not possible. Digital

quantum simulations, by contrast, are seen to be both more general and more robust, but

also significantly more difficult to implement.

1.3.3 Comparison of digital and analog quantum simulation

We would now like to compare the digital and analog approaches for both classical and

quantum simulation of quantum mechanical systems. The main question is the resource

requirements, in both space and time, required to perform a given simulation. In the

examples below, we will consider a simulation of the dynamics of a system of n spin-1/2

systems (qubits). In this section, we also focus entirely on the dynamics of the system,

neglecting for the time being the resources needed to extract the answer.

We begin with classical simulation. What resources are required to simulate n qubits on

a classical computer? In the digital case, the dimension of the state vector is 2n, which is
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Classical Quantum

Digital
Space: 2n

Time: T22n
Space: n

Time: Tn2

Analog
Space: 2n

Time: T
Space: n
Time: T

Table 1.1: A comparison of the resources required to implement the dynamics of digital and
analog simulation of quantum systems, using both classical and quantum simulation. We
consider a system of n qubits simulated for a total time T .

the spatial resource requirement. In general, the time needed to simulate the system is also

exponential, since an exponentiation of a 22n-element matrix is required to propagate the

state vector forward in time. Further, the total simulation time T adds a constant factor to

the total time required. For the analog case, suppose that the implementation is done using

a set of voltages which specify the real and complex parts of the state vector amplitudes

to the maximum possible precision. In this case, 2n individual voltages will be required

to specify the state, meaning that the spatial resource requirement is 2n, the same as the

digital case. However, the time required to perform the evolution is specified only by the

total time T .

Let us now consider the quantum-mechanical case. For digital quantum simulation,

the space required scales as n, since each qubit in the model system may represent one

qubit in the target system (and error correction adds only a polynomial number of qubits).

The time required to implement the unitary evolution is proportional to n2, but only for

Hamiltonians that can be modularly exponentiated efficiently [NC00]. The restrictions on

simulable Hamiltonians are described in detail in Ref. [Llo96]. In the analog case, n model

qubits again map to n target qubits, but the total simulation time is proportional only to

T , as in the classical case.

We summarize these results in Table 1.1, which describes the space and time resources

required for implementation of the quantum dynamics, but does not include the error in the

result. Although at first glance, it may seem that quantum methods are always superior

to classical, and analog methods always superior to digital, this is not the case when the

effects of errors are considered, or when probabilistic approaches are considered.

1.4 Challenges for quantum simulation

Quantum simulation is a tantalizing prospect, but there are good reasons why we don’t

already have a large-scale quantum simulator. The three main reasons can be classified

broadly as decoherence, precision limitations, and scalability. We discuss all of these in this

section.
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1.4.1 Decoherence

Decoherence is the irreversible loss of information from a quantum system to its environ-

ment. It arises from interactions between a quantum system and a “reservoir” of states

too numerous to keep track of. Thus, although the full evolution of the system and reser-

voir together is unitary, the evolution of the system alone exhibits non-unitary dynamics.

Decoherence is present in any quantum-mechanical system, but the question always is the

degree to which the evolution is altered by decoherence. The main questions studied by

researchers are the sources of decoherence and the methods of reducing it. Since nuclear

spins and ion traps are the quantum systems used in this thesis, we discuss here the main

sources of decoherence for each.

The two primary types of decoherence relevant to nuclear spins are amplitude damping

and dephasing. Each affects a different part of the density matrix of the quantum system.

Amplitude damping affects the on-diagonal elements, or “populations,” causing population

transfer from one state to another, typically from an excited state to a lower-energy (or the

ground) state. However, due to the low spin polarization of a room-temperature nuclear spin

system, the thermal state is a nearly equal mixture of the ground and excited spin states.

In NMR, the rate at which this occurs is given by the inverse of the T1 time. Dephasing

affects the off-diagonal elements, or “coherences,” effectively changing the relative phases

between different terms of the quantum state, and thus destroying coherence. The rate of

this process is characterized in NMR as 1/T2. The T2 time arises from a number of both

macroscopic and microscopic sources.

An important macroscopic source of dephasing in NMR is inhomogeneities in the static

and oscillating magnetic fields used to control the nuclei. Such inhomogeneities can be

corrected in one of two ways: first, by measuring and improving the field homogeneity, and

second by using spin-echo techniques to correct for the inhomogeneities that remain. Still,

a number of microscopic and uncontrollable processes contribute to limiting the coherence

time, including the fundamental cause of the T1 time: spin transitions induced by thermal

excitation of spins.

Decoherence of the quantum states of trapped ions, by contrast, includes processes that

affect either the internal (electronic) or external (motional) degrees of freedom. Both the

electronic and motional quantum states are important for the storage and processing of

quantum information. Decoherence of electronic states can be attributed to two primary

sources: scattering events and control errors. For instance, the excited state lifetime in a

qubit separated by optical wavelengths is fundamentally limited by spontaneous emission.

For hyperfine qubits manipulated with a laser Raman transition, however, the spontaneous

scattering rate defines this limit [OLJ+95]. Some common control errors include fluctuations

in the laser intensity or polarization, as well as fluctuations of ambient magnetic fields, and

in practice these fluctuating controls limit the coherence times [BKRB08]. Motional states,

by contrast, decohere largely due to heating caused by fluctuating potentials on the trap
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electrodes [TKK+99]. This heating has been observed to scale roughly as 1/d4, where d is

the distance from the ion to the nearest electrode [DOS+06].

Several steps have been taken to reduce these sources of decoherence in ion trap sys-

tems. Decoherence due to fluctuating magnetic fields has been suppressed by the encod-

ing of qubits in a decoherence-free subspace [LOJ+05, HSKH+05], and also, for hyperfine

qubits, by using a magnetic field-insensitive transition [LOJ+05]. Errors due to sponta-

neous scattering can theoretically be eliminated by performing gates using magnetic fields

and radiofrequency pulses rather than laser light [CW08, OLA+08, JBT+08]. Although

decoherence of internal (electronic) states of the ions is of considerable importance, our

efforts to develop ion trap architectures are mainly driven by the need to minimize mo-

tional state decoherence, or heating. The problem of motional decoherence has been par-

tially and practically addressed by the demonstration of suppression of heating rates by

several orders of magnitude through cryogenic cooling [LGA+08, DOS+06]. Recently, the

temperature-dependence of this heating rate has been more systematically characterized

[LGL+08]. However, the sources of this noise are still not completely understood.

Considerations of the effects of decoherence have a major impact on the next two limi-

tations of quantum simulation presented.

1.4.2 Limitations to Precision

In quantum simulation, one seeks to calculate some specific property of a quantum system,

for instance an eigenvalue of a Hamiltonian. The precision to which a given quantity can be

calculated depends on any inherent limitations in the algorithm used, as well as on factors

such as imperfect controls and decoherence. Therefore, we may frame our investigations by

two questions:

1. For a given quantum simulation algorithm for calculating some quantity ∆, what is,

in principle, the expected error ǫ in the measurement of ∆, as a function of the space

and time resources required?

2. How does ǫ change as a certain systematic or random error in the control pulses

applied to the system is introduced?

We begin the discussion of the first question with an example. Suppose that one wished

to calculate the difference ∆ between the energy eigenvalues of two states |1〉 and |2〉. One

way to do this is to prepare a superposition of the two states, then evolve under some

simulated Hamiltonian for a set of discrete times tn, for N total timesteps. Measurements

of a suitable operator on the system at each time will oscillate at a rate ∆. Determination

of ∆ can then be done by classically Fourier-transforming the measurement results. With

how much precision can ∆, in principle, be measured? Certainly, in the above scheme, the

sampling rate plays a role: more points will lead to more precision. Therefore, we expect
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that the error ǫ scales as 1/N . Noting that the precision of the final result is proportional

to 1/ǫ, we find that each additional digit of precision requires an exponential increase in N ,

and therefore the time required to complete the simulation scales exponentially with the

precision. We expect also that the finite coherence time, in the absence of error correction,

leads to a hard limit on the achievable ǫ. Note that this is a separate issue from the number

of experimental averages required, due to shot noise, to obtain each experimental data point

with a given signal-to-noise ratio (SNR). In this case, SNR ∝ 1/
√
N , where N is the number

of averaged experiments.

How general is this scaling behavior of the precision? Does it apply only to the above

method, or to others as well? Actually, it applies also to algorithms that employ the

quantum Fourier transform, such as those proposed by Lloyd for calculation of eigenvalues

and eigenvectors of a Hamiltonian [AL99], and for quantum simulation of the dynamics

of fermions [AL97]. Why should the precision 1/ǫ, in general, scale as the number of

gates N? Suppose one wished to measure the quantum state itself. The Hilbert space of

a system of n qubits is 2n-dimensional. If one wished to read out the state exactly, 2n

measurements would be required. Each time, the system would collapse into eigenstates of

the measurement operator, and averaging would reveal the amplitude of each basis state.

Measurement of the eigenvalues of a Hamiltonian also requires measurement of a specific

quantum state with some suitable measurement operator, and this measured value is also

obtained with a precision that scales inversely with the number of measurements. Therefore,

an efficient quantum simulation necessarily returns an approximate answer. The strength of

quantum simulation comes from the ability to implement the dynamics efficiently. A large

quantum system with n qubits cannot be efficiently represented on a classical computer,

even if only approximate values are used for the amplitudes of each basis state. An exact

replication of the quantum dynamics requires a quantum simulator.

We now move on to the second question above, concerning the effect of control errors.

We expect that a systematic control error will alter the final answer because it causes a

systematic deviation in the simulated Hamiltonian. Numerous techniques exist for compen-

sating for such errors; however, this compensation increases the number of required pulses

(e.g. see Ref. [BHC04]), which is a disadvantage in light of a finite coherence time. We

expect that additional pulses will require more time to obtain a certain level of precision.

For analog quantum simulation, by contrast, such composite pulse techniques are not pos-

sible. Instead, some constant error in the applied Hamiltonian induces a constant error in

the final result. Fluctuating control errors, by contrast, generally lead to decoherence, due

the the fact that they effect evolution under an uncontrolled and unknown Hamiltonian.

The precision limitations due to control errors can be expected to depend on the physical

implementation of the quantum simulator, and must be studied in detail for each.

How does this scaling with precision compare to classical simulation? For digital clas-

sical simulation, additional bits of precision may be obtained by adding only one bit for
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Classical Quantum

Digital
Space: 2nO(log 1/ǫ)

Time: T22n
Space: n

Time: Tn2O(1/ǫ)

Analog
Space: 2n

Time: T
Precision: O(log 1/ǫfix)

Space: n
Time: TO(1/ǫ)

Table 1.2: A comparison of the resources required for digital and analog simulation of
quantum systems, using both classical and quantum systems, and taking into account the
precision obtained. We consider a system of n qubits simulated for a total time T . The error
due to projection noise is denoted ǫ, while the fixed error of a classical analog computer is
denoted ǫfix.

each additional decimal place of precision. Therefore, a factor of log(1/ǫ) multiplies the

space requirement of 2n qubits. It is interesting that the cost of increasing the precision

differs so greatly between classical and quantum simulation: for classical, digital systems,

one requires additional space that is polynomial in the precision, while for quantum simula-

tion one requires additional time that is exponential in the precision! For a classical analog

simulation, by contrast, in which each state amplitude is represented as a continuous vari-

able, there will ultimately be some level of noise that limits the precision with which each

value may be represented. This may be quantified as a fixed error ǫfix. For classical analog

simulation, the precision is ultimately limited by this fixed error, scaling as log(1/ǫfix). We

summarize the resource requirements for simulation in light of the obtainable precision in

Table 1.2.

So far we have considered numerically exact classical simulations, which attempt to

mimic the full quantum dynamics of a quantum system, which is always inefficient with

respect to the system size. However, there do exist classical algorithms that can solve cer-

tain problems exactly or approximately, and for many problems such methods are entirely

sufficient. Three well-known numerical (and approximate) methods are the numerical renor-

malization group (NRG) [Wil75], density matrix renormalization group (DMRG) [Whi04],

and quantum Monte Carlo methods. Although each method is applicable to many prob-

lems, each also has inherent limitations to the types of problems that may be simulated.

The NRG and DMRG algorithms work only in cases for which the original system Hamilto-

nian may be mapped to a local Hamiltonian defined on a one-dimensional chain [VMC08].

Monte Carlo methods, by contrast, fail to efficiently simulate fermionic systems, due to the

so-called “negative-sign problem” [TW05]. Nevertheless, new methods are still being found

for simulating additional classes of quantum systems. Notable examples are a method

for simulation of 1-D quantum spin chains [Vid04] and the recently-discovered projected

entangled-pair state [VC08] and time-evolving block decimation [Vid07] algorithms, which

have been applied to the simulation of 2-D quantum spin lattices [JOV+08] for the case of

translational invariance, when an infinite lattice is assumed.
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To conclude our discussion of precision, we note that even as the number of classically

simulable quantum systems grows through the discovery of new algorithms, it is gener-

ally believed that classical computation is not able to approximate any general quantum-

mechanical system. If it could, then there would be no speedup of quantum computation

over classical; a classical method would then exist for factoring, searching, and all other

quantum algorithms, by classical simulation of a quantum simulator. For the quantum

systems for which no classical approximation is known, quantum simulation is an attractive

possibility, despite the inherent precision limitations.

1.4.3 Scalability

Scalability is the study of how to take a small number of faulty systems and connect them

to form one arbitrarily large, reliable system. This is an important subject in quantum

computation; the solution of computationally hard problems requires such a network of

qubits. To begin with, we note that a digital quantum simulator is a quantum computer

that may not have a universal set of gates; that is, it may not require sufficient controls to

simulate any Hamiltonian, but rather just the Hamiltonian of the problem of interest. A

quantum simulator may not need the same degree of control, but the problem of scalability

is the same. Analog systems will also be composed of many distinct subsystems, but the

form of the scaled-up architecture may be different. For example, an optical lattice presents

a framework for simulating the Bose-Hubbard model on a large scale, but one does not need

the ability to control the internal states of individual atoms, or to implement deterministic

two-atom gates, that would be necessary for digital quantum simulation.

There is still the question of how large a quantum system will need to be to imple-

ment quantum dynamics that are intractable on a classical computer. A recent benchmark

[RMR+07] sets the record, to our knowledge, of exactly simulating 36 interacting spin-1/2

systems on a supercomputer. The importance of this number is that even if a given idea for

scalability does not lead to arbitrarily large systems, it may still be of great use as a quan-

tum simulator, and be able to exactly simulate quantum dynamics that classical computers

cannot. To scale to this or a larger number of subsystems, however, requires a system that

satisfies certain conditions. These are important for creating a system in which sufficient

control is available to execute a given simulation, and to measure the result.

DiVincenzo criteria

To begin the discussion of scalability, we present the five basic DiVincenzo criteria [DiV00],

which are the generally agreed-upon requirements for a scalable quantum computer. Al-

though these were originally proposed for quantum computation, they still hold for less-

general quantum simulations, albeit in a modified form, and we review them here.

1. A scalable physical system with well-defined qubits.
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2. Initialization to a simple fiducial state such as |000...0〉.

3. Decoherence times much longer than the gate times.

4. A universal set of quantum gates.

5. High efficiency, qubit-specific measurements.

We now briefly summarize how these criteria differ for quantum simulation. The first

criterion certainly holds, although the form of the large-scale quantum simulator may be

different for analog, as opposed to digital, quantum simulation (as discussed above). The

second and third also hold, but the initial state will depend greatly on the problem being

simulated. It may be necessary to create a state such as |000...0〉, which may then be

transformed into the correct initial state through single-qubit rotations. An example of this

is in Ref. [WBL02]. However, it is also possible that the relevant degrees of freedom may

be described by continuous variables. In the example of cold atoms in an optical lattice,

it is typically necessary for the translational degrees of freedom of the atoms to be cold;

however, the simulation itself may not depend on the internal states. This is one way in

which analog quantum simulation enables simulation with less control than digital; in the

digital case, the momenta of the atoms would be discretized and then programmed into a

set of qubits at the beginning of the simulation.

The fourth criterion must also be modified for quantum simulation, and again varies

between the digital and analog types. Depending on the problem being implemented, a

set of controls less powerful than those of a universal quantum computer may be required.

The optical lattices are again a good example. In this analog simulation, sufficient control

is present to simulate a Bose-Hubbard model. By contrast, a universal quantum simulator

is equally as powerful as a universal quantum computer, because for either any arbitrary

Hamiltonian (and corresponding unitary gate) may be approximated to arbitrary accuracy.

It is also true, however, that for certain digital quantum simulations, only a subset of a

universal gate set will be required. Finally, high measurement fidelity is important in both

analog and digital quantum simulation, but for the analog variety, it may be a measurement

of a continuous variable, and “qubit-specific” may not have meaning. Measuring the density

of atoms in space is an example of this.

Scaling up quantum simulators is a major research question no matter what physical

system forms the qubit. The two physical systems that are studied in this thesis are solution-

state NMR and trapped ions; however, solution-state NMR is intrinsically unscalable. Ion

traps, by contrast, do satisfy all the DiVincenzo criteria. The only caveat is that although

ion traps are scalable in principle, we do not yet know which method for scaling them up

will prove most effective. We therefore focus here on the scalability of ion traps.
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Proposals for scaling up ion trap quantum simulators

Quantum control of up to eight ions in linear Paul traps has now been demonstrated

[HHR+05, LKS+05]. The challenge in controlling that number and larger numbers has

many sources. For one, the number of motional normal modes that must be effectively

cooled depends linearly on the number of ions in the trap. This is a difficulty mainly for

schemes that require ground state cooling. Also, the ion-ion distance, and therefore coupling

rate, is not constant in a chain of more than three ions. These issues encourage one to come

up with ways of networking ions that are stored in different traps, or finding single-trap

designs in which quantum simulations may be implemented. We present below some of the

proposals for scaling up ion trap quantum simulators.

• Store a small number of ions in each of a large number of separate Paul traps, Move

ions from trap to trap to allow them to interact [KMW02].

The traps for shuttling ions require microfabrication, mainly because dc control elec-

trodes need to be close to the ions to perform shuttling. There are two broad classes

of microfabricated traps, 3-D and 2-D. 3-D traps have electrodes in more than one

plane, allowing for a deeper trap (all else being equal) [MHS+04, SHO+06, BWG+05].

2-D traps, also called “surface-electrode” traps, have all electrodes fabricated in a sin-

gle plane. These are shallower, but simpler to fabricate [CBB+05, SCR+06]. The

Wineland group at NIST in Boulder uses a segmented trap for their quantum opera-

tions, and already incorporates ion movement into their protocols, e.g. in [BCS+04].

Ion movement has also been demonstrated in a T-junction [HOS+06], and in a wider

variety of planar geometries, albeit with charged microspheres rather than atomic ions

[PLB+06].

• Connect ions using photons.

Some encouraging early progress has also been made in networking ions using photons.

For instance, in Ref. [MMO+07], entanglement of ions at a distance was demonstrated.

This approach has the advantage that the motional states of the ions do not have a

role in storing or processing quantum information, implying that the motional state

of the ion can be neglected, as long as the ions are confined to a region of space much

smaller than the photon wavelength (Lamb-Dicke limit). Accordingly, the cooling

requirements are less stringent than those for other quantum operations, such as the

Cirac-Zoller gate [CZ95].

• Connect ions using wires.

The idea is that the image charges due to the oscillations of one ion are transmitted

over a conductive wire to another ion. In this scheme, the ion-ion coupling arises from

the motional state of the ions, even though the ions are located in different traps. This

was discussed in Ref. [TBZ05] in the context of connecting ions to superconducting
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qubits, and in Ref. [SGA+05] in the context of connecting individual ions in Penning

traps. Theoretical calculations of this situation are presented in Ref. [HW90]. To

date, this approach has been explored less than ion movement or photonic coupling.

However, it may allow for switchable interactions between ions, as with photonic

coupling, but with a simpler experimental setup. The coupling wires could, perhaps,

be integrated into the trap structure itself.

• Do quantum operations on a large planar crystal of trapped ions.

This has been discussed theoretically in Ref. [PC06], and may be used to implement in

two dimensions the proposals of Refs. [PC04b, PC04a]. Despite the need for complex

networking of trapped ions for digital quantum simulation, such simpler structures

may be appropriate for certain analog simulation protocols, or for “one-way” quantum

computation [RB01]. For example, a quantum simulation of 2-D spin models [PC04b]

could be done using such an architecture.

1.5 Main results and organization of this thesis

In this thesis, we explore experimentally and theoretically the three challenges discussed

above: decoherence, precision limitations, and scalability. The thesis is divided into three

parts.

Part I

In this part we ask the question: with what degree of precision can one (in principle, and

in practice) calculate the eigenvalues of a Hamiltonian using a quantum simulator? We

examine the theoretical bound on the precision, and also study the effect of control errors

on the fidelity of the simulation. To this end, we report on the quantum simulation of

the BCS pairing Hamiltonian using a three-qubit nuclear spin system. Although a small

and non-scalable system, NMR offers the possibility to illustrate key features of quantum

simulation that should be applicable also to much larger systems. Our primary question

is the amount of precision that can be obtained using digital quantum simulation, both

in general, and in the specific case of an NMR implementation of the digital quantum

simulation presented in Ref. [WBL02].

Chapter 2 explains how NMR quantum simulation works, starting with the NMR

Hamiltonian and continuing with the state of the art prior to our work. We discuss the

limitations to the precision of a simple NMR quantum simulation reviewed within the

chapter.

In Chapter 3, we present our implementation of the quantum simulation, including

the algorithm and specific parameters used, experimental apparatus, results, and analysis.

We find that digital quantum simulations are inefficient with respect to the number of
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digits of precision in the final result. We also note that the inefficiency increases if error

correction techniques need to be used, such that the time required scales as O(1/ǫr), where

r ≥ 2. Errors in the final answer are also induced by systematic control errors; we find that

evolution during single-qubit pulses due to the “always-on” NMR interaction Hamiltonian

is the main source of these errors. The time resources needed for error correction and

to compensate control errors may be compared to Table 1.2, which presents the required

resources accounting only for the error in the final measurement estimates.

Our results do not rule out the usefulness of digital quantum simulations. They merely

point out that quantum simulation outperforms classical only for specific problems and

numbers of qubits. It remains exponentially more efficient than classical simulation for

quantum systems for which no good approximate classical simulation is known, as long as

only fixed precision is required.

Part II

In the second part, we ask: how can one build a scalable two-dimensional array of trapped

ions that is suitable for analog quantum simulation? We will be focused, in particular,

on the goal of analog simulation of quantum spin models, particularly spin frustration. In

pursuing the answer to this question, we design, test, and evaluate two types of ion trap

that may be suitable for this purpose, a lattice ion trap and an elliptical surface-electrode

ion trap. It is essential not only to design, model, build, and test these traps, but also

to examine how analog quantum simulation might actually be performed in such traps. It

will be important to estimate the expected simulated coupling rates in each type of trap,

including all rf and dc fields that act on the ion. This requires us to ask, for example, how

the motional frequencies and simulated coupling rates scale with the size of the trap, how

the potentials that produce an effective Hamiltonian might be applied, and how rf-induced

micromotion might affect the fidelity of analog quantum simulations.

In Chapter 4, we begin with an introduction to quantum simulation with trapped

ions, including ion trap Hamiltonians, control techniques, and proposals for analog quantum

simulation. We particularly focus on the proposal of Porras and Cirac for the study of 2-D

spin models [PC04b]. The goal of building a 2-D simulator of antiferromagnetic spin lattices,

in which phenomena such as spin frustration could be observed, is the prime motivation for

the rest of the work in this part.

In Chapter 5, we examine the lattice ion trap architecture, in which ions are confined

in a 2-D array of individual potential wells, enabling the trapping of ions in virtually any

configuration (since sites can be loaded selectively) with a well-defined spacing between

ions. Such a trap could provide the stable array of trapped ions that is required for scalable

analog quantum simulation. We experimentally test certain predictions about the trapping

potentials, most importantly the motional frequencies of the ions, and find that the traps

agree well with our theoretical predictions. However, despite the apparent advantages of
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the lattice architecture, we discover a serious flaw in this idea: the physics of ion traps

requires an increase in the motional frequencies of the ions as the trap scale, and with it the

ion-ion spacing, decreases. This means that the coupling between ions a distance d apart is

actually much less than it would be if the ions were in the same trapping region, with the

same d. We find that this lattice trap design is not promising for simulation of 2-D spin

models.

Chapter 6 introduces surface-electrode ion traps, in which all trapping electrodes reside

in a single plane. The specific type of trap used in this chapter is based on printed circuit

board technology, which is useful for prototyping a wide variety of ion traps, including

those that could be used for analog quantum simulation. Surface-electrode traps have some

particular challenges, though: they are shallower than comparable three-dimensional traps,

and are more sensitive to the buildup of stray charges on the dielectrics that isolate the

electrodes from one another. How to efficiently load such traps with minimal accumulation

of stray charge is thus an important technical question. In this chapter, we compare and

contrast the advantages of electron-gun loading in the presence of a buffer gas and laser

ablation loading of these ion traps. These are compared to the photoionization technique

used in Chs. 5 and 7. We find that among the three loading methods, photoionization is

superior to electron impact and ablation loading for our purposes, in that it succeeds in

loading shallow traps comparably to ablation loading, but without as much stray charge

buildup on nearby dielectrics. However, we point out certain situations in which ablation

or e-gun loading may be more useful. Most importantly, we demonstrate the PCB ion trap

technology that we use for prototyping new designs for analog ion trap quantum simulators.

In Chapter 7, we turn to an alternative method for realizing a 2-D array of ions for

analog quantum simulation, a surface-electrode elliptical ion trap, in which ions in a single

trap region align into a 2-D crystal through mutual Coulomb repulsion. Although the

coupling rates are much higher than in a lattice trap with the same ion-ion spacing, this

scheme suffers from two limitations: the structure of ion crystals leads to a non-uniform

spacing between neighboring ions, and rf-driven micromotion is present that cannot be

removed. We present calculations of the pertinent properties of the trap, including motional

frequencies and ion crystal structure, and test them with experimental measurements. In an

effort to reduce motional state decoherence, these traps are tested in a cryogenic system. We

also demonstrate theoretically how quantum simulations may be done even in the presence

of micromotion, showing that micromotion leads to a systematic shift in the simulated

coupling rate between each pair of ions. Finally, we discuss the possibility of producing this

force with a magnetic field gradient rather than an optical force, and discuss scaling down

of the system to increase the interaction rates.

Our results indicate that lattice-style ion traps suffer from poor simulated interaction

rates, but that elliptical traps offer potentially much higher interaction rates, at the cost

of unavoidable micromotion. However, we show that certain two-body interactions may be
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implemented with a precision that scales favorably with the number of experiments. We

also explore ways of actually implementing quantum simulations in such traps, and in doing

so make progress toward the goal of a 2-D analog quantum simulator based on trapped ions.

Part III

In the third part, we ask: can ion-ion coupling over wires be used to scale up digital

and analog ion-trap quantum simulators? Coupling over wires could provide a scalable and

switchable connection between the motional states of many trapped ions, leading in principle

to a more scalable architecture than the traps discussed in Part II. However, some questions

must first be addressed. In this part, we focus on the theoretical problems of calculating the

expected coupling rate and decoherence rates, and the experimental problem of measuring

how the dc and rf electric fields experienced by a single ion vary with the ion-wire distance.

These are essential questions when evaluating the potential of this novel method for scaling

up ion trap quantum simulators.

In Chapter 8, we present a system consisting of two ions confined in a linear surface-

electrode Paul trap, near which a thin conducting wire is positioned. We theoretically

analyze the ion-ion coupling mediated by the wire, and determine the coupling rate and

some important decoherence rates for certain sets of experimental parameters. This work

is also important for establishing constraints on the experiment, such as the fact that the

wire must be very well-isolated from both dc and rf paths to ground.

In Chapter 9, we present the experimental setup and measurements. We study some

aspects of connecting ions over a wire by first understanding the effect that a wire has

on a single ion. We examine how the presence of the wire alters the trapping potentials,

including both ac contributions from the rf trapping potentials and dc contributions from

the static charge on the (electrically floating) wire. These results demonstrate the ability

to measure electrical properties of a macroscopic object using an ultrasensitive detector:

a single trapped ion. We also discuss progress towards understanding how the motional

heating rates of the ion vary with the distance from the ion to the wire. Although for the

ion-wire distances achieved in our work to date, the heating rate does not vary systematically

with the ion-wire distance, this “negative result” is useful for calculating an upper bound

on the ion-wire distance such that the heating rate due to the trap electrodes themselves is

not greatly increased by the presence of the wire.

The results presented in this part show that the wire-mediated coupling between two ions

stored in Paul traps is observable in principle, but that the electrically floating wire strongly

affects the potentials that act upon the ion. Ion-ion coupling over a wire is a promising

method for scaling up ion trap simulators, but more experimental measurements are required

at smaller ion-wire distances, of both the effects of the wire on the trap potentials and of

the motional heating rate due to the wire.

Following Part III, Chapter 10 contains our conclusions and outlook.
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1.6 Contributions to this work

In this section we present the main contributions of the author and his coworkers to this

thesis, and then list the publications that have resulted from this work.

1.6.1 Personal contributions

In Part I, I participated in all aspects of the experiment and theoretical modeling. I wrote

many of the pulse sequences and experimental automation, as well as analyzing the exper-

imental results. I also wrote many of the simulation programs that predicted the results of

the quantum simulation, and helped to pinpoint the sources of divergence between them,

including the systematic error. A great deal of work that does not appear in this thesis,

such as quantum state tomography to diagnose the sources of decoherence, was also done

by me.

In Part II, I contributed a variety of work. In the experimental work of Ch. 5, I led the

investigation of atomic ions in the lattice trap. I built the vacuum chamber and ion trap in

which measurements were taken. I also discovered the poor scaling properties of the lattice

trap. I worked with my coauthors to analyze the data, particularly the macroion repulsion

data. In the experiments which are described in Ch. 6, my primary contribution was the

collection of a large quantity of data for both of the resulting publications. I also helped

build the vacuum apparatus and prepare the traps for the ablation experiment and set up

the ablation targets and laser. For the work of Ch. 7, I designed and had manufactured the

elliptical ion traps, set up a new cryogenic vacuum system for testing them, performed all the

measurements on them, and drove the theoretical side of the project as well by suggesting

problems I thought important to my undergraduate coworkers. I also contributed to writing

and debugging many of the simulation codes.

Part III represents a collaboration between the Chuang group at MIT and the Blatt

group at the Institut für Quantenoptik und Quanteninformation (IQOQI), located at the

University of Innsbruck, Austria. I worked about eight months in total at the IQOQI on the

experiment. While I was there, some specific things I accomplished were: completing the

setup of the vacuum system, including feedthroughs and calcium oven; the first trapping

of ions using a trap brought from MIT; electronics including filter boxes, the rf resonator,

and putting together the pulse programmer; preparing the Doppler recooling technique

and using it to measure the heating rate of a single ion; and making the first systematic

observations of the variation in trap frequency and compensation voltages as a function of

the ion-wire distance. While back at MIT, I also contributed much to the analysis of new

data.
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1.6.2 Contributions of coworkers

The results of Part I would not have existed without Kenneth Brown, who worked with me

on the experiment and taught me a lot about quantum mechanics along the way. He did

many of the same tasks that I did, and as I was just beginning graduate school at the time,

taught me what I needed to know to then do them myself. A coworker for a very brief time,

Matthias Steffen, introduced us to the NMR system.

In Part II, when the Chuang group moved to ion trapping, the atomic ion trapping team

included Kenneth Brown, Jaroslaw Labaziewicz, and David Leibrandt. These people were

instrumental in the construction of the laser systems (especially Jaroslaw and Kenneth) and

some of the vacuum apparatus (especially David and Kenneth) presented in Ch. 6. We owe

the design of the first planar trap in that chapter to Christopher Pearson, and of the second

to Jaroslaw. The work of Ch. 5 was done in conjunction with Kenneth and Tongyan Lin,

who made the macroion measurements and worked with me on the analysis of that data.

The cryostat apparatus in Ch. 7 was assembled with a lot of help from Paul Antohi, and

the theory presented in the section was developed in detail by two undergraduates, Ziliang

Lin and Kenan Diab, who I mentored in those efforts. Each also made some contributions

to the experimental apparatus; Ziliang designed and built the optics delivery system that

survived in modified form for the experiments of that chapter, while Kenan built some fine

rf resonant circuits for driving the trap.

The work in Part III relies heavily on the contributions of coworkers in Innsbruck. Tony

Lee set up the laser systems, constructed the bulk of the vacuum chamber, and prepared

sundry other experimental tools. We worked together to trap ions for the first time in that

system, using a trap from our group at MIT. Subsequent experimental refurbishing and

data collection was done by Nikos Daniilidis and Sankara Narayanan. In particular, Nikos

fabricated the gold surface traps used in Chapter 9, in collaboration with Andreas Wallraff

at ETH Zürich. After I departed, Sönke Möller joined the experimental effort, helping to

obtain the data presented in this thesis.

1.6.3 Publications included in this thesis

Below is a list of articles that have already been published or submitted on the basis of this

work. All but number 8 deal with work presented in this thesis.

1) Ref. [BCC06] Limitations of quantum simulation examined by simulating a pairing

Hamiltonian using nuclear magnetic resonance

2) Ref. [BCL+07] Loading and characterization of a printed-circuit-board atomic ion trap

3) Ref. [LCL+07] Laser ablation loading of a surface-electrode ion trap

4) Ref. [CLBC09] A two-dimensional lattice ion trap for quantum simulation
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5) Ref. [DLC+09b] Wiring up trapped ions to study fundamental aspects of quantum

information

6) Ref. [CDLC09] Surface-electrode elliptical ion traps for quantum simulation

7) Ref. [DLC+09a] Measurement of electrical properties of a conductor with a single

trapped ion

8) Ref. [LLC+09] Demonstration of a scalable, multiplexed ion trap for quantum infor-

mation processing

In addition, the undergraduate thesis of Ziliang Lin (Ref. [Lin08]) overlaps with Chs. 5

and 7 of this thesis.
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Part I

Digital quantum simulation with

nuclear spins

45



46



Chapter 2

Quantum simulation using nuclear

magnetic resonance

Nuclear magnetic resonance (NMR) is a well-known technique for manipulating and mea-

suring the spins of nuclei in molecules. It found its first widespread use in the identification

of chemical compounds and the elucidation of their chemical structures. Subsequently,

NMR came to form the basis of magnetic resonance imaging (MRI), a leading medical diag-

nostic technique. The success of NMR depends on the exquisite degree of control over the

quantum dynamics of the nuclei, combined with their long (O(seconds)) coherence times.

These same features allow NMR to serve as an ideal test-bed for quantum algorithms and

quantum simulation. In a 1997, two groups independently proposed implementing quantum

algorithms in bulk solution-state NMR: Gershenfeld and Chuang in Ref. [GC97], and Cory,

Havel, and Fahmy in Ref. [CFH97].

Following this stimulus, nuclear magnetic resonance (NMR) was the first system in

which a wide variety of quantum algorithms were implemented. NMR demonstrations of

the Deutsch-Josza [CVZ+98], Grover [VSS+99], and Shor [VSB+01] algorithms were the

first to be realized in any technology. It offers an extremely convenient test-bed for quan-

tum algorithms: a customized off-the-shelf experimental system in which many quantum

computation protocols can be applied to a closed quantum system. In addition, implement-

ing quantum algorithms with NMR can lead to insights about quantum control that are

applicable to other systems as well, e.g. ion traps [GRL+03]. Several detailed treatments

of solution-state NMR quantum computation have been written, including Ref. [VC05] and

the theses of Vandersypen [Van01] and Steffen [Ste03].

In this chapter, we show how an NMR system can be used as a quantum simulator. We

first discuss, in Sec. 2.1, the basic properties of an NMR system, including the Hamiltonian

under which atomic nuclei evolve and the techniques for controlling the nuclei. Then, in

Sec. 2.2, we examine prior experiments that have proven the capacity of NMR to act as

a quantum simulator for small numbers of qubits. The question of the limitations to the
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precision of a quantum simulation is then discussed, in light of these experiments, in Sec. 2.3.

In Sec. 2.4, we summarize the chapter and then enumerate some outstanding questions that

remain to be addressed.

2.1 Hamiltonian and control techniques

In this section we present a simple description of the NMR system, and with it the Hamilto-

nian that governs the nuclear spins. We then show how this Hamiltonian enables quantum

control of the nuclear spins. In so doing, we explain how a NMR system satisfies most of

the DiVincenzo criteria for quantum computation (Sec. 1.4.3).

We begin with a comment on the first criterion. Although suitable for small systems,

NMR is not a scalable architecture for quantum computation (or universal quantum sim-

ulation) because there is no way to do operations fault-tolerantly. It is not possible to

perform operations on the system conditioned on fast measurements, as would be required

in the diagnosis and correction of errors. This stems from the nature of measurement in

solution-state NMR, which is based on a slow recording of the bulk magnetization of the

system (see Sec. 2.1.6).

The other criteria are state initialization, a universal set of gates, high-efficiency mea-

surement, and a sufficiently long coherence time; the satisfaction of these by NMR will be

explained in the remainder of this section. Throughout we will use “nucleus,” “spin,” and

“qubit” interchangeably, since the exclusive topic of this section is spin-1/2 nuclei.

2.1.1 The static Hamiltonian

The NMR system consists of a sample of dissolved molecules, the nuclear spins of which,

in thermal equilibrium, are aligned (or antialigned) with a strong external magnetic field

of magnitude B0, which by convention points along the ẑ direction. Oscillating magnetic

fields of peak magnitude B1, and oriented along x̂ and ŷ, are applied to the nuclei to

rotate their spin states. Finally, the bulk magnetization of the sample may be read out

inductively, giving an ensemble measurement of the spin states. Details of this setup for a

real experimental system are given in Sec. 3.4. In this chapter, we focus on the Hamiltonian

and control techniques.

The static portion of the NMR Hamiltonian is composed of two terms: one describes

rotations of the nuclei about the ẑ axis due to the the static magnetic field, and the other

describes the spin-spin coupling between nuclei. Using i to index the individual nuclear

spins, the term due to B0 is written

H0 =
∑

i

~ω0Zi , (2.1)

where the Larmor frequency ω0 is given by ω0 = gNµnB0/~, and gN is the nuclear g-factor,
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µN the nuclear magneton, and B0 the magnitude of the magnetic field along ẑ. Zi is the

Pauli Z matrix operating on qubit i. Here, and throughout, we use the most common phase

convention for the Pauli matrices:

X =

[

0 1

1 0

]

; Y =

[

0 −i

i 0

]

; Z =

[

1 0

0 −1

]

. (2.2)

where the spin states, unless otherwise noted, are written in the ẑ basis, with vector repre-

sentations

|↑〉 =

[

1

0

]

and |↓〉 =

[

0

1

]

. (2.3)

The other important term in the static Hamiltonian arises from couplings between in-

dividual nuclei that are mediated by the electron clouds surrounding them, which form the

chemical bond in the molecule. Although, in general, there are also direct dipole-dipole

couplings, in a dilute solution this interaction averages to zero. The through-bond cou-

pling is called scalar coupling, or just J-coupling. This interaction takes the form of a ZZ

interaction:

HI =
~

4

N
∑

i,j<i

JijZiZj , (2.4)

where i and j label nearest-neighbor nuclei. Although in general J is a tensor quantity,

it can be treated as a scalar in liquids (when the orientation of molecules relative to each

other is randomized), when the couplings are weak compared to the static field, or when

the Larmor frequencies of the interacting nuclei are very different [NC00]. The first two

always apply to solution-state NMR, and very often the third does as well.

2.1.2 Effective pure states

The state of the nuclear spins in thermal equilibrium is a highly-mixed one, a probabilistic

sum of pure states. To see why this is the case, let us write the density matrix in thermal

equilibrium:

ρth =
e−βH0

Tr(e−βH0)
. (2.5)

Here β = 1/(kBT ); the denominator is the usual partition function normalization. We have

neglected HI since its magnitude is several orders of magnitude smaller than that of H0.

The highly-mixed nature of ρth comes from the smallness of the exponential: ~ω0β ≈ 10−5
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for B0 strengths on the order of 10 T.1 Due to this fact, we can approximate the thermal

state as ρth = 2−n (1 − βH0). Here n is the number of qubits. The thermal state of one

qubit, then, is

ρth =

[

1 + ǫ 0

0 1 − ǫ

]

, (2.6)

where ǫ = ~ω0/(2kBT ) is the spin polarization. Our convention is that the qubit state is

written in the ẑ basis, unless otherwise stated.

Although this highly mixed thermal state may seem to prevent the satisfaction of the

second DiVincenzo criterion, regarding the preparation of a known and pure initial state,

there are several techniques in which one may average over several experiments with different

initial density matrices and obtain at the end the same result as if the experiment were done

on a single pure state. This is known as an effective pure state or pseudopure state. The

downside is that this generally requires a number of experiments that is exponential in n,

but for some purposes a smaller number of experiments may suffice to approximate the pure

state. The three primary techniques for producing effective pure states are called temporal

labeling, spatial labeling, and logical labeling. Here, we limit our discussion to temporal

labeling, since that is the method employed in the experiments of Chapter 3. The reader

may find discussions of this and the other techniques in Nielsen and Chuang [NC00], and

in the Ph.D. theses of Vandersypen [Van01] and Steffen [Ste03].

In presenting temporal labeling, we shall follow the approach of Nielsen and Chuang’s

book [NC00]. Let’s say we start with an initial state ρ1:

ρ1 =













a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d













. (2.7)

The thermal state ρth is such a state. By convention, and throughout the thesis, we use the

following tensor product basis:

|↑↑〉 =













1

0

0

0













; |↑↓〉 =













0

1

0

0













; |↓↑〉 =













0

0

1

0













; |↓↓〉 =













0

0

0

1













. (2.8)

Now suppose we permute the populations of this state, which can be done using a

sequence of CNOT’s (Sec. 2.1.4), to produce the states ρ2 and ρ3:

1Magnetic fields are measured throughout in Tesla (T); we will use italic script for the temperature T ,
to avoid confusion.
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ρ2 =













a 0 0 0

0 c 0 0

0 0 d 0

0 0 0 b













; (2.9)

ρ3 =













a 0 0 0

0 d 0 0

0 0 b 0

0 0 0 c













. (2.10)

A quantum computation (or simulation), not including measurement, is a unitary op-

eration, which we will write as U . The sum of the density matrices P =
∑

i=1,2,3 ρ′i, where

ρ′i = U †ρiU , is

P = (4a − 1) U













1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













+ (1 − a)













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













. (2.11)

The measured NMR signal is given by Tr(P ) =
∑

i=1,2,3 ρ′iM , where M is the observable

in question. The portion of the signal that is proportional to the identity matrix above does

not produce any signal when measured, and does not evolve under unitary transforms.

Therefore, by performing this experiment three times with the initial states ρ1, ρ2, and ρ3,

we obtain a signal that is proportional to what the result would have been on a pure state

〈↑↑ | ↑↑ 〉:

∑

i=1,2,3

Tr
(

ρ′iM
)

= (4a − 1)Tr
(

U〈↑↑ | ↑↑ 〉U †
)

. (2.12)

As can clearly be seen, two qubits produce a four-dimensional Hilbert space, which

requires three averaging steps. From the above example, for n qubits one will require,

in general, 2n − 1 steps. Therefore, this method is inefficient, and nulls the speedup of

quantum computation, but is sufficient for the implementation of algorithms involving a

small number of qubits.

2.1.3 Single-qubit operations

The rf coils along the x̂ and ŷ directions generate magnetic fields that oscillate at a frequency

ω, whose strength is characterized by a frequency ω1, which is related to the magnetic field

produced by ω1 = γB1. Here γ = gNµN is the magnetic moment of the nucleus being

addressed, with gN the nuclear g-factor and µN the nuclear magneton. The Hamiltonian

for the interaction of this field with a given nucleus is
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Hrf (t) = −~ω1 (cos (ωt + φ) X/2 + sin (ωt + φ) Y/2) , (2.13)

where ω is the frequency of the applied magnetic field.

For purposes of effecting rotations of the spins, we use the resonance condition ω = ω0,

where again, ω0 is the Larmor frequency of the given spin. Then, in the rotating frame at

frequency ω0, we can write this Hamiltonian as

Hrot
rf = −~ω1 (cos (φ) X/2 + sin (φ) Y/2) . (2.14)

Because in this frame the rotations occur at a rate ω1, the total angle of rotation θ is

just given by the time tp over which a resonant pulse is applied times ω1: θ = ω1tp.

These rotations may be performed in either the x̂ or ŷ directions, or in both at the same

time. We shall use the general form of Rn̂(θ) for describing these rotations, where e.g.

Rx̂(π) is a rotation of π radians (180 ◦) about the x-axis, and Rŷ(−π/2) is a rotation of

−π/2 radians (−90 ◦) about the y-axis.

There are multiple ways of performing single-qubit rotations along ẑ. We present three

such methods here.

1. Composite x̂ and ŷ rotations.

Any rotation about ẑ can be composed of other rotations about x̂ and ŷ. The following

is an example of this:

Rẑ(π) = Rx̂(π/2)Rŷ(π/2)Rx̂(−π/2) . (2.15)

2. Compression of ẑ rotations.

We can also use relations such as Eq. 2.15 to place all ẑ rotations at the end of the

pulse sequence. An example of this is

Rx̂(π/2)Rẑ(π/2) = Rx̂(π/2)Rŷ(π/2)Rx̂(−π/2)Rŷ(−π/2) = Rẑ(π/2)Rŷ(−π/2) .

(2.16)

Here the rotation about x̂ is replaced with one about ŷ, and the ẑ rotation is moved

to the end. The advantage of this method is that all the ẑ rotations can be grouped

into one single pulse, reducing the total number of single-qubit pulses that must be

performed. This leads to a reduction of errors due to control errors, i.e. evolution

under HI (Eq. 2.4) that occurs during the pulse duration tp. For this method to work,

the ẑ rotations must commute with the free-evolution Hamiltonian, H0 + HI . Since

both of these depend only on Z operators, this is clearly the case.

3. Implicit absorption of ẑ rotations.
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The same effect as number 2 above is achieved if we regard ẑ rotations as merely

a shifting of the reference frame by the angle θ in each Rẑ(θ) rotation. The effect

of ẑ rotations is implemented by shifting the phases of each subsequent single-qubit

pulse to account for them. Choosing between this method and number 2 is a practical

matter; because it requires less modification to the pulse sequence, this method is

generally preferred.

2.1.4 Two-qubit operations

Now that we are armed with the ability to do arbitrary single-qubit rotations and with an in-

teraction Hamiltonian (Eq. 2.4) we can construct two-qubit gates such as the controlled-not

(CNOT). The CNOT, along with arbitrary single-qubit rotations, is sufficient to implement

universal quantum computation; all the operations needed for quantum simulation are con-

tained within this, and in practice less control is often required. In the computational basis

({|00〉 , |01〉 , |10〉 , |11〉}), the CNOT has this matrix representation:

CNOT12 =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













. (2.17)

Suppose there are two coupled spins. The basic pulse sequence rotates spin 2, the “target

qubit,” from a ẑ eigenstate into the x̂-ŷ plane of the Bloch sphere. Then, during a period

of free evolution under H0 + HI , the direction of the rotation of this spin (in the rotating

frame) depends on the state of spin 1, called the “control qubit.” After a time equal to

1/(2J12), the spin is rotated back into a ẑ eigenstate. This effectively flips (or doesn’t) spin

2 based on the state of spin 1. Specifically, the pulse sequence looks like:

U ′
CNOT = Rx̂(π/2)UI(1/(2J12))Rŷ(π/2) =













1 0 0 0

0 i 0 0

0 0 0 −i

0 0 1 0













, (2.18)

where UI(t) = exp (−iHIt/~) is the unitary evolution under HI . Fig. 2-1 shows the opera-

tion of the CNOT gate as described here.

This does not exactly produce the CNOT presented in Eq. 2.17, but the gate can be

exactly duplicated by applying appropriate single-qubit pulses to spins 1 and 2. Specifically,

a Rẑ(−π/2) is required on qubit 2 and Rẑ(π/2) on qubit 1.

2.1.5 Refocusing

We briefly present one more invaluable technique for NMR quantum control. In NMR, the

ZZ interaction between spins is “always on,” in the sense that it’s a part of the Hamilto-
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Figure 2-1: Above is a depiction of the CNOT gate in NMR. Spin 1, the control qubit, is
not shown but its state alters the precession frequency of spin 2, the target qubit. At first,
qubit 2 is in the |↑〉 ẑ eigenstate. A π/2 rotation about the x̂ axis places it into the x̂-ŷ
plane. Depending on the spin state of qubit 1, and in the rotating frame, qubit 2 precesses
around the ẑ axis in a different direction. The solid arrow evolution is when qubit 1 is in
state |↑〉, while the dotted arrow occurs when qubit 1 is in state |↓〉. After a free precession
time of t = 1/(2J), a single Rŷ(−π/2) pulse completes the operation: the spin of qubit 2
has been flipped conditioned on the spin of qubit 1. This figure is due to Vandersypen,
Ref. [Van01].

nian that is not directly under the experimenter’s control. We have seen above how this

interaction can be used to generate the CNOT gate. However, sometimes one wishes for

some of the spins to not evolve under this Hamiltonian for some period of time. This is

used by us, for instance, in Sec. 3.5.

A technique known as refocusing can effectively switch off the scalar coupling between

one qubit and the others during a period of free evolution. This is done by applying a

π-pulse to that qubit halfway through the evolution time, thereby reversing its direction of

precession. Suppose one has a three qubit system, and wishes for a time t to implement HI

(Eq. 2.4) on the qubits labeled a and b, while preventing qubit c from coupling to them.

One would do the following pulse sequence, where the arrows indicate time-ordered pulses:

Ua,b
I (t) = Ua,b,c

I (t/2) → Rc
x̂(π) → Ua,b,c

I (t/2) → Rc
x̂(π) . (2.19)

This fairly simple technique is of great utility to us.

2.1.6 Measurement

Measurement of the NMR system is done by recording the current induced in a coil of wire

surrounding the spins; this coil is the same one that transmits the rf signals to the nuclei, and

thus only detects magnetizations in the x̂ or ŷ directions. The measurement simultaneously

records the states of the spins contained in all the many molecules in the sample, but

due to the low spin polarization at room temperature, only a the small difference in spin

orientations produces the signal. The induced voltage across the rf coil can be written as

V (t) = V0Tr
[

e−iHtρeiHt (−iXk − Yk)
]

, (2.20)

54



where V0 is the maximum signal strength and ρ is the sample density matrix. The phase of

the measurement operator can be chosen so that a given spin state produces a given spectral

line shape: for instance, for the above operator −iXk − Yk, a spin along −ŷ produces a

positive absorptive spectral line, while one along ŷ produces a negative absorptive line. A

spin along ±x̂ produces positive or negative dispersive lines. To perform this measurement

in the ẑ basis, we must first rotate all spins into the x̂-ŷ plane, since the rf coils are only

sensitive to magnetizations in this direction. Thus a Rx̂(π/2) pulse is first applied to the

spins being measured.

The resulting free-induction decay (FID) signal oscillates at the frequency of the qubit

being measured; a Fourier transform of this signal yields a frequency spectrum, from which

one can determine the spin state along ẑ of each nucleus (using the chemical shift interaction,

Eq. 2.4). The FID decays exponentially at a rate T ∗
2 , due to decoherence processes which

will be discussed shortly. The exponential decay in the time domain leads to a Lorentzian

lineshape in the frequency domain:

V (t)e−t/T ∗
2 7→ F (ω) ∝ 1

1/(2T ∗
2 )2 + (ω − ω0)2

− 1

1/(2T ∗
2 )2 + (ω − ω0)2

, (2.21)

where the two parts represent absorptive and dispersive lineshapes. A signal may, in general,

be of only one type or a mixture of the two. The full width at half-maximum (FWHM) of

the NMR peaks is then given by ∆f = 1/(2πT ∗
2 ).

Although measurements in quantum information are often assumed to be strong, pro-

jective measurements, those in NMR are quite weak. The constant T ∗
2 depends on magnetic

field inhomogeneities and other interactions between spins and with the environment; it is

noteworthy that the decay of the FID is dominated not by the interaction of the sample

with the coil, but by decoherence processes more intrinsic to the sample. This may be

contrasted with the classic “strong” measurement, in which the very act of measurement

induces sufficient decoherence to immediately effect wavefunction collapse! This weakness

of the measurement, combined with the ensemble nature of the experiment, is also the rea-

son why both x̂ and ŷ components of the magnetization can be simultaneously measured, a

feat which is forbidden (for a single quantum system) by the uncertainty principle. What

is recorded is the ensemble average of the magnetizations in each direction; each of the 1018

or so molecules gives its own answer regarding its spin state, and these are added up.

The result of a measurement is a frequency-domain spectrum, with peaks located at all

possible locations for a given nucleus, given the various splittings due to the chemical shifts.

To summarize this section so far, we have assembled all the basic concepts and techniques

for performing quantum operations in solution-state NMR. In the next section we show how

these principles apply to the simulation of quantum systems. First, though, we address the

sources of decoherence in NMR systems.
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2.1.7 Decoherence

Decoherence, broadly speaking, is an uncontrolled evolution of a quantum state into a

classical mixture of pure states. It is caused by interactions which are outside the control of

the experimentalist, and involve noisy or random processes. Decoherence is an ever-present

limitation to the amount of time over which quantum operations may be performed, and

also to the fidelity of the operation. It is characterized by two time constants, T1 and T2,

which govern the decay of the populations (T1) and coherences (T2) of the system density

matrix. Taking ρ as the system density matrix, these decoherence channels can be described

using the following density matrix transformation model:

[

a b

b∗ 1 − a

]

→
[

(a − a0)e
−t/T1 + a0 be−t/T2

b∗e−t/T2 (a0 − a)e−t/T1 + 1 − a0

]

, (2.22)

where

ρ0 =

[

a0 0

0 1 − a0

]

(2.23)

is the thermal density matrix. Naturally, it is beneficial to get T1 and T2 as large as possible.

This can be done by understanding and correcting for some of the sources of decoherence,

which form two broad classes: macroscopic and microscopic.

The macroscopic sources of noise normally involve large-scale variations in the elec-

tromagnetic fields that interact with the nuclei. Inhomogeneities in B0 and B1 lead to a

type of decoherence known as inhomogeneous broadening, from the fact that the T2 value

is increased, leading to a larger spectral linewidth. The quantity that includes both inho-

mogeneous broadening and other effects is called T ∗
2 , and is used above in discussing the

lineshape. Other macroscopic sources of noise are electromagnetic fluctuations, which may

arise from noisy amplifiers, and radiation damping, which occurs when the magnetic mo-

ment of the spins induces a voltage in the rf coils, which then create a magnetic field that

itself rotates the spins.

These sources are easier to deal with than the microscopic ones discussed below. Spin-

echo techniques can reduce the effect of inhomogeneous broadening, and in fact allow one

to measure the field inhomogeneity by comparing T2 and T ∗
2 . Also, starting with as uniform

a B0 field as possible allows one to improve T ∗
2 without spin-echo techniques. A technique

called shimming allows us to do this (see Sec. 3.4.4). Also, the sample is spun around the

ẑ axis at about 20 Hz, which averages out inhomogeneities in the x̂-ŷ plane. With respect

to the other two problems, electromagnetic noise can be mitigated by “blanking” the rf

amplifiers when pulses are not being applied, and radiation damping can be reduced either

by reducing the Q value of the resonant circuit or by making the sample more dilute.

The microscopic sources have been discussed in detail in Ref. [Lev01], and we give some

important examples here. One set of decoherence sources is the various dipole-dipole inter-
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actions that occur between nuclei in the same or different molecules; the random processes

of molecular rotation and translation cause fluctuations in the strength of these interac-

tions. These fluctuating interactions can also occur with electron spins. Another source

is anisotropy in the chemical shift or the J-coupling, which are generally assumed to be

isotropic in solution-state NMR, but can fluctuate by small amounts as well. Quadrupo-

lar nuclei rapidly relax due to their interaction with electric field gradients, and therefore

they are generally avoided. Chemical exchange is a further process in which the dissolved

molecules undergo rapid and random change in their chemical structure. Finally, the ro-

tations of the molecules themselves generate tiny magnetic fields, since they are (after all)

composed of charged particles themselves.

There is more limitation to what an experimenter can do to correct these. Prevention

is indeed the best medicine here. Solvents with a higher viscosity and at a higher tempera-

ture have higher molecule tumbling rates, which reduces many of the decoherence sources

described above. In addition, one benefits by choosing solvents with non-magnetic nuclei,

removing paramagnetic impurities such as molecular oxygen from the sample, and avoiding

solvents known to contribute to chemical exchange.

2.2 Quantum simulation using NMR: prior art

Prior to the work of the follwing chapter, several quantum simulations were performed in

a solution-state NMR system. Somaroo et al. performed the first quantum simulation

ever when they simulated a truncated harmonic oscillator with a two-qubit NMR system

[STH+98]. Later, they also simulated a (nonphysical) three-body interaction [TSS+00].

Subsequently, Peng et al. observed a quantum phase transition of a Heisenberg spin chain

simulated in NMR [PDS04], using two qubits. This was followed by Negreveve et al., using

three qubits to simulate a Fano-Anderson model [NSO+04]. Clearly, prior to our work, there

was a great deal of interest in applying NMR techniques to the simulation of many-body

physics.

In this section we summarize the truncated oscillator experiment as an example of

an NMR implementation of quantum simulation. This was the earliest NMR quantum

simulation experiment, and also one of the simplest. Our goal in this section is to impart

a sense of how the principles of NMR outlined above can be used for quantum simulation.

We will use these tools to tackle a more difficult problem in the next chapter. Here, we

focus on these aspects that are common to all NMR quantum simulations:

1. Mapping the problem Hamiltonian to the NMR Hamiltonian.

2. Implementation of the simulated problem Hamiltonian in NMR.

3. Measurement and analysis

57



Simulation of a truncated harmonic oscillator

Here we explore the basic features of the truncated oscillator quantum simulation experi-

ment [STH+98], as a guide to understanding some of the issues in NMR quantum simulation.

The Hamiltonian of the quantum harmonic oscillator is

HHO = ~Ω (N + 1/2) , (2.24)

where N = a†a is the operator for number of vibrational quanta. The solution is an infinite

“ladder” of energy eigenstates |n〉, with energy EHO = ~Ω (n + 1/2) and n ranging from 0

to ∞. The Hilbert space of the set of nuclei in NMR has a tensor product structure. In the

ẑ basis, the eigenstates that span the Hilbert space are {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, where the

arrows represent the spin state of nuclei 1 and 2. The first step is to find a mapping from

this structure to the oscillator eigenstates. They make the following unitary mapping:

|n = 0〉 7→ |↑↑〉 ; (2.25)

|n = 1〉 7→ |↑↓〉 ; (2.26)

|n = 2〉 7→ |↓↓〉 ; (2.27)

|n = 3〉 7→ |↓↑〉 . (2.28)

Since there are four available basis states when using two qubits, the simulation will neces-

sarily be of a truncated harmonic oscillator. Higher levels could be simulated by additional

qubits; in fact, the number of oscillator levels doubles for each additional qubit. However,

doing this in NMR depends on the couplings between all individual qubits being strong

enough.

The Hamiltonian, mapped to the NMR system, has the following form:

Hsim = ~ωHO

(

1

2
|↑〉 〈↑| + 3

2
|↑〉 〈↓| + 5

2
|↓〉 〈↑| + 7

2
|↓〉 〈↑|

)

. (2.29)

This Hamiltonian is implemented by using appropriate refocusing pulses (Sec. 2.1.5).

The state preparation is done using logical labeling, rather than the temporal labeling

covered previously. Suppose we begin with a superposition state such as |Ψi〉 = |↑↑〉+ i |↓↓〉.
What would we then expect to observe from the above quantum circuit? Eigenstates of the

Hamiltonian given by Eq. 2.29 will not evolve, but we do expect a quantum superposition

state to evolve at a rate corresponding to the energy difference between the states that form

it.

The experiment was done using the two hydrogen nuclei in the 2,3-dibromothiophene

molecule (Fig. 2-2). Each of these nuclei is a single proton, and the proton Larmor frequency

in their spectrometer is 400 MHz. Other pertinent quantities are (ω2−ω1)/(2π) = 226 MHz

and J = 5.7 Hz. The experimental results are shown in Fig. 2-3. The simulation is a
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Figure 2-2: The 2,3-dibromothiophene molecule. The two unlabeled vertices represent
hydrogen atoms, whose nuclei were used in this experiment.

success; the frequencies at which the signal evolves for each initial state depend on the

energy difference between the two states.

In the same paper, they also implement a simulation of a truncated, driven, anharmonic

oscillator, but the above is sufficient for our purposes of illustrating the basic methods

of quantum simulation with NMR. In what follows, we begin to address the question of

precision using this experiment as a model.

2.3 The question of precision

Having seen qualitative evidence for the success of quantum simulation, we move to dis-

cussing the quantitative issue of how much precision may be obtained in a measured result.

For instance, we might ask in the case of the truncated oscillator experiment, how could one

extract the harmonic oscillator frequency from the simulation results? These peaks could

be Fourier-transformed to yield an energy (or frequency) spectrum; depending on the initial

states used, the spectra would show peaks at Ω, 2Ω, or 3Ω. How well can Ω be measured,

and how does this precision depend on the number of pulses used, or the total simulation

time?

We wish to give a general idea for how the limitation to the precision may be estimated.

To begin with, the precision of the final result is limited by the width of the peak in

frequency space; thus, it depends on the Fourier sampling rate. Also, the minimum time

step determines the maximum energy that can be measured. Therefore, we may suppose

that the error in the final result ǫ scales as Ω/Q, where Q is the maximum number of time

steps. Since the total number of gates NG is proportional to Q, NG ∝ Ω/ǫ. A bound on the

precision may then be obtained by calculating the total simulation time NGtg, where tg is

the time to perform a single iteration of the simulated Hamiltonian, and setting this equal

to the decoherence time.

Admittedly, the above example is somewhat artificial, in that one is attempting to calcu-
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Figure 2-3: The four traces here are NMR peak signals as a function of simulated time
T . The temporal variation of the signal depends on the initial state. The top trace, (a),
corresponds to the state |0〉, which is an eigenstate and does not oscillate. In (b), the
state |0〉 + i |2〉 is simulated, and accordingly, it oscillates at 2Ω. In (c) and (d), the state
|0〉 + |1〉 + |2〉 + |3〉 is used, and oscillations at both Ω and 3Ω are observed. Image taken
from Ref. [STH+98].

late values that were directly programmed into the system. However, this relatively simple

experiment demonstrates the type of reasoning that will be used with a more complicated

system in the next chapter. We have seen, generally, how one can bound the error on a

quantum simulation due to a classical Fourier transform, if such a method is used. But is

this the only error?

We expect that errors due to faulty controls will also affect the precision of the final

answer. Since the number of gates needed grows with the desired precision in the result,

we would expect control errors to become more and more important as greater precision is

required. Furthermore, the simulated Hamiltonian in Sec. 2.2 consists entirely of mutually-

commuting terms. This allows for a fairly simple implementation, since approximating

non-commuting terms using composite pulses is not necessary.

In Ch. 3, we explore the additional errors that arise when such approximations are

needed. We shall see that control errors and natural decoherence (due to the larger number

of required pulses) take on increased importance. Most noteworthy is that such errors may

introduce a systematic shift in the answer, rather than only a broadening of the line.

2.4 Conclusions and further questions

In this chapter, we have seen how an NMR system can be used to implement small quantum

simulations. The necessary controls are present to implement a universal set of quantum

gates, and we have also seen an example of mapping a target system Hamiltonian to a

model system Hamiltonian, in this case an NMR Hamiltonian. We have shown in some
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detail how this was done with a simulation of a truncated harmonic oscillator. Combined

with the techniques discussed above for preparing pseudopure states and measuring the

nuclear spin states, we are armed with a technique for implementing a wide variety of

quantum simulations in NMR.

But, on the other hand, the potential and the limits of quantum simulation with NMR

are still rather unexplored. We have seen already that there is a physical limit to the

precision of a quantum simulation using DFT techniques. How does this limit change for

a system with more qubits, implementing a more difficult Hamiltonian using a different

algorithm? How might we suppose the limitation changes when error correction is used?

Finally, what types of control errors occur in the NMR system, and how do they affect the

final answer? These questions are the subject of the next chapter.
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Chapter 3

Quantum simulation of the BCS

Hamiltonian

Quantum simulation has great potential for calculating properties of quantum-mechanical

systems that are intractable on classical computers, as we discussed in Ch. 1. However, when

considering the power of a quantum simulator relative to a classical one, it is necessary to

also consider the precision in the final answer that can possibly be obtained, an issue we

began to explore at the close of Ch. 2. In the problem we consider here, the number

of gates needed to compute the answer is indeed polynomial in the size of the problem

Hilbert space, but is nevertheless exponential in the number of digits of precision one may

obtain. Therefore, although the quantum algorithm is in some sense “more tractable,” it

is not straightforward to determine (or guess), for a given problem, whether a classical or

quantum algorithm will actually produce a result with a given precision using a smaller

number of gates.

In addition to the question of ultimate precision, there is the fact that all implementa-

tions of quantum simulation rely on classical controls that are never perfect; these affect

the final result either by inducing decoherence or by leading to systematic errors in the

final result. Indeed, even though systematic control errors can in principle be perfectly

compensated (Ref. [BHC04]), the number of gates required to do this scales (in general)

exponentially with the residual error. This implies that even if a general quantum algorithm

may be efficient, the final precision may depend on the specific technology used to imple-

ment it. Therefore, implementations of small quantum simulations using various quantum

technologies (NMR, ion traps, etc.) are worthwhile, in that the effects of faulty controls for

each may be understood.

In this chapter, we report an experiment to test the limitations on the precision of a

three-qubit algorithm to compute the low-lying spectrum of a class of pairing Hamiltonians

[WBL02]. Our work is somewhat more ambitious than that summarized in the last chapter,

for two reasons. First, we implement a Hamiltonian that contains non-commuting parts,
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and thus requires invocation of the Trotter product formula, dramatically increasing the

number of necessary pulses. Second, we attempt to calculate a property of some physical

system, an eigenvalue of its Hamiltonian, and in doing so explore the limitations to the

precision with which such a quantity can in principle be calculated. In this sense, we test

the limits of digital quantum simulation. We not only calculate the bounds on the precision

that are inherent in the quantum protocol itself, but also those which are a result of the

control techniques used to implement it.

Specifically, we wish to use a digital quantum simulator to calculate ∆, the energy gap

between the ground state and first excited state of a pairing Hamiltonian. Algorithms such

as WBL, which require a polynomial number of gates in the problem size, are generally not

efficient with respect to the precision in the final answer. This was true in Lloyd’s proposals

[Llo96, AL97, AL99], and in the specific case we consider here.

We ask the following questions: What are the theoretical bounds on precision for the

algorithm studied here? Can an NMR implementation saturate the theoretical bounds on

precision? What control errors are most important, and what effect do they have on the

final result? Do simple methods of compensation for these errors have a predictable effect?

The chapter is organized as follows: in Sec. 3.1, we briefly review the BCS pairing theory;

in Sec. 3.2, we present the proposal of Wu et al. for the simulation of this Hamiltonian

using NMR; in Sec. 3.3, we discuss the bounds on precision in the expected result ; in

Sec. 3.4, we discuss our experimental setup; in Sec. 3.5, we present our implementation of

the algorithm; finally, in Sec. 3.6, we evaluate this work, including the inherent limitations

of digital quantum simulations in general and NMR quantum simulations in particular.

3.1 The BCS theory

The motivation for this work lies in the quantum simulation of superconducting systems.

Superconductivity, first discovered in 1911 by H. K. Onnes, is characterized by an abrupt

drop to zero of the electrical resistivity of a metal. Although this phenomenon defied theo-

retical explanation for some time, a phenomenological theory promulgated by Ginzburg and

Landau in 1950 explained most of the features of superconductivity, including the Meissner

effect (exclusion of magnetic flux) [GL50]. In 1957, Bardeen, Cooper, and Scrieffer (BCS)

published the first complete microscopic theory, realizing that the phenomenon of supercon-

ductivity was due to the superfluidity of pairs of electrons in the conductor [BCS57]. In the

BCS theory, electrons form the pairs through very weak interactions that are mediated by

phonons in the lattice (made up of the nuclei of atoms in the solid metal). The weakness of

these interactions is why superconductivity only occurs at very low temperatures; above the

superconducting transition temperature Tc for a given material, thermal energy is enough

to break the bonds that hold electron-electron pairs together.

Superconductors are grouped into two types based on their magnetic properties. Type I
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superconductors exhibit the Meissner effect, meaning that in the superconducting state the

bulk material excludes magnetic flux. Type II superconductors, on the other hand, permit

magnetic flux penetration, for a range of magnetic fields, in quantized units of hc/(2ec)

(written in gaussian units, where ec is the positive fundamental charge). The behavior of

Type II superconductors, unlike that of Type I, still lacks a complete microscopic theory.

Well-explained as Type-I superconductors are, it is still not trivial to calculate specific

properties of such a system. Indeed, the Hilbert space has the dimension of the number

of lattice sites (which we call N). Thus calculating the energy spectrum in general is

intractable on a classical computer, with in general 2N steps being required to diagonalize

the Hamiltonian. This Hamiltonian, which governs the electrons in the superconducting

state, is given by

HBCS =
N
∑

m=1

ǫm

2
(nm + n−m) +

N
∑

m,l=1

Vmlc
†
mc†−mclc−l , (3.1)

where ǫm is the onsite energy for a pair with quantum number m, n± = c†±mc±m is the num-

ber operator for an electron in mode ±m, and the matrix elements Vml = | 〈m,−m|V |l,−l〉 |
can be calculated using methods such as those found in Ref. [Mah00]. In a Cooper pair,

the two electrons have opposite momenta and spins; here, the quantum numbers m signify

the motional and spin states of the electrons: m 7→ (p, ↑), −m 7→ (−p, ↓). We shall refer

to these distinct quantum numbers m as modes.

Physically, the onsite energies signify the energy of one pair, while the hopping terms

specify the energy needed to transition from a mode l to a mode m. BCS dynamics is

regulated by a competition between these two energies, similar to the physics of the Hubbard

model. In general, the BCS ground state is a superposition of modes of different m.

Although the number of states m is clearly staggering in a superconductor of macro-

scopic size, superconductivity has also been observed in ultrasmall (O(nm)) superconducting

metallic grains. The number of states in these systems within the Debye cutoff from the

Fermi energy is estimated to be ≈100 [WBL02]. Although the BCS ansatz is expected to

hold in the thermodynamic limit, it would be desirable to test its predictions for these small

systems.

To test the predictions of the BCS Hamiltonian, we require solutions of its energy spec-

trum. The BCS Hamiltonian is a member of a class of pairing Hamiltonians, which are

of interest in both condensed matter and nuclear physics. There are certain methods of

classical simulation that can provide exact solutions for certain instances of pairing Hamil-

tonians. Exact solutions are possible for an integrable subset of general pairing models.

The number of free parameters that define an integrable model, for a given number of

modes N , is 6N+3, whereas the set of free parameters of general Hamiltonians is equal to

2N2 −N [DRS03]. Therefore, the fraction of models that are integrable approaches zero as

the system size increases. The most successful approximate method is the Density Matrix
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Renormalization Group (DMRG), with which, for example, a pairing model with N ≈ 400

has been solved to five digits of precision [DS99]. However, DMRG is still a fundamentally

approximate method. In this chapter we explore an alternative quantum algorithm that is,

in principle, numerically exact.

3.2 The Wu-Byrd-Lidar proposal

In 2002, Wu, Byrd, and Lidar (WBL) proposed a method for simulating the BCS Hamilto-

nian on a NMR-type quantum computer [WBL02]. In this section we will, following their

paper, explain how to use a digital NMR-type quantum simulator to calculate the low-lying

spectrum of the pairing Hamiltonian. We are concerned with finding the energy gap ∆

between the ground and excited states for a specified Hamiltonian. Wu et al. prove that ∆

can be computed using O(N4) steps, where N is the number of qubits, and also the number

of quantum states included in the simulation, equivalent to the number of modes N above.

They begin by mapping the Fermionic creation and annihilation operators to qubit

operators. A computational |1〉 state signifies the existence of a Cooper pair in one of

the possible modes, while |0〉 is the vacuum state for that mode. Thus, the total number

of qubits in the |1〉 state signifies the number of Cooper pairs, and the total number of

qubits translates into the total number of modes that might be occupied. Accordingly, a

measurement of the number operator nm = (Zm + 1)/2 yields 1 if the mode m is excited,

and 0 otherwise. The operator σ+
m (σ−

m) signifies the creation (annihilation) of a Cooper

pair in mode m: σ+
m 7→ c−mcm and σ−

m 7→ c†mc†−m

The above identification holds for pairing Hamiltonians that simulate Fermionic particle-

particle interactions; thus, it is appropriate for the BCS Hamiltonian. Two other cases are

given in their paper, but for simplicity, we will restrict our discussion to the case that we

actually implemented experimentally (the BCS Hamiltonian). From the above point, it is

simple to write HBCS in terms of qubit operators, using the identities σ+ = (X + iY )/2 and

σ− = (X − iY )/2. The final Hamiltonian that we use in our NMR implementation is

HBCS =

n
∑

m=1

νm

2
(−Zm) +

∑

m<l

Vml

2
(XmXl + YmYl) . (3.2)

Their simulation scheme then follows these steps:

1. Prepare a state |Ψ0〉 that contains a fixed number of qubits in state |1〉; all other

qubits will be in |0〉.

2. Evolve the system quasi-adiabatically from the state |Ψ0〉 into the state |ΨI〉 = cG |G〉+
cE |E〉, where |G〉 and |E〉 are, respectively, the ground and first excited states of some

simulated BCS Hamiltonian. Under truly adiabatic evolution, the system would move

from the ground state of the first Hamiltonian into that of the second; by speeding
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up the evolution a bit, it is possible to produce excitation to |E〉 without placing

significant population into the higher-energy excited states.

3. Apply the unitary transformation UBCS(tq) = exp (−iHBCStq/~) for tq ranging from

0 to the total time tQ, where a total of Q steps are used. Each time, measure one

qubit in the Z basis. Any operator M for which 〈G|M |E〉 6= 0 may be measured.

4. Perform a (classical) discrete Fourier transform (DFT) on the measured spectra; fre-

quency peaks will be present at ∆, the energy gap between |G〉 and |E〉.

We now explain how each piece is implemented in an NMR system.

Step 1 is a very common and well-understood operation in NMR quantum computing.

Starting in the ground state |00...0〉, the spins may be initialized by simply applying single-

qubit rotations Rx(π) to the desired qubits.

Step 2, the quasi-adiabatic evolution, is implemented in the following way. The system is

evolved under a Hamiltonian that gradually changes from the NMR Hamiltonian H0 + HI

(c.f. Sec. 2.1) into HBCS . Specifically, the Hamiltonian used at each step is H = (1 −
s/S)H0 + (s/S)HBCS . The unitary corresponding to each is U = exp(−iH(s)τ/~), where

the timestep τ and total number of steps S together control the rate of quasiadiabatic

evolution. This procedure is discussed further in [SvDH+03]. The construction of HBCS is

discussed presently.

Step 3, evolution under HBCS , is done by a pulse sequence designed as follows. We re-

quire an approximation of the unitary evolution under HBCS , UBCS(qt0) = exp (−iHBCSqt0).

An ideal NMR implementation accomplishes this by a repeatable pulse sequence VBCS(t0),

where UBCS(qt0) ≈ (VBCS(t0))
q. The Hamiltonian HBCS (Eq. 3.2) contains three noncom-

muting parts: H0 =
∑

m
νm

2 (−Zm), HXX =
∑

m<l
Vml

2 XmXl, and HY Y =
∑

m<l
Vml

2 YmYl.

Assuming for the moment that the corresponding unitary operators U0(t), UXX(t), and

UY Y (t) can be implemented, VBCS(t0) can be constructed using the third order Trotter-

Suzuki formula [Tro58, Suz92],

VBCS(t0) = [U0(t0/2k)UXX(t0/2k)UY Y (t0/k) × UXX(t0/2k)U0(t0/2k)]k + ǫTS , (3.3)

where the expected error ǫTS ≡ ‖UBCS(t0) − VBCS(t0)‖ = O(t30/k2).

The specific method for implementing U0(t), UXX(t), and UY Y (t) depends on the chosen

simulated Hamiltonian. This is presented in Sec. 3.5.

Step 4 is performed on a classical computer using the experimental results of Step 3.

For each time step, the signal of one chosen nucleus is measured. As was shown with the

experiment described in Sec. 2.2, a correctly prepared superposition state will oscillate at

the desired frequency ∆ with respect to the simulated time. In practice, the NMR peak

with the best signal-to-noise ratio is used for this step.
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3.3 The bounds on precision

In this section we consider two possible limitations on the precision of the final result. The

first comes from the sampling rate in time used in Step 3 above, and the second from control

errors. We define ε to be the average error in the final result: ε = |∆−∆exp|/∆, where ∆exp

is the experimentally determined value. The number of digits of precision in the final answer

pε scales broadly as log(1/ε). As discussed in Ch. 1, this implies that ≈ 1/ε operations are

required to obtain this precision.

The WBL algorithm requires simulating HBCS for times tq = {0, tq, ..., tQ − t0, tQ},
where Q is the total number of steps, and t0 the step size. The DFT yields an error of

εFT = 2πEmax/Q, where Emax = ~/t0 is the largest detectable energy. In general, the

length of the simulation is proportional to Q; therefore, the number of gates scales inversely

with the error. A similar problem in Shor’s algorithm overcomes this problem by a clever

way of performing the necessary modular exponentiation [Sho94].

The use of the Trotter formula, as noted above, is also a source of error. In the expansion

above, the error is O(t30/k2). But suppose a first-order Trotter expansion would suffice (as it

may for some other quantum simulation). In this general case, when one wishes to simulate

the Hamiltonian H = HA + HB with [HA, HB] 6= 0, the expansion to lowest order is

exp (−it(HA + HB)/~) = (exp(−itHA/(~k)) × exp(−itHB/(~k)))k + δ , (3.4)

where the error δ = O(t2/k) if ‖[HA, HB]‖2 × t2/~
2 ≪ 1. The higher-order expansions have

an error δ = O(tm+1/(km
~

m+1). However, each higher order carries an additional cost of

O(2m) more gates. Even though the increase in the number of gates is exponential, the

total time required does not scale so badly. Since the time to implement each gate U(t/k)

is 1/k the time required to implement U(t), the use of the Trotter formula to implement U

requires only 2t total time, regardless of k. It would seem that “Trotterization” does not

increase the inefficiency of the simulation with respect to the precision.

However, we note that future larger-scale quantum simulations will almost certainly

require error correction. The fault-tolerant implementation of U(t/k) actually takes about

the same time as U(t) [Pre98, Got97], whether one uses methods based on teleportation

[GC99] or the Solovay-Kitaev theorem [KSV02]. Consequently, fault-tolerant simulations

using the DFT and the Trotter formula require a number of gates that scales as 1/εr, where

r ≥ 2.

Although the above argument urges caution for future quantum simulations, we will

restrict ourselves in the rest of this section to the bounds on precision without error correc-

tion. The authors of Ref. [WBL02] predict that the number of gates scales as 3n4∆/ε, where

n is the number of qubits. Can we arrive at an intuition for why this should be the case?

The total number of gates is proportional to the number of gates needed to simulate UBCS,
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which scales as n4, which is proved in their paper. This is multiplied both by the order k

in the Trotter approximation used, as well as total number of steps Q. The fractional error

due to the DFT, as stated above, is ε ∝ 1/(Qt0). We require then that the error due to the

Trotter formula is small compared to this, and may choose k/t0 = 0.1∆. Upon substitution,

we see that εFT ∝ ∆/(kQ), and this proves the WBL bound (up to constant factors).

Arriving at a practical bound on the precision requires taking into account decoherence

processes, because the number of gates that can be performed without error correction Ng

is given by the ratio of the gate time tg to the fastest decoherence time τ . This time,

in practice, is equal to T∗
2 (Sec. 2.1). WBL assume a best-case scenario of Ng = 105.

Therefore calculating ∆ to a precision of ∆ = εFT is possible for a maximum number of

n = 3

√

105/3 ≈ 10 qubits. However, given the specific scalar couplings (tg ≥ 60 ms) and

decoherence rates of our system (T2 ≈ 10 s), we should be able to saturate this bound for

n ≤ 4 qubits.

Of course, the above considerations assume perfect control pulses, which in reality do

not exist. We now take a look at how control errors can affect the precision. In the static

field of the NMR magnet, B0ẑ, and in the absence of rf pulses, the unitary evolution is

given by

UZZ = exp



−i~
∑

ij

π

2
JijZiZjt



 . (3.5)

Normally, we make the approximation that the time required to rotate a spin by π

radians is much smaller than the delay times during which no rf is applied, and the system

evolves freely according to Eq. 3.5, that is, tπ ≪ td ≈ 1/Jij . This is justified since tπ is

O(ms), and 1/Jij is O(10 ms). When this approximation holds, the rf pulses are treated

as δ-functions in time, implying that evolution under the ZZ interaction is assumed not to

occur during this time. As tπ approaches td, these control errors can be mitigated to some

extent, but as the number of pulses becomes greater and greater, this effect also becomes

more pronounced.

In the experiment, we will explore whether we can saturate the theoretical bounds on

the precision, even given faulty controls. First, though, we discuss the actual hardware that

was used in our experiment.

3.4 The NMR system

We now turn to a description of the experimental system used to implement the WBL

algorithm. This section contains a description of all the key components of the NMR

system used in our work. Here we describe the hardware that implements all the operations

discussed in Sec. 2.1.

The NMR system consists of an 11.7 T magnetic field, oriented vertically, which provides
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Figure 3-1: A schematic of a generic NMR system.

the quantization ẑ axis for the nuclear spins contained therein. Coils of wire surrounding the

sample carry carefully-controlled ac currents to provide the rotations of the magnetizations

of the atomic nuclei. Fig. 3-1 is a diagram of a basic NMR system. Here we briefly discuss

each part, providing some specific details about our experimental system. The information

in this section is a somewhat abbreviated treatment of the extensive discussion presented

in the Ph.D. theses of Vandersypen [Van01] and Steffen [Ste03].

3.4.1 Sample

The system under study consists of a set of spin-1/2 nuclei that are contained within

molecules. Because the signal from a single molecule is difficult to detect, a large ensemble

of molecules is used. These are dissolved in a liquid solution. Although “liquid-state”

NMR is commonly used for such a system, we prefer the somewhat more accurate term

“solution-state.” If the sample molecule is dilute enough, this effectively eliminates inter-

molecular couplings. What one has then is a sample of identical quantum systems. For

these experiments, on the order of 1018 molecules are used.

The sample is contained in a glass tube with a 5 mm outer diameter and 4.2 mm

inner diameter. These sample tubes have very straight sides and a uniform thickness;

this minimizes the effects of a varying magnetic susceptibility on the sample. Our tubes

were supplied mostly by Wilmad. The solution must be purged of impurities such as

paramagnetic oxygen through a freeze-thaw process before being flame-sealed. This process

involves freezing the sample, subjecting it to vacuum, then thawing it. With each step,

oxygen is removed. The sample is finally placed in a device called a “spinner,” which,

true to its name, enables the tube to be rotated around the magnetic field axis (ẑ) at 20

revolutions per second. This helps to cancel inhomogeneities in the x̂-ŷ magnetic field.
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Figure 3-2: A typical sample tube filled with molecules in solution that are used for NMR
quantum computation and simulation.

3.4.2 Magnet

The static magnetic field is provided by a superconducting magnet manufactured by Oxford

Instruments. A superconducting coil cryogenically cooled with liquid helium to 4.2 K creates

a magnetic field of B0 = 11.7 T using about 100 A of current. It features an active vibration

isolation system, and is actively shielded so that the 5 gauss line is about 3 m away from

the outer shell of the magnet. The cryogenic environment is maintained by surrounding the

liquid helium reservoir with a vacuum shell, which in turn is surrounded by a 77 K liquid

nitrogen reservoir, which itself is shielded by another vacuum shell. The hold time for liquid

nitrogen is about 10 days, while that for liquid helium is about three months.

The magnetic field due to this coil is not perfectly homogeneous. In practice, this leads

to a loss of coherence as variations in the field effect a “spread” in the chemical shifts of the

nuclei in the sample, and thus errors in the frequency at which the nuclei are being addressed.

Homogeneity is fine-tuned by a set of “shim” coils that surround the sample. One set of

coils is also superconducting, and is adjusted during magnet installation, not to be changed

by the user. The other set is not superconducting, and produces smaller spatially-varying

fields that are to be adjusted by the experimenter. The field homogeneity is maximized by

observing the linewidth of one nuclear resonance as a function of the currents in each of

these coils. This is an iterative process that can take some time. Automated routines do

exist, but we find that the best results generally come from manually tweaking the shim

currents. The shim settings depend strongly on the sample and probe being used, but for

each pair of these, there is a good “baseline” set of shim currents that is saved and re-used.
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Figure 3-3: The 11.7 T, 500 MHz superconducting magnet. The rf probe is inserted from
the bottom, and the sample from the top. Liquid nitrogen and helium fill ports are also
located on the top. Photo courtesy of M. Steffen [Ste03].
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After loading these settings, the homogeneity can normally be fine-tuned in a matter of

minutes.

A final aspect of the magnet is that the static field B0 does slowly drift in time due

to the tiny amount of power dissipation present in the superconducting coil. The order of

magnitude for this drift is about 1 Hz/hour. Although this is tiny in relation to ω0, this small

change can have a negative impact on precision techniques such as quantum operations. To

correct this problem, there is one further room-temperature coil that adjusts the static field.

The current through this coil is locked to the resonance frequency of the deuterium nuclei

in the solvent of the sample. Although this locking method is not the only way to approach

the problem, it is quite convenient, since the process runs in the background after some

initial setup.

3.4.3 Probe

The probe is a multi-purpose device that supplies the rf fields that manipulate the nuclei,

reads out the magnetization signal from the sample, and also regulates the temperature of

the sample using air at a specific temperature. The rf coils are about 1.5 cm in diameter and

address a region within the sample that is about 2 cm long, called the “active region.” The

coils are made of a low-resistivity metal (such as copper) and have from 1 to 3 windings.

The coils are part of a resonant circuit with a Q factor on the order of 100. A circuit

that contains two adjustable capacitors is used; the first varies the resonant frequency of

the circuit, enabling one to tune to a specific nuclear resonance, while the second permits

impedance matching. The transmission lines, which are coaxial cables, have an impedance

of 50 Ω; thus, the circuit is matched to that impedance to avoid reflection of power from

the sample, maximizing the effectiveness of the rf signals, and to permit maximum transfer

of the signal from the nuclei to the receiver, maximizing the signal-to-noise ratio.

The probe actually contains two separate pairs of rf coils; the first is for higher-frequency

nuclei such as 1H and 19F, both of which have resonances above 200 MHz. The second is for

lower-frequency nuclei such as 13C, which has a frequency below 200 MHz. The reason for

this is that it is hard to design resonant circuits that have a high Q factor over a very wide

bandwidth. The high-band and low-band coils are mounted at right angles to minimize

cross-talk. We used a commercial HFX probe from Nalorac. The “H” and “F” refer to

the high-band coils, which are tuned for hydrogen or fluorine. The “X” means that the

low-band coils are tunable over a wide range. In our experiments, we tuned this coil for
13C.

Finally, the probe is responsible for regulating the temperature of the sample. Thermo-

couples measure the temperature of the sample, and air at a specific temperature is flowed

through the probe in accordance with the temperature measurement. Thus the tempera-

ture is actively stabilized. The probe may also contain coils for generating magnetic field

gradients in space, but this does not play a role in our work here.
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Figure 3-4: The above probe is a Nalorac HFX probe, where X was tuned to 13C
.

3.4.4 RF electronics

The rf electronics discussed in this section consist of the transmitter and the receiver. The

spectrometer we used is a custom-modified Varian UNITYInova unit with four transmitter

channels.

The transmitter consists of four frequency sources (PTS 620 RKN2X-62/X-116) that

are supplied with a 10 MHz reference signal by a temperature-controlled crystal oscillator.

These frequency sources then supply rf signals of up to 1 Vrms in the range of 1-620 MHz,

with frequency resolution of 0.01 Hz. These signals are sent to transmitter boards that

create pulses of the duration programmed by the experimenter. These have a resolution of

50 ns with a minimum pulse length of 100 ns. In addition, the phase may be set with a

ressolution of 0.5◦. A set of fast memory boards, the waveform generator boards, is then

used to shape the pulses as desired.

The power of the pulses is then set by passing through a set of coarse attenuators.

These can attenuate the signals by up to 79 dB in steps of 1 dB. The relative powers of

each pulse are set here, and finally the pulses pass through a set of linear amplifiers. There

are two dual amplifiers that each contain two units, a low-band amplifier that operates

from 6-200 MHz with 300 W maximum pulse power and 60 dB gain, and a high-band

amplifier that operates from 200-500 MHz with 100 W maximum pulse power and 50 dB

gain. The amplifiers are fast; rise/fall times are 200 ns, which is more than sufficient for

our experiments. Also, there are fast “blanking” circuits which shut off all output from the

amplifier to the experiment. Were this not the case, noise from the amplifiers in between
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pulses would harm the fidelity of the quantum simulation effectively making our classical

controls excessively noisy. The on/off time for these blanking circuits is > 2 µs. The

signal is normally routed automatically from the transmitter boards 1 and 2 to the correct

(high/low) band channel of the first amplifier unit, and likewise from boards 3 and 4 to the

second unit.

All of the outputs from the amplifiers within each band are combined using high-power

combiners before passing through a PIN diode transmit/ receive switch. This switch isolates

these high-power signals from the sensitive receiver preamplifier. The signals are finally

routed to the correct coils of the probe.

When the PIN diode switches are in receive mode, the signals induced in the probe by

the nuclei are passed to high-band and low-band preamplifiers with gain of 35 dB. These

signals are sent to receiver boards in the electronics cabinet that mix the signals down to

audio frequencies and separate them into two quadratures, after which they are also passed

through audio filters (with bandwidth 100 Hz to 256 kHz). The signal is then digitized and

uploaded to the computer. The maximum sampling rate is 1 MHz.

3.4.5 Computer control

A Sun Ultra 10 workstation is the control panel of the spectrometer. Pulse instructions

are sent to the spectrometer using commercial software from Varian. The pulse sequences

themselves are written in C and compiled. One may use a set of low-level commands that

adjust parameters such as pulse duration, phase, and channel number.

It is convenient to use a higher-level language to specify a set of experiments to be

run and to subsequently process the data. Matlab serves this purpose nicely. This affords

a great deal of automation, as a number of experiments can be run for a long period of

time (say, overnight) and then automatically processed later on. For instance, a number of

experiments may be performed and then the final average density matrix calculated.

3.5 Experiment

We chose as our sample 13C-labeled CHFBr2, the structure of which is shown in Fig. 3-

5. The J-couplings between each nucleus are JHC = 224 Hz, JHF = 50 Hz, and JCF =

−311 Hz. This three-qubit molecule is appropriate for quantum simulations of three modes

and up to three Cooper pairs. We chose to implement two different Hamiltonians, using

two Cooper pairs. The Hilbert space is therefore spanned by |101〉, |110〉, and |011〉.
We implemented two different Hamiltonians: H1, in which Vab = πJHC , Vac = πJHF ,

and Vbc = πJCF , and a harder case, H2, in which Vab = πJHC and Vac = Vbc = 0. For

both Hamiltonians, ν1 = 150π Hz, ν2 = 100π Hz, and ν3 = 50π Hz. Although the choice of

Hamiltonians is somewhat arbitrary, they are sufficient to illustrate the impact of control

errors, as H2 requires more refocusing pulses than H1.
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Figure 3-5: The CHFBr2 molecule. Although drawn in a plane here, it is actually tetrahe-
dral.

The method of implementing these Hamiltonians is as follows. The pulse sequences

presented here implement the individual parts of the longer pulse sequence discussed in

Sec. 3.2. We use composite rotations about the x̂ and ŷ axes to generate rotations about ẑ:

U0 =
∏

m

Rm
ŷ (π/2)Rm

x̂ (πνm)Rm
−ŷ(π/2) , (3.6)

where m indexes the individual qubits. UXX and UY Y are generated by applying single

qubit pulses to rotate the scalar coupling from ẑ to x̂ or ŷ. Let us use the same convention

as above, that qubit a is 1H, qubit b is 13C, and qubit c is 19F. Written in time order, the

pulse sequence to implement H1 is

UH1
= Ra

ŷ(π/2) − Rb
ŷ(π/2) − UZZ(t) − Ra

ŷ(−π/2) − Rb
ŷ(−π/2) , (3.7)

where the superscripts of the rotation operators denote the qubit being acted upon, and the

UZZ evolution affects all qubits. The rotation operators for qubits 1 and 2 on either side of

UZZ(t) may be swapped, as these operations commute (and are assumed to take zero time).

To implement H2, one only needs to remove the coupling of the third nucleus since

Vac = Vbc = 0. This can be done using the refocusing technique presented in Sec. 2.1.5. H2

is simulated by replacing UZZ(t), in the above sequence, with

UZZ(t/2) − Rc
x̂(π) − UZZ(t/2) . (3.8)

The initialization of the state |ΨI〉 = cG |G〉+ cE |E〉 requires, as mentioned in Sec. 3.1,

quasiadiabatic evolution. This discrete-step process was demonstrated in [SvDH+03], but

here we speed it up somewhat to populate the first excited state |E〉. The Hamiltonian at

each discrete timestep s is Had(s) = (1 − s/S)H0 + (s/S)HBCS. We find S = 4 steps, with

time steps of tad = 1/700 s, to be sufficient. We do note that, for for ‖HXX +HY Y ‖ ≫ ‖H0‖
there can be a phase transition as s is changed [McK96]; as the gap goes to zero at the
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Model ∆/Hz Method ∆exp/2π·Hz τe/ms t0/ms Q

H1 218 ·2π W1 227 ± 2 180 1 400
W1 220 ± 2 250 2 200

H2 452 ·2π W1 554 ± 10 30 .5 200
W2 440 ± 5 80 .5 200

Table 3.1: Experimental results for gaps found for Hamiltonians H1 and H2. Estimated
gaps (∆exp) and effective coherence times (τe) for given time steps t0 and number of steps
Q are given.

phase transition this can be problematic, since the number of steps required for successful

quasiadiabatic evolution grows inversely with the gap.

As mentioned in Sec. 3.3, we chose to study the effect of control errors by using a simple

method of error compensation. We refer to this method as W2, while the above method

without error compensation is referred to as W1. W2 partially corrects for the ZZ evolution

during single-qubit pulses by modifying the delay time during the free evolution periods:

R(θ1)UZZ(t)R(θ2) → R(θ1)UZZ(t − α)R(θ2) , (3.9)

where α = (tπ/(2π))(θ1 + θ2). Numerical results show that using method W1 produces a

significant systematic shift in the final result compared to W2. This is presented together

with the experimental data in Fig. 3-6.

From direct diagonalization of the Hamiltonians, we expect ∆ = 218 · 2π Hz for H1,

and ∆ = 452 · 2π Hz for H2. For H2, ∆ is the energy difference between |G〉 and |E2〉,
since |E1〉 is not connected by usual adiabatic evolution. The experimental result ∆exp was

determined by a least-squares fit of the 1H NMR peak to a damped sinusoid with frequency

∆exp and decay rate 1/τe. The choice of nucleus to measure is also arbitrary, since all peaks

oscillate at the same frequency ∆exp, but we have chosen the 1H peak since it has the best

signal-to-noise ratio.

Our experimental results are presented in Fig. 3-6 and Table 3.1. For these results, we

expect the measured value ∆exp for the energy gap to be given by ∆exp = ∆ + εsys ± εFT,

where εsys is the systematic error (due to control errors). The impact of systematic and

random errors was investigated by simulating H1 with W1 for εFT = 2.5 × 2π Hz at two

different simulation times, t0 = 1 ms and t0 = 2 ms. (Here we have exploited the fact that

many values of Q and t0 yield the same εFT.) The random error in both cases is εFT, as

expected. The systematic error increases with smaller t0, indicating that the error due to

undesired scalar coupling becomes larger than the errors due to the Trotter approximation.

Consequently, a slightly longer t0 yields a systematic error that is within εFT of the exact

answer. We have thus shown that for H1, we have saturated the theoretical bounds on the

precision.

While the results for Hamiltonian H1 were good even without control error compensa-
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Figure 3-6: Frequency-domain spectra of Hamiltonian H2 obtained using methods W1
(circles) and W2 (diamonds). The solid lines are fits to time-dependent data. The width
of the exact curve is taken to be the dephasing rate (1/T ∗

2 ) of the 13C nucleus, which has
the highest dephasing rate.

tion, the effects of control errors were very evident in the results for H2. Hamiltonian H2

was implemented using both W1 and W2 for εFT = 10 ·2π Hz and t0 = 0.5 ms. The shorter

time step was necessary because the larger ∆ made the simulation more sensitive to Trotter

errors. Comparing the W2 and W1 results shows that with no control error compensation,

a gap ∆exp is found that is ∆/5 away from the actual value. In contrast, with simple error

compensation ∆exp is ǫFT from the actual value. Future implementations should strive to

detect and bound control errors by verifying that ∆exp converges as t30 for small values of

t0, as theoretically expected.

3.6 Discussion

To summarize this work, we have simulated the BCS Hamiltonian using the smallest prob-

lem instance that requires both adiabatic evolution and the Trotter approximation. We

find that our implementation on an NMR quantum computer saturates the bounds on the

precision that were predicted by us and by WBL. The most important aspect of this work

is understanding the limitations of the precision of the final result, both due to intrinsic as-

pects of the protocol such as the Fourier transform and the Trotter approximation, and due

to system-specific aspects such as control errors and natural decoherence. We summarize

our conclusions here.

1. Results obtained using digital quantum simulation are generally inefficient with re-

spect to the precision. Nevertheless, if the dynamics may be implemented efficiently,
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Classical Quantum

Digital
Space: 2nO(log 1/ǫ)

Time: T22n
Space: n

Time: Tn2O(1/ǫr)

Analog
Space: 2n

Time: T
Precision: O(log 1/ǫfix)

Space: n
Time: TO(1/ǫ)

Table 3.2: A comparison of the resources required for digital and analog simulation of
quantum systems, using both classical and quantum systems, and taking into account the
precision obtained. We consider a system of n qubits simulated for a total time T . The error
due to projection noise is denoted ǫ, while the fixed error of a classical analog computer is
denoted ǫfix. Here r ≥ 2 when error correction is required.

the quantum simulation is still more efficient than a classical algorithm, provided no

efficient classical approximation exists.

2. In general, use of the Trotter formula or some related technique will be necessary

in digital quantum simulation, as most non-trivial Hamiltonians have mutually non-

commuting terms. We have shown that, when fault tolerance is required, this process

increases the number of required gates by a broadly exponential factor. The conclusion

here is roughly the same as in item 1: this class of simulations is inefficient with respect

to the precision, but moreso when error correction is needed. This result is included

in Table 3.2.

3. Control errors are a problem that afflicts any quantum simulator. The type that

appear in NMR arise from the “always-on” scalar coupling interaction. Although

for small systems it is relatively easy to compensate (to first order) for these errors,

and thereby bring the solution to within the theoretical bound, it will not be so

straightforward in larger systems. Fortunately, in scalable systems such as ion traps,

the two-body interactions are controlled more directly by the experimenter. There

will be control errors in that system as well, but of a different sort.

4. All quantum simulations are limited by natural decoherence times. The bound on

the number of qubits that may be used to obtain an answer to within a given error

depends on the number of gates that may be performed within the coherence time,

unless error correction is used. Error correction becomes necessary for larger systems,

but then the overall scaling properties become less favorable, as explained in items 1

and 2.

We would like to point out that the above results apply to digital quantum simulation

generally, regardless of whether the classical discrete Fourier transform (DFT) or the quan-

tum Fourier transform (QFT) is used. Our results apply to both for the reason that they

deal with the implementation of the simulated Hamiltonian; whether the DFT or QFT is
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used to extract the answer is irrelevant. In fact, the first result was acknowledged by the

authors of the papers on QFT-based digital quantum simulation [AL97, AL99]. The second

relates only to the application of the simulated Hamiltonian, which is the same in DFT and

QFT methods. The third, relating to control errors, will be germane to every quantum con-

trol experiment, and again deals with the implementation of the Hamiltonian rather than

the extraction of the result. The fourth result, acknowledging the effects of decoherence, is

also certainly true in both cases.

These precision limitations being as they are, there is still reason to pursue digital quan-

tum simulation. For instance, in cases for which there is no good classical approximation,

the limited precision of a digital quantum simulator will still be superior to classical meth-

ods. In addition, analog quantum simulation is promising for systems of an intermediate

size, that are too large for classical simulation, but small enough so that error correction is

not essential.
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Part II

Two-dimensional ion arrays for

analog quantum simulation
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Chapter 4

Theory and history of quantum

simulation using trapped ions

In the previous part, we explored how NMR systems can be used to perform quantum

simulations. However, we also saw some drawbacks to the scalability of these systems, as

well as to the precision with which results can be calculated. In this chapter, we present

an alternative approach based on trapped ions. Trapped ions have a long coherence time

(potentially O(10 s) or longer), which exceeds that of nuclear spins in solution, and offer a

potentially scalable system in the sense that the number of ions that can be used is unlimited

if proper controls are available and decoherence is sufficiently small (or error correction is

used). Networking between ions may be accomplished by moving ions or by linking them

with photonic or electronic quantum communication, as discussed in Ch. 1.

We also noted in Ch. 1 that the analog approach to quantum simulation is promising for

quantum simulations of systems that do not require error correction, or systems which are

fundamentally not amenable to error correction, such as systems with continuous Hilbert

spaces. In particular, analog simulations of spin physics may be able to solve problems that

classical simulation cannot for as few as 36 interacting particles [RMR+07]. Here, we turn

to such analog systems. Our main effort is to design and experimentally characterize an

ion trap in which such a simulation could be done, focusing on the problem of simulating a

2-D lattice of interacting spins using trapped ions.

In Sec. 4.1, we present the basic ion trap Hamiltonian and demonstrate how it permits

quantum control of the internal and external degrees of freedom of trapped ions using laser

radiation. Then, in Sec. 4.2, we outline the method proposed in Ref. [PC04b] for simulating

quantum spin models in an ion trap. Sec. 4.3 enumerates the challenges involved with

designing ion traps for such quantum simulations, framing the questions explored in the

remainder of Part II. We summarize in Sec. 4.4.
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4.1 The ion trap system and Hamiltonian

An ion trap is an electromagnetic device for confining a charged particle in space. The

charged particle that concerns us is a singly-charged atomic ion, unless otherwise noted.

A trapped ion, if left undisturbed, contains two separable quantum systems: a ladder

of harmonic oscillator motional states, and an internal electronic state. The key insight of

trapped ion quantum computation (and simulation) is that these internal and external states

can be made to interact, and even become entangled, using a set of classical control pulses,

which usually take the form of laser radiation (but can also be microwaves or magnetic

fields). Comparing this situation to solution-state NMR, we note that the same basic

ingredients are present, but in a different form. The spin states of nuclei are replaced

by the electronic states of ions, while interaction between these states is mediated not by

chemical bonds, but by the coupled motion of the ions.

There are two main varieties of ion trap: Paul traps and Penning traps. Paul traps use

oscillating radiofrequency (rf) electric fields, possibly in combination with dc electric fields,

to confine ions. In these traps, one finds that time-averaging the oscillating field leads

to an effective harmonic potential. Penning traps use static magnetic fields and electric

fields to confine ions. The ions execute cyclotron motion around the B-field lines, and are

simultaneously confined along the axis of the B-field by static voltages applied to endcap

electrodes. Both have advantages and disadvantages. Penning traps necessarily have a very

large Zeeman shift due to the confining magnetic fields, whereas in Paul traps the internal

states are much less sensitive to the trapping fields. However, ions in Paul traps exhibit

small oscillations at the rf frequency, called micromotion, that can only be removed if the

ions are positioned where the confining fields vanish. Because of the independence of the

internal states from the trapping fields, but for other reasons as well, Paul traps have been

the trap of choice for most quantum information experiments. In this chapter, we shall

focus on them exclusively.

In this section we first discuss the ion trap potential and the motion of ions confined

therein. We then turn to understanding laser-ion interactions to a sufficient extent that we

can study the theory of quantum simulations with trapped ions, and also review the princi-

ples of laser cooling of ions, a technique which will be used extensively in the experimental

work of this thesis.

4.1.1 Motional states of trapped ions

All Paul traps obey the following basic principle. An electric quadrupole (or “saddle-

shaped”) potential is formed in space by a set of electrodes, each of which is charged to a

certain voltage. In the case of static voltages, the ion would follow the field lines out of the

center of the potential. In fact, it is a well-known result, commonly known as Earnshaw’s

theorem, that no static electric field configuration can trap a charged particle. However, if
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Figure 4-1: A schematic of a ring Paul trap. The ion is located a distance r0 from the
nearest point on the rf electrode, and a distance z0 from the nearest point on either of the
dc endcap electrodes.

the potential is rotated (or, more accurately, “wobbled”) at the proper frequency, then a

particle can in fact be trapped.

A typical “ring” Paul trap is depicted in Fig. 4-1. It consists of one ring electrode that

is oscillating at an rf voltage Vrf , along with two “endcap” electrodes that are grounded.

These may have a dc voltage applied to them. Near the center of the trap, the electric

potential may be written as

V (x, y, z) = αx2 + βy2 + γz2. (4.1)

Since the area in the trap region is free of charge (aside from that of the trapped particle,

which is negligible), Laplace’s equation, ∇2V = 0, must be satisfied. For our potential, this

means that α + β + γ = 0. For the case of the ring trap, α = β = −2γ.

To trap an ion, this potential must vary in time. Typically, an oscillating potential of

the form

V (t) = V0 cos (Ωt + φ) (4.2)

is applied. For the remainder of the thesis, we refer to V0 as the rf amplitude and Ω as the rf

frequency. In general, the solutions to this equation are solutions to the Mathieu equations,

which have the general form

üi = [ai + 2qi cos (Ωt)]
Ω2

4
ui = 0, (4.3)

where the ui are the position coordinates of the ion along each direction. The parameters

qi and ai obey the following equations:
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qi = ζi
−2ecV

mr2
0Ω

2
(4.4)

ai = ζi
4ecU

mr2
0Ω

2
(4.5)

where ec = 1.6× 10−19 C is used throughout the thesis as the (positive) elementary charge,

m is the mass of the ion, and r0 is defined in Fig. 4-1 as the distance from the trap center

to the nearest point of the rf electrode. The constants ζi depend on the direction i; i = 1

for x̂ and ŷ, while i = −1 for ẑ. U is a voltage that may be applied to the endcaps of the

ring trap. Since it is possible to trap with U = 0, a is normally zero. In the lattice trap

(Ch. 5) and elliptical trap (Ch. 7), no dc voltage is required to trap the ions. In traps based

on linear ion traps, however, the rf fields provide confinement along only two directions; a

static voltage is required for the third. Even in this case, however, ions may be trapped if

U is small compared to V . The parameters a and q determine whether the trap is stable,

that is, whether an ion confined in it can remain so. The “stability regions” in a-q space

have been calculated, and are given in [Gho95]. In particular, for a = 0, 0 ≤ q ≤ 0.908

results in a stable trap.

The method of solution of these equations is presented in [LBMW03]. For our purposes,

it will be sufficient to invoke the pseudopotential approximation. This result assumes that

the motion of the ions can be decomposed into two parts: small oscillations at the drive

frequency Ω, referred to as micromotion, and slower oscillations within an effective harmonic

well at a lower frequency, called the secular motion. The solution has the form

ui(t) = Ai cos (ωit)
[

1 +
qi

2
cos (Ωt)

]

, (4.6)

where Ai is the amplitude of the ion’s motion along direction i. The term that oscillates

at Ω represents the micromotion. It is proportional to the term of order unity, and smaller

by a factor of qi

2 . Since qi is around 0.3 for many of our experiments, the amplitude of this

motion is on the order of one-tenth that of the secular motion, hence the term micromotion

is apt. When a = 0, the relation between the secular frequency ω and the drive frequency

Ω is

ωi =
qi

2
√

2
Ω, (4.7)

giving rise to our oft-stated “rule of thumb” that the secular frequency is about one-tenth

the drive frequency.

The formula for the pseudopotential Ψ is

Ψ(x, y, z) =
Q2

4mΩ2

∣

∣

∣

~∇V (x, y, z)
∣

∣

∣

2
, (4.8)
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where Q is the charge of the trapped particle (equal to ec for the atomic ions used in this

thesis) and m is its mass. We will use this formula in all our calculations of ion trap

potentials, and find that it agrees quite well with our results. Dissecting this formula a bit,

we see that Ψ is proportional to ecQ/r2
0; the 1/r2

0 dependence comes from the gradient of the

potential squared. This parameter depends on the trap geometry, and in most of our traps

is computed numerically. For ion traps that admit approximate analytical solutions, r0 has

a clear physical significance; for example, in the case of the ring trap, it is the distance from

the trap center to the nearest point on the rf ring electrode.

For the quadrupole potential above, close to the its minimum, the pseudopotential has

the form of a three-dimensional harmonic oscillator:

Ψ(x, y, z) =
1

2
m
∑

i

ω2
i u

2
i , (4.9)

where the ωi are the secular frequencies.

The classical solutions for a particle in a harmonic oscillator will not be repeated here.

We will briefly present the quantum mechanical solution, since this is essential to the theory

of quantum simulation with ion traps. The Hamiltonian of the oscillator in a given direction

with frequency ω is

H = ~ω

(

a†a +
1

2

)

, (4.10)

where [a, a†] = 1 (see Ref. [Sak85] for further details). The operators a and a† are called the

annihilation and creation operators, respectively. Their effect on the state |n〉 is to remove

or add one quantum of vibrational energy to the state |n〉:

a |n〉 =
√

n |n − 1〉 ; a† |n〉 =
√

n + 1 |n + 1〉 . (4.11)

The eigenbasis is the set of states {|n〉} that satisfy, in addition to the above,

H |n〉 = ~ω

(

n +
1

2

)

|n〉 . (4.12)

The ground state wave function, for which a |0〉 = 0, is written in coordinate space as

〈0|x〉 =

√

x0

π
e
−

“

x
2x0

”

2

, (4.13)

where x0 =
√

~

2mω is the width of the ground state wavefunction.
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Figure 4-2: Generic level structure for the ions used in the experimental work for this thesis.
Here n is the principal quantum number; the D states have one less unit of n, as shown.
The three transitions are the ones discussed in this chapter. λDopp is the Doppler cooling
and detection transition. λRep is the repumper for the P1/2 state; it is needed whenever
the λDopp transition is addressed. λSB is a narrow quadrupole transition that is used for
sideband cooling and state manipulation.

4.1.2 Control of ionic internal states

In this section we will study the basic atomic structure of all the ions used in this work,

and describe how lasers can be used to effect transitions between these levels. There are

two types of atomic structure that are widely used in trapped ion quantum information

processing: the first relies on a ground state connected to a metastable excited state by an

optical transition (hundreds of THz), while the second connects two hyperfine levels with a

transition that is in the GHz range. Here, we will focus on the former case, since it applies

to both ions used in this work, 88Sr+ and 40Ca+.

We begin with a review of the atomic structure of such ions. Both are hydrogenic,

meaning that there is only one valence electron. A diagram of the electronic level structure

of such an ion is given in Fig. 4-2. Each transition is characterized by two numbers: the

transition frequency Ωij , where i and j label the states, and the excited state lifetime τ ,

which is related to the spontaneous emission rate Γ by τ = 2π/γ. The term symbols

follow the usual conventions for L-S (Russell-Saunders) coupling, which is valid whenever

spin-orbit coupling is weak. This scheme assumes that the orbital angular momentum L

and total angular momentum J are good quantum numbers, leading to an atomic state

|nSLJmJ〉. The first number is the principal quantum number n. The superscript 2 is

equal to 2S + 1, and is always two for such atoms since there is only one valence electron.

The capital letter following it gives the orbital angular momentum, assigning each value a

letter (for historical reasons): (L = 0) 7→S, (L = 1) 7→P, and (L = 2) 7→D. The subscript

gives the value of the total angular momentum J . J may take values ranging in integer

steps from ‖L−S‖ to L+S. The quantum number mJ represents the projection of the total
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angular momentum along the quantization axis, which is determined by the orientation of

the external magnetic field.

We now describe the interaction of the trapped ion with laser radiation, which is essential

for understanding how quantum operations may be performed on trapped ions, as well as

other techniques such as Doppler cooling and state measurement. We focus on electric

dipole transitions, which occur between atomic levels that differ by one unit of orbital

angular momentum. For simplicity, we will limit the discussion to the coupling of two

discrete levels. The interaction is that of the dipole moment of the electron interacting with

the oscillating laser field. The interaction is written as

Hdip = −~d · ~E = −~d · ~ǫE0 cos
(

−ωlt + ~k · ~z + φ
)

, (4.14)

where ~d = ec~z is the dipole operator, ~z is the displacement vector of the ion from its

equilibrium position, ~ǫ is the polarization of the laser, E0 is the amplitude of the laser’s

electric field, ωl is the frequency of the laser radiation, ~k is the wavevector of the radiation

field, and φ is a phase that may be chosen by the experimenter. We will assume that the

wavevector of the light is in the ẑ direction.

We note that the dipole operator is proportional to σ+ + σ−, where σ+ = |↑〉 〈↓| and

σ− = |↓〉 〈↑| are the raising and lowering operators for the atomic state, respectively. Making

use of the relation of the creation and annihilation operators to the operators x and p, and

making a rotating wave approximation, the above Eq. 4.14 takes the form

HI = ~Ω
(

eiη(a+a†)σ+e−i(ωlt+φ) + h.c.
)

, (4.15)

where h.c. denotes Hermitian conjugate. The Rabi frequency Ω is the rate at which the

atomic state |↑〉 is flipped to |↓〉 and vice-versa. For an electric dipole transition, Ω =

|ecE0 〈↓| z |↑〉 |, that is, it depends on the applied electric field and on the expectation value

of the dipole operator ecz. The Lamb-Dicke parameter η is equal to kz0, where k is the

norm of the wavenumber of the radiation field and z0 is the width of the ground state wave

function along ẑ: z0 =
√

~

2mωẑ
. A small η (η ≪ 1) means that the ion in its ground state

is well-localized in space to within the wavelength of the laser light, which implies that the

light field will couple well to the harmonic oscillator mode in that direction. This condition

is called the Lamb-Dicke limit, and when it is satisfied, the interaction Hamiltonian looks

like

HI = ~

(

Ωeiφ
)

σ+e−i(ωl−ω0)t
(

1 + iη
(

ae−iωẑt + a†eiωẑt
))

+ h.c., (4.16)

where ωẑ is the ion’s secular frequency in the ẑ direction.

Eq. 4.16 actually reveals all the physics of how manipulations may be made on both the

internal and external states of a single trapped ion using laser radiation. We focus first on

the case in which the laser detuning δl, defined as δl ≡ ωl − ωẑ, is zero. We also neglect
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coupling to the motional states by setting η = 0. The Hamiltonian that acts on the internal

state of the ion is

Hint = ~Ω
(

σ+e−iφ + σ−eiφ
)

, (4.17)

and the unitary transformation done on the ion-qubit is

U(t) = exp (−iHintt/~) . (4.18)

The rotations Rx̂(θ) and Rŷ(θ) may be performed by turning on this Hamiltonian for

an appropriate period of time and setting the phase φ correctly. A rotation along ẑ may be

composed of x̂ and ŷ rotations (similar to a method discussed in Sec. 2.1).

We have thus shown that the interaction of a single ion with a laser may be used

to perform single-qubit rotations; however, two-qubit operations are also required for the

quantum simulations of interest to us. A number of references ([CZ95, MS98, LDM+03])

detail methods for performing two-qubit gates that are sufficient for universal quantum

computation. We do not go into detail on these now, since the quantum simulation schemes

we study in Sec. 4.2 do not directly make use of these methods.

4.1.3 Control of the ion’s external state

We now turn to laser manipulation of the external, i.e. motional states of trapped ions.

The interaction Hamiltonian (Eq. 4.16) already contains this physics. It can be shown that

by detuning the laser above or below the transition by an amount equal to the motional

frequency ωẑ, a quantum of vibrational energy may be added to or subtracted from the ion.

That is, for δl = ωẑ, ∆n = 1, and for δl = −ωẑ, ∆n = −1. These transitions are called the

blue sideband (∆n = 1) and red sideband (∆n = −1). Repeated cycles of the latter process

result in sideband cooling, which has been demonstrated by several ion trap groups, e.g. in

Ref. [DBIW89].

Sideband cooling requires that the linewidth of the laser Γl is much less than ωẑ, for

the somewhat that for Γl > ωẑ the ∆n = 1 and ∆n = −1 transitions are simultaneously

addressed. The other case, Γl > ωẑ, can still be very useful for laser cooling, as we will

show below. This process is called Doppler cooling. It was first observed in 1978 [WDW78],

and formed the basis of the Nobel prize-winning research in laser cooling of neutral atomic

ensembles. Because of the prevalence of Doppler cooling over sideband cooling in this thesis,

we will focus on that from this point on. However, it is important to know that ground

state cooling is possible, because many quantum information protocols rely on it to initialize

the system.

We will treat the problem of a single two-level atom interacting with a monochromatic

radiation field (laser) that is detuned by δl from the atomic transition frequency ω0, as be-

fore. The ion is also characterized by “natural” linewidth Γ, which is the rate of spontaneous
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emission from the excited state |↓〉. This quantity is given by

Γ =
e2
cω

3
0 |〈↓|~r |↑〉|
3πǫ0~c3

. (4.19)

For the types of atoms discussed in this thesis, Γ is on the order of 2π· 20 MHz. The

operator ec~r is the (vector) dipole operator.

The principle of Doppler cooling is as follows: an atom (or ion) excited from |↑〉 to

|↓〉 absorbs an amount of momentum from the laser equal to ~k, where k is the laser

wavenumber. However, this energy is then spontaneously emitted in a random direction.

Doppler cooling works by red-detuning the laser (δl < 0) so that the atom is more likely to

absorb light when it is moving toward the laser than when it is moving away. This, combined

with spontaneous emission, serves to cool the atom. When the atom is moving away from the

laser, it is further off-resonance, and is not as affected by the beam. For Doppler cooling

neutral atoms along a given direction, a total of six lasers are needed (three orthogonal

pairs of counterpropagating beams). This is known as the optical molasses technique. For

a trapped ion, the situation is better, because an ion is already bound in space by the trap.

If the cooling laser has a component along x̂, ŷ, and ẑ, then the back-and-forth motion of

the ion allows it to be cooled in all three directions.

Let us make the above description more quantitative. A result we shall need is the

steady-state solution to the Optical Bloch equations that describes the average steady-state

population p↓ of the excited atomic state. It reads as follows:

p↓ =
I/I0

1 + I/I0 +
(

2δv

Γ

) , (4.20)

where I0 = ~ω3
0Γ/(6c2) is the saturation intensity of the transition. The quantity δv is the

detuning, including the Doppler shift due to the atom’s velocity: δv = δl−~k ·~v. The cooling

force on the atom due to the laser light is calculated in the following way: the force is equal

to the momentum per photon times the rate of photon emission, which is the spontaneous

emission rate times the probability that the atom is in state |↓〉. Altogether, the light force

is

F = ~k
Γ

2
p↓. (4.21)

When the ion has been cooled to a sufficiently low velocity, one can approximate Eq. 4.21

as being linear in v: this leads to an expression for the cooling rate:

〈

Ėcool

〉

= Fv = αv2, (4.22)

with the constant α given by
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α = 2~k2 4Iδ

I0Γ
(

1 + (2δ/Γ)2
) . (4.23)

Although it may at first seem that cooling to zero velocity is possible, it is important

to remember that the absorption events are random and themselves add some amount of

entropy to the atom’s state. The atom thus executes a random walk in momentum space.

The rate of heating due to this process is

〈

Ėheat

〉

=
˙〈p〉2

2m
=

2~
2k2Γp↓
m

= D/m, (4.24)

where ˙〈p〉 is the rate of change of the average value of the ion’s momentum, m is the mass

of the ion, and the constant D, defined in Eq. 4.24, is the momentum diffusion constant.

Equating
〈

Ėheat

〉

with −
〈

Ėcool

〉

, and noting that the temperature of the ion is related

to the mean kinetic energy by m
〈

v2
〉

/2 = kBT/2, the ultimate temperature attainable by

Doppler cooling is

TDopp =
~Γ

2kB
, (4.25)

which is known as the Doppler cooling limit. A simple numerical estimate for a 88Sr+ ion

in a trap of frequency 1 MHz shows that this limit is about 10 motional quanta. At this

point, sideband cooling can take the ion to the motional ground state, if desired.

In practice, the heating rate due to momentum diffusion is often not the limiting factor

in ion trap Doppler cooling. Heating of the ions due to electric potentials plays a strong

role. In the cloud state, the micromotion of the ions couples into the secular motion, and

the rf voltages can directly cause heating of the ions. In a crystal state, this does not occur;

the micromotion and secular motion are largely decoupled. Even though micromotion

does not directly create heating if the ions are in a crystalline state, the line broadening

due to it can raise the ultimate Doppler temperature attainable. This has been treated in

Ref. [CGB+94]. However, even in a compensated trap, heating due to fluctuating potentials

on the trap electrodes can exceed that due to the spontaneous emission events. This heating

process is discussed in Sec. 4.1.5.

4.1.4 State preparation and measurement

Methods for preparing the qubits in some initial state and measuring their state are essential

to every quantum information protocol, and are briefly presented here.

The internal state of the ion is prepared not only in the electronic ground state, but

also typically in a specific magnetic sublevel of it. A controlled bias usually field breaks the

degeneracy of the ground state; this is done to avoid pumping to “dark states,” superposi-

tions of S and D states that do not fluoresce. A beam of circularly polarized radiation with
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selection rule ∆m = ±1 is applied to the ions until, with high probability, they are in the

desired state. This optical pumping technique was first demonstrated by Kastler (although

not in an ion trap) [Kas50], and won him a Nobel prize.

Measurement is one of the strongest advantages of ion traps, in that measurement

fidelities well over 90% have been demonstrated [MSW+08]. The basic principle is quite

simple: the same laser used for Doppler cooling is also used for state measurement. If the

ion is in state S, then many photons will be scattered; the rate, as argued above, is Γp↓.

This is millions of photons per second, and even given a finite light collection angle and

inefficient detectors, the scattering rate tremendous: to take one example, from a single ion

in the Innsbruck experiment (Part III), it was not uncommon to observe 30,000 photons

per second in our photomultiplier tube. By contrast, if the ion is in state D, no photons

will be scattered.

In the proposals for quantum simulation studied in this thesis, it is not necessary to

measure the motional state of the ion, nor even to cool it to the ground state, but this

could in principle be done in the following way. First assume the ion is in internal state |↑〉.
Suppose you want to determine if the motional state in a given direction is |0〉 or |1〉. A

pulse on the red sideband will take the state |↑ 1〉 to |↓ 0〉 and subsequent measurement of

the internal state will reveal the state is indeed |↓〉. However, if the state is in |↑ 0〉, there

literally is no red sideband transition. The ion will remain in |↑ 0〉, and the fluorescence

signal will determine that the motional state was |0〉.
To summarize, we have assembled all the necessary ingredients for quantum simulation

with trapped ions, with the exception of two-qubit operations. Following a brief discussion

of decoherence in ion traps, we present, in Sec. 4.2, an interesting method for producing

two-body interactions between trapped ions.

4.1.5 Decoherence

Decoherence afflicts all quantum simulators, including a set of trapped ions being used

as such. It includes amplitude damping and dephasing of both the internal and motional

states of the trapped ions. The choice of qubit states is important. Qubits that consist

of a ground state and an excited state separated by a quadrupole transition have as their

fundamental limitation the spontaneous emission rate of the excited state, which is on

the order of a few Hz. However, classical control errors such as fluctuations in the laser

intensity and frequency currently limit the amplitude damping rate in many experiments.

By contrast, hyperfine qubits can exhibit coherence times on the order of seconds. They

are subject, however, to errors due to spontaneous scattering from the excited electronic

state used to implement Raman transitions between the levels. Dephasing due to static

or slowly-varying sources, such as stray magnetic fields, can be compensated for by using

spin-echo techniques, but there always remains some dephasing that cannot be removed. A

technique known as the decoherence-free subspace can be used, however, to dramatically
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increase the dephasing time, using linear superpositions of qubit states that are insensitive

to magnetic field fluctuations [HSKH+05].

Equally important is the uncontrolled heating of the motional state of the trapped ions,

leading to motional state decoherence. In ion trap quantum computing, the motional states

are important since they actually encode quantum information; in fact, the classic way of

doing a quantum logic gate is to map the state of one ion to the shared motional mode,

then perform an operation on the second ion that changes its internal state only if a given

motional mode is excited. This is the basic principle of the Cirac-Zoller gate [CZ95], which

has been used with great success by the Innsbruck group (e.g. in Ref. [GRL+03]). Clearly,

unwanted excitations of the motional state can ruin this process.

Studies have shown that the heating rate in an ion trap scales roughly as h−4, where

h is the distance from the ion to the nearest trap electrode, and is strongly dependent on

temperature. The process is often called anomalous heating, since it scales more strongly

with h than Johnson noise (which would be 1/h2) and is of uncertain origin [TKK+99]. The

leading hypothesis for the cause of this heating is fluctuating patch potentials on the trap

electrodes. However, as stated before, it is now known that this heating can be reduced by

orders of magnitude by cryogenic cooling of the trap electrodes [LGA+08]. We will make

use of this approach in Ch. 7. Further work from this experiment has narrowed down the

possible causes of this noise by studying its temperature dependence [LGL+08]. However,

this phenomenon is still not perfectly explained.

Although there are some schemes for quantum simulation that do not require ground

state cooling (e.g. the Porras/ Cirac scheme below), it is nevertheless important that the

heating rate is minimized. Extra quanta of motion incoherently gained during the simulation

decrease the accuracy, and excessive heating could even push the ions out of the Lamb-Dicke

regime or cause the ions to transition from a crystal to a cloud state.

4.2 Quantum simulation of quantum spin models

Many proposals have been published for performing quantum simulation with trapped ions.

Milburn proposed the simulation of nonlinear spin models using trapped ions [Mil99]. A

paper from Porras and Cirac explains how to simulate Bosonic physics such as Bose-Einstein

condensation using the vibrational degrees of freedom in a crystal of trapped ions [PC04a].

The group of Wineland, in 2002, proposed and implemented the simulation of a nonlinear

interferometer using a single trapped ion [LDM+02]. New and exotic ideas such as the

simulation of quantum fields in an expanding universe [ADM05] have also emerged. Al-

though many of these proposals are quite compelling, in this thesis we choose to focus on

the physics of quantum spin model simulation.

Spin physics in 2-D is most interesting because of the phenomenon of spin frustration.

On certain types of lattices, spins that have an antiferromagnetic interaction (meaning that
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Figure 4-3: Schematic diagram of spin frustration. The blue circles represent lattice sites,
while the arrows represent the spin state of the particle on a given site. Suppose the spins
are governed by an antiferromagnetic interaction, meaning that it is energetically favorable
for pairs of spins to anti-align. If two spins are in well-defined states, the third does not
“know” which way to align. Thus, the ground state of the system is a quantum-mechanical
superposition of spin states. As the number of particles grows, the system becomes very
difficult to simulate on a classical computer.

they are inclined to anti-align) exhibit a state in which the ground state wave function

is a superposition of many distinct spin states. This occurs because there is not a single

spin configuration which minimizes the energy of the system. A schematic diagram of spin

frustration is given in Fig. 4-3.

One of the reasons spin frustration is interesting is that it is believed to hold insight into

the phenomenon of high-temperature superconductivity [GP00, NGB92]. We pursue spin

frustration because it is hard to simulate classically, and offers an example of an “analog”

quantum simulation that may provide a great deal of insight into a perplexing physical

system. We consider such simulations to be analog because of the continuously varying

controls applied, even though the system Hilbert space is discrete.

In this section, we examine the proposal of Porras and Cirac for simulating spin models

with trapped ions [PC04b]. Their scheme is unique in its ability to use a limited set of

control techniques to simulate phase transitions in a large system of trapped ions. The

benefit of this analog approach is that even with a limited amount of control, one may

be able to observe quantum behavior that is not simulable on classical computers, such

as quantum phase transitions. Although the ultimate precision in computing quantities

such as transition points scales poorly with the number of measurements done, quantum

simulation might nevertheless be a powerful tool whenever classical approximations or exact

solutions are not known. Here we follow the approach of Porras and Cirac fairly closely.

The mathematical steps involved in the derivation are presented in more detail in the S.B.

thesis of Ziliang Lin [Lin08]. The challenge of simulating spin physics in two dimensions

motivates the work in the rest of this part of the thesis.
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4.2.1 The Ising and Heisenberg models

We review here the basic physics and of the Ising and Heisenberg models in preparation

for seeing how they could be simulated with trapped ions. These models are Hamiltonians

that describe the physics of interacting spins. Although there is a classical Ising model, we

are concerned here only with the quantum-mechanical version.

The Ising model has the following general form:

HIsing = −~

∑

i6=j

Jijσiσj (4.26)

where the summation is, as noted, over all spins i and j for which i 6= j, the Jij are the

coupling energies between spins, and σi and σj are the Pauli matrices for spins i and j.

Most often, we shall choose ẑ to be the quantization axis, and focus on nearest-neighbor

interactions, in which case the Ising Hamiltonian takes the form

HIsing = −~

∑

i,j=i+1

Ji,jZiZj . (4.27)

The preceding Hamiltonian is one-dimensional, in that it models spins that are arranged

along a line segment. Other configurations are possible, and Eq. 4.27 can readily be gener-

alized to two and three dimensions.

The Heisenberg model is like the Ising model, but involving spin-spin interactions, gen-

erally, along more than one direction. For spins arranged in one dimension, the Heisenberg

model has this form:

HHeis = −~

∑

i,j

(Jx̂XiXj + JŷYiYj + JẑZiZj) . (4.28)

4.2.2 Porras and Cirac’s proposal for simulating quantum spin models

We begin with showing how a chain of ions in a linear Paul trap can be used to simulate

spin models. In this section we will follow the paper of Porras and Cirac [PC04b] quite

closely. Although a linear ion trap was used as a model in their work, the scheme extends

quite easily to 2-D, a fact that motivates the rest of our work in this part of the thesis.

We consider a chain of N trapped ions aligned along the ẑ direction. We define the

index α̂ to indicate spatial direction; α̂ = 1, 2, and 3 represents x̂, ŷ, and ẑ, respectively
1. Accordingly, the Pauli operators are written as σα̂ and the corresponding eigenstates as

|↑〉α̂ and |↓〉α̂. We assume that lasers can be applied to the ions that couple the internal

state to the motional state only if the ion is in a specific internal state. This state-dependent

force is the key ingredient of implementing the simulation. How can one cause a laser force

1Here, as throughout the thesis, we specify the directionality of a given quantity with a subscripted unit
vector, even if only the magnitude (a scalar) is represented by the quantity. We hope that this will clarify
symbols with multiple subscripts.
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to address an ion in state |↑〉α̂ but not in state |↓〉α̂? One way is to set the polarization

of this laser such that only one state in a ground state hyperfine or Zeeman manifold is

permitted by electric dipole selection rules to couple to a given excited state. Another is

to make the laser much closer to resonance with one state than the other, for instance by

using an optical qubit. Note that if the laser pushes on both |↑〉α̂ and |↓〉α̂, but in opposite

directions, the derivation will change but the same basic physics will be implemented.

The first step is to write down the Hamiltonian. The full Hamiltonian has three parts:

Hv, the vibrational Hamiltonian, Hf , the interaction term due to the state-dependent force,

and Hm, a term due to an externally-applied magnetic field that is a key part of the

transverse Ising model, and is important for the observation of quantum phase transitions.

Hv is written, including the Coulomb repulsion between the ions, as a set of harmonic

oscillators at the normal mode frequencies labeled by n:

Hv =
∑

n

~ωna†nan. (4.29)

Here the magnitudes of the ωn are determined by the Coulomb interaction.

The state-dependent force term, which is assumed to only act upon state |↑〉α̂, has the

form

Hf = −2
∑

α̂,i

Fα̂qα̂,i| ↑〉〈↑ |α̂,i, (4.30)

where qα̂,i is the position operator for the ith qubit along direction α̂, and Fα̂ is the mag-

nitude of the state-dependent force along α̂. An intuitive picture of the effect of the state-

dependent force is depicted in Fig. 4-4.

Finally, the magnetic term is written as

Hm =
∑

α̂,i

µα̂Bα̂σα̂,i , (4.31)

where Bα̂ and µα̂ are the magnetic field and atomic magnetic moment, respectively, along

the direction α̂. The full Hamiltonian H is given by H = Hv + Hf + Hm.

Porras and Cirac derive the spin-spin interaction by means of a canonical transformation:

H ′ = e−SHeS , where

S =
∑

α,i,n

ηα̂,i,n

(

a†α̂,i − aα̂,i

)

(1 + σα̂,i) (4.32)

and

ηα̂,i,n = Fα̂
Mα̂,i,n

~ωα̂,n
. (4.33)

The Mα̂,i,n are the elements of the matrix that diagonalizes the vibrational Hamiltonian,
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Figure 4-4: Schematic of the action of a state-dependent force on a pair of trapped ions.
The force is created by an optical standing wave, and we assume that the frequency and
polarization of this laser is such that an ion in one state will be pushed in one direction,
and an ion in the opposite state in the opposite direction. On the left, the ions in the same
state are pushed in the same direction by the optical force, and thus the system energy is
unchanged by the force. On the right, the ions in opposite states are pushed toward one
another. This results, through the Coulomb interaction, in an overall increase in the energy
of the system. This is equivalent to a ferromagnetic interaction: it is energetically favorable
for the ions to be in the same state.

and are defined by the equation

qα̂,i =
∑

n

Mα̂,i,n
√

2mωα̂,n/~

(

a†α̂,n + aα̂,n

)

. (4.34)

It is clear that the nontransformed Hamiltonian already contains the coupling of the

internal to the vibrational modes, given the facts that Hf contains qα̂,i and that the aα̂,n

and a†α̂,n depend on these coordinates. The purpose of this transformation is merely to

rewrite the Hamiltonian in a form where these interactions are evident.

The transformed Hamiltonian H ′ is given by

H ′ =
∑

α̂,n

~ωα̂,na†α̂,na†α̂,n +
1

2

∑

α,i,j

~Jα̂,i,jσα̂,iσα̂,j +
∑

α,i

µα̂B′
α̂σα̂,i + Hr (4.35)

where the effective J-coupling rate is given by

− ~Jα̂,i,j =
∑

n

F 2
α̂

mω2
α̂,n

Mα̂,i,nMα̂,j,n = 2~

∑

n

ηα̂,i,nηα̂,j,nωα̂,n , (4.36)

and an additional effective magnetic field is given by µα̂B′
α̂ = µα̂Bα̂ +

∑

n F 2
α̂/(mω2

α̂,n). In

the case of the transverse Ising model, this induced field will be parallel to the direction of

J coupling and perpendicular to the applied external magnetic field.

The term Hr represents a residual coupling between the effective spins and the vibra-

tional modes. Fortunately, this can be neglected in the case of anisotropic traps, or when
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the vibrational temperature is low. We will make this assumption here; we will either as-

sume that cooling can be efficiently performed in the lattice-style trap (as in Ch. 5), or that

the otherwise requisite anisotropy of the trap will suffice to render this term small (as in

Ch. 7).

The coupling rate between ions due to the Coulomb interaction, per unit cycle, is char-

acterized by a dimensionless parameter βα̂, defined as

βα̂ =
e2
c

8πǫ0mω2
α̂d3

. (4.37)

When βα̂ ≪ 1, the J-coupling rate may be approximated as

~Jα̂ =
cαe2

cF
2
α̂

4πǫ0m2ω4
α̂d3

, (4.38)

where cα̂ is a constant of order unity that depends on the trap and laser geometry and

d is the average ion-ion distance. For traps in which ions are confined in separate wells,

βα̂ ≪ 1 for all α̂, and this formula holds. This is not necessarily the case when the ions are

confined in the same well. As an example, suppose two ions are confined a distance d apart

in a linear ion trap, and that the line segment connecting them lies along ẑ. In this case,

βẑ = 0.25, and the coupling rate Jẑ is given by

~Jẑ =
F 2

ẑ

4mω2
ẑ

2βẑ

1 + 2βẑ
. (4.39)

For a very good discussion of this protocol as applied to two ions, we refer the reader to

the thesis of Ziliang Lin [Lin08]. The first experimental realization of this protocol, using

two ion-qubits, was published in Ref. [FSG+08].

4.3 Ion trap design for quantum simulation

Performing quantum simulations of phenomena such as spin frustration requires a 2-D

array of trapped ions with a lattice structure that is similar to the structure of the target

system. This requirement is unique to analog, as opposed to digital, quantum simulation.

Creating such a 2-D array, however, is quite nontrivial. Here we present in detail some of

the challenges associated with trap design, and then outline our methods for solving them

that will comprise the remainder of this part of the thesis.

4.3.1 Challenges for trap design

Recall from Sec. 1.4 that there are three main challenges to quantum simulation: deco-

herence, precision limitations, and scalability. In this part of the thesis, we focus on the

scaling up of analog quantum simulation in 2-D. Despite this focus on only one of the above
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problems, the others have a strong effect upon our considerations. Estimates of decoher-

ence rates must be calculated for each trap design, and possible control errors must also

be considered. Furthermore, although we will focus on the simulation of spin frustration

as the ultimate goal, we note that the traps studied in this part may be useful for other

simulations as well, such as Bose-Hubbard physics.

The main considerations for a trap design are interaction rates, controls, and decoherence

rates. We discuss each of these below. The design must:

1. Provide a regular array of stationary qubits in at least two spatial dimensions.

The array of ions desired here is an extension to two dimensions of the linear ion

crystals used in most quantum information experiments. To do quantum simulations

of problems that are unique to configurations of spins in two or more dimensions,

such as spin frustration, we need a trap that will produce a two-dimensional array

of ions. The word regular means here that the ions are stored in some configuration

such that the ion-ion distance d between each pair of nearest neighbors is identical.

This is important because the simulated coupling rate J depends strongly on the

inter-ion distance d (varying as d−3 in the β ≪ 1 limit as discussed above). Quantum

simulation is also possible in an array for which this distance is not constant, but

this adds a constraint to the types of Hamiltonians that can be implemented (the

J-coupling will be site-dependent). When applying a global effective Hamiltonian,

this site dependence may translate into a control error, limiting the precision of the

simulation, but not necessarily rendering it useless. Furthermore, such systematic

control errors may be compensated if sufficient controls are available.

2. Enable sufficient control over each qubit to implement the desired simulation.

A trap design that fulfills the first condition does not guarantee that quantum sim-

ulation may be effectively done. Sufficient controls are required to implement the

desired effective Hamiltonian. These may include rotations of individual qubits, state-

dependent forces arising from an optical or magnetic force, and global or ion-specific

measurements. In addition, achieving some desired J-coupling rate requires a suf-

ficient interaction rate between individual ions. Recall that the parameter β is the

fractional transfer of the motional energy of one ion to another per secular period;

although the dipolar approximation holds for β ≪ 1, the resulting J-coupling rate

may prove too small to be observable within the decoherence time of the system.

Therefore, in considering the controls required for quantum simulation, one must take

into account the pertinent quantities β and J , and calculate each for each trap design.

3. Support a low enough decoherence rate to perform meaningful simulations given cer-

tain coupling rates.

Internal state decoherence depends on the choice of qubit states, ambient field fluctu-

ations, errors in the classical controls, and other factors that are not directly related
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to the design of the trap itself. Motional state decoherence, by contrast, has a strong

dependence on the size of the trap. Decoherence rates for a given trap may be esti-

mated based on previously published measurements, and these estimated values may

have a bearing on the choice of experimental conditions, such as the temperature at

which the trap is operated.

4.3.2 2-D ion arrays: prior art

Two-dimensional arrays of ions have been realized in both Penning [IBT+98] and Paul

[BDL+00] traps; in both cases, an ensemble of ions was trapped and cooled within a single

trapping region, and an ion crystal was formed by the mutual Coulomb repulsion of the

ions.

Both these approaches have certain advantages and disadvantages. The primary disad-

vantage of the Penning trap approach is that the ion crystal rotates about the magnetic

field axis due to the crossed ~E and ~B fields. This is inconvenient for performing ion-specific

operations and measurements. While a Paul trap produces a stationary crystal of ions,

each undergoes micromotion at the rf frequency, the amplitude of which increases with the

distance of each ion from the center of the trap. The problem of how suitable the Paul trap

approach is for quantum simulation was, up until this thesis, unaddressed.

Proposals have also emerged for using arrays of individual ion traps for performing

quantum operations, including quantum simulation, in two dimensions. This possibility

was noted in the paper on spin model simulation of Porras and Cirac [PC04b], and was

discussed in the context of universal quantum simulation in Ref. [CZ00]. A proposal was also

published to use ions in microtrap arrays with gates based on microwave or radiofrequency

radiation combined with magnetic field gradients to do simulation of quantum spin models

[CW08]. However, an array of individual ion traps had not yet been realized prior to this

thesis. Furthermore, no analysis had been published of the interaction rates for quantum

simulation in such traps.

4.3.3 Methods of trap design, testing, and evaluation

The main goal of this part of the thesis is to ascertain the suitability for analog quantum

simulation of two trap paradigms: arrays of individual Paul traps, and 2-D Coulomb crystals

within a single Paul trap region. We now describe the methods used for addressing the above

challenges. The workflow consists of three steps: design, testing, and evaluation.

Design

At the design stage, we first conceive of a trap design that should, in principle, generate a

2-D array of trapped ions. A method of fabricating the trap must be determined, and then

numerical modeling done to calculate the important properties of the trap, both for traps
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of the scale being tested, and traps of other scales. These properties include the motional

frequencies, which are important for calculating β and J , as well as quantities of practical

importance such as the trap depth and ion position relative to the trapping electrodes.

Results from a trap of one size can typically be scaled to smaller or larger sizes.

Testing

After theoretical calculations of a given trap are done, they must be confirmed by experiment

in order to compute the coupling rates and thereby evaluate the trap design. Testing the

traps consists of fabricating a trap that is representative of one of the above paradigms,

mounting it in a suitable vacuum vessel, and then measuring certain properties of the trap.

For both paradigms, the motional frequencies are measured. In the case of an array of ion

traps, the lattice geometry is determined by the fabrication of the trap electrodes. However,

for ions which form a crystal within the same trap volume, the ion crystal geometry is

determined by the trapping potentials, and verifying that this crystal matches theoretical

predictions is also important.

Evaluation

Equipped with the ion crystal structure and motional frequencies, the coupling rates may

be calculated. A primary goal of this part of the thesis is to determine, for each paradigm,

how the coupling rates scale with the trap size (which is typically defined as the distance

from the trap center to the nearest electrode). In Ch. 5, we treat the problem of an array

of Paul traps, while in Ch. 7 we study ion crystals within one example of a Paul trap that

creates a 2-D array of ions: a surface-electrode elliptical ion trap.

Included in the evaluation of a trap design is an estimation of the relevant decoherence

rates. Decoherence of internal states depends a great deal on the choice of qubit states,

the ambient fields, fluctuations in the control potentials, and other effects. Our primary

concern is with motional decoherence rates. In Ch. 7, the quenching of these rates at

cryogenic temperatures motivates the construction and use of a 4 K cryostat for ion trap

testing. Studying internal and external decoherence is beyond the scope of this thesis, but

we cite relevant results from other research efforts where appropriate. Our primary concern

is to insure that the coupling rates we determine are much higher than the decoherence

rates reported for similar ion traps.

4.4 Summary

We have now explained how the interaction of trapped ions with laser radiation can be

used to implement quantum control over both the internal and motional states of the ions.

Preparation of the ions’ motional state is done effectively by first Doppler cooling the ions

into a crystalline state near the Doppler limit, then further cooling them (if necessary) close
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to the quantum-mechanical ground state using resolved sideband cooling. From this initial

motional state, operations can be performed that pump the internal degrees of freedom into

some fiducial initial state, then implement unitary transformations on the state vector of

the ions that perform some desired quantum simulation. Since simulation of quantum spin

models is a focus of this part of the thesis, we have focused on this protocol.

Although in principle sufficient control exists to perform quantum simulations with

high fidelity, there are a number of difficult issues when one wishes to do so in practice.

In particular, we have pointed out the great challenge associated with scalable or semi-

scalable trap designs for quantum simulation. We require traps that can permit a high

interaction rate between trapped ions while avoiding decoherence and systematic errors. In

the remainder of this part of the thesis, we describe efforts to solve these challenges using

the methods described in this chapter: design, test, and evaluate two paradigms for 2-D ion

arrays, based on arrays of traps and Coulomb crystals within the same trap.
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Chapter 5

Lattice ion traps for quantum

simulation

In this chapter we turn to a theoretical and experimental investigation of lattice ion traps

for quantum simulation. Many schemes for doing quantum simulation and computation,

such as the one presented in Ch. 4, rely on a regular array of trapped ions; a lattice-style

architecture, in which single ions are arranged in a regular array of microtraps, is one way

of achieving this. If the spatial extent of the array lies in more than one dimension, then

interesting physics such as spin frustration becomes accessible, as we noted in the last

chapter.

This chapter describes the first implementation of such a trap. We first present a theo-

retical model describing one method of generating an array of Paul traps. Our experimental

work is driven by the question of whether the trap potentials match the predictions of our

model, as well as the question of whether interactions between ions in neighboring wells

are observable. For these measurements, we trap both both 88Sr+ ions and charged micro-

spheres. Having obtained an answer, we move to the theoretical question of the interaction

rates in such a trap. We wish to calculate, based on observations of the trap, how both

the motional coupling rate and simulated spin-spin interaction scale with the overall size of

the trap. With this calculation done, one may evaluate the utility of this trap design for

our ultimate goal: analog quantum simulation of spin frustration. The main results of this

work were published as Ref. [CLBC09].

The chapter is organized as follows. In Sec. 5.1, we briefly summarize some theoretical

proposals for using lattice ion traps for analog quantum simulation, focusing on physics

that can be studied with a 2-D but not with a 1-D array of ions. In Sec. 5.2, we present our

theoretical model of the lattice ion trap. In Sec. 5.3, we discuss the experimental setup for

trapping atomic ions, including the lasers, vacuum system, and the trap itself. In Sec. 5.4,

we report on our results of trapping both ion clouds and single ions, and measuring their

motional frequencies. In Sec. 5.5, we report on the measurement of interactions between
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macroscopic ions across lattice sites. In Sec. 5.6, we evaluate the trap design by computing

the interaction rates as a function of trap scale in lattice traps. In Sec. 5.7, we conclude on

this work.

5.1 Proposals for quantum simulation in lattice ion traps

Quantum information theorists have put forward several proposals for quantum operations

in 2-D arrays of trapped ions. A 2000 paper from Cirac and Zoller suggests using ions in

an array of microtraps to form the basis of a scalable quantum computer, in which an ion

is moved from site to site within the array to interact with ions contained therein [CZ00].

Later, as we discussed in Ch. 4, the spin model proposal of Porras and Cirac suggested

that an array of microtraps could be used to implement quantum simulations of interesting

physics such as spin frustration [PC04b].

A subsequent proposal from Chiaverini and Lybarger [CW08] suggested using an array of

microtraps to implement a 2-D quantum simulation. In their scheme, microcoils surrounding

each lattice site address individual ions contained therein with microwave radiation, effecting

single-qubit rotations. In addition, magnetic field gradients may be applied which serve the

same purpose as the lasers in the Porras-Cirac scheme, generating state-dependent forces

that translate into effective spin-spin interactions.

The commonality between the two is the requirement of a 2-D array of trapped ions. The

advantages of a 2-D array of microtraps are that the position of each ion is well-determined

by the trap electrodes, and that, conceivably, dc compensation electrodes could be provided

for each site. This is in contrast to a trap in which all ions are contained in the same

potential well. In such a trap, the ion-ion distance can vary, especially near the edge of the

crystal, and micromotion may pose a problem. However, in this chapter, we focus on arrays

of Paul traps, or lattice ion traps.

5.2 Lattice trap design and theory

The model we study in this chapter is a layered planar rf electrode geometry that creates a

2-D ion lattice. The ion trap consists of a planar electrode with a regular array of holes, held

at a radiofrequency (rf) potential, mounted above a grounded planar electrode. A single ion

is trapped above each hole in the rf electrode (Fig. 5-1). Ions will be preferentially loaded

above the trap electrode at the intersection of the Doppler cooling and photoionization

beams, allowing the user to write an arbitrary 2-D lattice structure. We view this design

as an archetype of 2-D Paul trap arrays, in the sense that conclusions drawn about some

properties of this trap may translate to other, similar, trap designs.

Our lattice trap is an extension of the three-dimensional ring Paul trap [Gho95]. Follow-

ing this reference, we first review the theory of the ring trap. The ring electrode geometry
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Figure 5-1: Schematic of the lattice trap. An array of traps is produced by a single rf
electrode with a regular array of holes, mounted above a grounded electrode. Ions will
preferentially be loaded from a broad atomic beam at the intersection of the cooling and
photoionization lasers.
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Figure 5-2: Cross section of a ring trap. Ions are confined at the center of the trap. The
ring is held at an alternating rf potential relative to the endcaps. Here r0 =

√
2z0 and the

endcaps and ring electrode are hyperbolically shaped.

is shown in Fig. 5-2. An alternating voltage of the form Vrf = V cos(Ωt) is applied to the

ring electrode and the endcaps are grounded. This situation is discussed in Ch. 4, and we

summarize the results here.

The equations of motion for an ion in the ring trap are a set of Mathieu equations

which have regions of stability depending on the dimensionless parameters a = 8QU0

mr2

0
Ω2

and

q = 2QV
mr2

0
Ω2

. Q and m are charge and mass of the ion, U0 is any dc voltage applied to both

endcaps of the ring trap, and the distance r0 is the distance from the trap center to the rf

electrode (as shown in Fig. 5-2). When U0 = 0 and the system is in vacuum, the condition

for stability is q < .908. Note that the lattice trap has two “q” parameters, qẑ and qr̂, for

the vertical and radial directions, respectively. They both must meet this inequality for a

stable trap to exist.

We assume the trajectory of a trapped ion is well approximated by a slow secular motion

superposed with a rapid oscillation, the micromotion, due to the oscillation in the potential

Vrf . For U0 = 0, time-averaging the ion motion in the secular approximation (q ≪ 1) gives
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the following quasi-static pseudopotential which governs the secular motion:

Ψ(~x) =
Q2

4mΩ2
|~∇Φ(~x)|2. (5.1)

Here Φ(~x) is the electrostatic potential when the drive voltage V is applied to the ring

electrode. The quantity |~∇Φ(~x)| is the magnitude of the electric field.

The lattice trap can be thought of as a planar array of ring traps. Ions are confined

in a 2-D lattice of potential wells. At the center of each trap, the electric field associated

with the electrostatic potential Φ(~x) is 0. Assuming approximate rotational symmetry in

the plane of the trap, Φ(~x) has a multipole expansion:

Φ(~x) = V
r2 − 2z2

r2
1

+ αV
2z3 − 3zr2

r3
1

, (5.2)

where r is the radial distance from the central axis of the lattice site and z is the distance

along the central axis. This equation is valid only near the center of the trap. Eq. 5.2

contains the two spherical harmonics Y l=2
m=0 and Y l=3

m=0; m = 0 because of the rotational

symmetry. The term that is linear in r (proportional to Y l=1
m=0) will reflect a dc contribution

to the potential, which is not included above. The solution for the ring trap in Fig. 5-2 is

obtained by setting α = 0, and the term proportional to Y l=3
m=0 is the lowest-order deviation

from the ring trap potential. The above expression is valid for infinite lattices, but for

lattice traps containing many ions the potential will be correct near the center lattice site.

The z = 0 plane is defined such that it coincides with the point of null electric field. Eq. 5.2

defines two constants which depend on the trap geometry: r1, with dimension of length,

and α, which is dimensionless.

The pseudopotential is given by

Ψ(~x) =
QV 2

mΩ2r4
1

[r2

(

1 +
3αz

r1

)2

+ 4z2

(

1 +
3αz

2r1
− 3αr2

4zr1

)2

].

From the pseudopotential we define secular frequencies which characterize the curvature of

the pseudopotential in the harmonic region:

ωẑ = 2
√

2
QV

mΩr2
1

and ωr̂ =
√

2
QV

mΩr2
1

, (5.3)

where ωr̂ is the secular frequency in the plane of the trap and ωẑ is the secular frequency

perpendicular to the plane of the trap. Note that ωẑ/Ω ≈ qẑ so that ωẑ/Ω gives a direct

measure of the stability of the confined ions.

An additional grounded plate may be added above the ions to shield them from stray

charges, and a static potential U may be applied to it. This change can be modeled by

adding an extra term U(z − z0)/z1 to the pseudopotential, where z1 is a geometric factor

with dimensions of length that depends on the height of this plane above the rf electrode
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Figure 5-3: Fit to Eq. 5.2 of the CPO computed pseudopotential in the ẑ direction at the
center of one well. The plot is of potential as a function of height; the z = 0 plane is located
at the potential minimum, approximately 0.18 mm above the trap electrode. The fit was
done only near the center of the well, where the trap is approximately harmonic. Fitting
the function at larger z values would require additional terms in the expansion of Eq. 5.2,
but since we are most interested in the potential at the trap center, we do not do this. The
fit yields r1 = 3.1 ± 0.1 mm, α = −4.0 ± 1.3, and z1 = 19 mm. Note that the experimental
parameters used are those for the macroions (Sec. 5.5), not atomic ions (Sec. 5.4).
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and is computed, in practice, using numerical modeling. A consequence of this additional

static potential is that ωẑ is different:

ω2
ẑ = 8

(

QV

mΩr2
1

)2(

1 − 144αmΩ2r3
1U

64QV 2z1

)

. (5.4)

To obtain the constants r1, α, and z1, we use the Charged Particle Optics (CPO)

numerical modeling software package to model the trapping potentials. The lattice trap

used for our experiments has a hole diameter of h = 1.14 mm and a spacing between the

centers of the holes of d = 1.64 mm. A square section of the rf electrode measuring 10

lattice sites on each side was used for this modeling; for larger sections than this, the effect

of adding additional sites on the potentials near the center was negligible. From a simulation

of the trap, we obtain the value of the geometric factors: r1 = 3.1±0.1 mm, α = −4.0±1.3,

and z1 = 19 mm for a top plate 15 mm above the rf electrode. Errors arise from the

nonlinear least-squares fit used to obtain r1 and α from the (discrete) simulated potential.

In Fig. 5-3, we compare the numerical potential for the lattice trap to the analytical potential

from the multipole expansion, indicating that near the minimum of a given potential well

the multipole expansion gives an accurate approximation to the simulated pseudopotential.

Note that in this plot the trapping parameters are appropriate for the macroion experiment

(Sec. 5.5), not the 88Sr+ ion experiment (Sec. 5.4).

5.3 Experimental setup for 88Sr+ trapping

In this section, we present the experimental setup for trapping of 88Sr+ ions in a room-

temperature vacuum apparatus. The basic ingredients are:

1. A vacuum chamber containing a mounting place for the ion trap, electrical connections

to it, and a resistive oven for producing a beam of neutral strontium.

2. A pair of lasers to perform Doppler cooling and detection of the trapped ions, another

pair for photoionization, and optics for detection of the ions’ fluorescence signal.

3. Rf electronics for driving the ion trap.

5.3.1 Vacuum chamber and electrical connections

The vacuum chamber used in this work includes a spherical octagon vacuum chamber that

houses the ion trap and electrical feedthroughs, two pumps (ion getter pump and titanium

sublimation pump), and an ionization gauge to monitor pressure. A photograph of the

apparatus is presented in Fig. 5-4, and the components are discussed in detail below.
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Figure 5-4: The vacuum chamber for the 88Sr+ lattice trap experiments. It contains the
spherical octagon with optical access and electrical feedthroughs, ion getter pump, ionization
gauge, and titanium sublimation (Ti-sub) pump. The Ti-sub is contained within the tall
cylinder mounted at a right angle to the table.
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Spherical octagon, feedthroughs, and oven

The spherical octagon is a stainless steel piece manufactured by Kimball physics (Part No.

MCF450-SO20008). It has two 4 1/2 in. con-flat (CF) sealing surfaces, and eight 1 1/3 in.

CF sealing surfaces. The top 4 1/2 in. surface is used for imaging. A anti-reflective (AR)

coated fused silica viewport is used, while on the bottom there is another viewport, although

it was not used in this work. The system used a total of three electrical feedthroughs. One

provides the high-voltage rf signal to the trap. A separate feedthrough is used for this

to limit stray capacitance that can adversely affect the Q factor of the rf resonance. The

second feedthrough is a 9-pin sub-d connection that carries any dc voltages that may be

needed for the trap. The setup in Ch. 6 is very similar to this one, and does make use of

these connections. The final feedthrough holds the strontium oven and is used to supply it

with current.

The oven used in the experiments of Ch. 5 and 6 is made of a piece of thin tantalum

foil that is folded into a tube. One end of the oven is spot-welded closed and then grains of

strontium metal are added to the open end. This end is then spot-welded closed, and both

ends of the oven are spot-welded directly to the stainless steel wires of the feedthrough. A

hole is poked in the side of the oven that faces the ion trap; it is important that this be the

only opening in the oven. A typical resistance for the finished oven, including feedthroughs,

is about 0.5 Ω, and currents of 3 A are normally sufficient to load the trap.

Vacuum pumps and pressure gauge

Initial pumpdown of the system to O(10−6 torr) is done with a turbomolecular pump backed

by a roughing pump. After reaching this vacuum level, a valve to the turbo pump is closed

and two pumps that are an integral part of the vacuum system are used.

The ion pump is a Varian 60 l/s triode pump. The triode configuration pumps noble

gases more efficiently than the original diode configuration, which is very useful in Ch. 6,

but less essential here. A titanium sublimation pump (Ti-sub) is also used. It consists

of a long titanium filament through which ≈ 40 A of current is flowed. Titanium is then

deposited on the walls of the vacuum housing. A six-inch-diameter stainless steel nipple

serves as this surface; it is significantly wider than the filament to increase the surface area

on which titanium is deposited. As shown in Fig. 5-4, the filament is mounted at a right

angle to the aperture that leads to the ion trap, reducing the chances of depositing titanium

on the trap. The Ti-sub does not need to be fired continuously; typically, it is fired once a

week (for 1-5 minutes) as long as some improvement in pressure is observed after firing.

These two pumps are sufficient to reach pressures in the 10−10 torr range after bakeout.

Bakeout is a process in which the entire vacuum chamber is heated to around 200 ◦C and

pumped on. The higher temperature increases the outgassing rate of material adsorbed on

surfaces within the chamber, and essentially speeds up the pumpdown. This is a standard

procedure for ultra high vacuum (UHV) apparatus. A typical baking time is around 1-2
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weeks. Low pressures depend on choosing materials that have a low vapor pressure at room

temperature.

Before assembly, each part within the chamber must be carefully cleaned. We use a four-

step process involving four solvents. In order, they are: detergent solution, distilled water,

acetone, and methanol. Each step involves sonicating the trap in the solvent for 30 min.,

typically with heat (≈ 80◦ C) applied. The process is designed to remove a large variety

of impurities on the surface; water and detergent for both polar and non-polar substances,

acetone for non-polar molecules that are not soluble in water, and finally methanol, which

removes the “residue” that is left over after an acetone clean. Although other vacuum

cleaning techniques exist, some involving three methanol steps, some involving only water

followed by acetone, we feel that it is better to be “safe than sorry” with the cleanliness of

materials put into a UHV chamber. A single dirty component can ruin good vacuum. All

components put into the vacuum chamber are subjected to this cleaning process, and so are

the tools used inside the chamber.

The pressure is monitored with a Bayard-Alpert ionization gauge, which works by ioniz-

ing gas particles in the vacuum chamber and measuring the current induced by them across

a pair of charged electrodes. This current is proportional to the density of gas particles in

the chamber. Our gauge can measure pressures as low as 10−11 torr.

Rf resonator

The trap is driven with a helical resonator that is supplied with voltage from a broadband

rf amplifier (MiniCircuits TIA-1000-1R8). The helical resonator is a helically wound trans-

mission line that supports a quarter-wave resonance at a specific frequency that is governed

by the capacitance and inductance per unit length of the transmission line, as well as the

load impedance (that of the trap and feedthrough). A practical guide for the construction

of such resonators is given in Ref. [Fis76].

This paper permits calculation of the unloaded frequency of the resonator. However,

this frequency changes to a generally lower value when the trap is attached. The frequency

drop depends on the electrical characteristics of the trap and feedthrough and is difficult

to predict, but it is usually less than a factor of two. Since it is not necessary for the

resonance to be at one specific frequency, a small amount of trial and error enables us to

get a resonance in the right range. A typical Q factor for the finished resonator is 100, with

a voltage step-up between 20 and 40. The circuit was impedance matched by minimizing

the power reflected from the circuit along a 50 Ω coaxial cable. The voltage on the trap

was measured by securing a wire near the high-voltage end of the resonator and calibrating

it at low voltage by simultaneously measuring the actual voltage using a 100X scope probe.
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5.3.2 Lasers and imaging

Two lasers are required for Doppler cooling and detection of 88Sr+; these have wavelengths

of 422 nm and 1092 nm. The 422 nm laser addresses the 5S1/2 →5P1/2 transition and

provides the momentum transfer for Doppler cooling. Also, 422 nm photons are detected

when imaging ions. The 1092 nm laser is a “repumper” that addresses the 4D3/2 →5P1/2

transition and prevents optical pumping to the metastable 4D3/2 state. The level structure

is depicted in Fig. 5-5.

Both lasers are extended cavity diode lasers. The laser diode is mounted on a temperature-

stabilized baseplate, and current (50 - 100 mA) is passed through it to produce laser radi-

ation. An “extended cavity” is formed by using a grating to reflect the radiation back into

the diode. This permits additional tuning of the laser frequency.

After leaving the grating, the beam passes through an optical isolator, which is a device

that prevents light from the far side of the isolator from being reflected back into the diode.

This is essential for preventing any effects due to an unintended cavity being formed by some

surface other than the grating; it also prevents overloading of the diode due to excessive

feedback. Finally, mode-matching lenses are used to couple the beam into a single-mode

fiber patch cord for delivery to the ion trap. Coupling efficiencies of ≈ 50 % are typical.

The beams are outcoupled from the fibers onto fast achromatic lens pairs from Thorlabs

for collimation. A telescope and a final focusing lens are used to produce the desired beam

waists at the trap site. 1/e2 waists of about 50 µm are normally used.

Photoionization (PI) of neutral Sr atoms is done by a two-photon process. The first

photon, at 461 nm, pumps the atoms from the 5s5s ground state into the 5s5p excited

state, where the lowercase letters refer to the orbital angular momenta of each of the two

valence electrons in the neutral atom. The second photon addresses a broad (≈ 3 nm)

transition that pumps the atom from its excited state into an autoionizing state which lies

above the dissociation energy. Thus, one electron is removed. This process was described

in Ref. [BLW+07].

The 460 nm radiation is produced by doubling the 920 nm output of a titanium sapphire

(Ti-Saph) laser (Coherent model no. MBR-110), which is pumped by a 5 W Spectra Physics

Millennia Pro solid-state laser. A Spectra-Physics WaveTrain doubler is used. The 405 nm

laser is quite a bit simpler; we use the output of an ECDL with a readily-available 405 nm

diode. Due to the width of the transition, no further frequency stabilization is needed.

Level diagrams for the ionic and PI transitions are presented in Fig. 5-5.

For the atomic ion trap experiments in Ch. 5-7, we used a CCD camera (part no. ST-

3200ME) from Santa Barbara Instrument Group. It features a 2184 × 1472 array of 6.8 µm

× 6.8 µm pixels, and can be cooled to -10 ◦C. The quantum efficiency at 422 nm is about

60 %.

Light is imaged onto the CCD using a simple system of two 2 in. diameter achromatic

doublets that are mounted vertically above the vacuum chamber. The lens closest to the

114



Figure 5-5: Left: Level diagram for the 88Sr+ ion, showing the Doppler cooling transition
at 422 nm, the repumper at 1092 nm, and the sideband cooling and coherent operations
laser at 674 nm. The spontaneous emission rate from the 5P1/2 state is 20 MHz, with the
ion decaying to 4D3/2 ≈ 1/13 of the time. The lifetime of the 4D5/2 state is ≈ 0.4 s. Right:
Photoionization transitions for 88Sr. A 460 nm photon pumps the atom from the 5s5s state
to the excited 5s5p state, then a 405 nm photon takes the atom into an autoionizing level,
resulting in the loss of a single electron.
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Figure 5-6: Top-view schematic of the optics setup for the atomic ion lattice trap experi-
ment. On the left, the 422 nm and 1092 nm beams are outcoupled from single-mode optical
fibers and collimated using fast achromat pairs. The beams are focused to the desired waist
at the trap center using telescopes, then coaligned on a dichroic mirror. On the right, the
460 nm and 405 nm photoionization beams arrive in the same single-mode optical fiber and
are focused together using a single fast achromat pair, then directed to the trap. The CCD
camera is mounted above the vacuum chamber.

trap has a focal length of f1 = 150 mm, while the second has a focal length of f2 = 450 mm.

This results in a theoretical magnification of 3 and an f-number of 1.7. A schematic of the

optics for this experiment may be found in Fig. 5-6.

5.4 Experimental results for 88Sr+ trapping

In this section, we present our observation of the stable confinement of 88Sr+ ions in a 6×6

lattice trap, and experimental verification of the model of the trap discussed in Sec. 5.2 by

measuring the secular frequencies of the ions for one particular lattice site. The rf electrode

is cut from a stainless steel mesh from Small Parts, Inc., Part No. PMX-045-A. It is mounted

1 mm above a grounded gold electrode on a ceramic pin grid array (CPGA) chip carrier

(Fig. 5-7). An additional planar electrode (the “top plate”) is mounted 1 cm above the rf

electrode, to help shield the ions from stray charges. Electrical connections to both the rf

and ground electrodes were made using a UHV-compatible solder from Accu-Glass (part

no. 110796). The vacuum chamber was baked out to a base pressure of 7×10−10 torr.

The trap is loaded with 88Sr+ by the photoionization process described above. Typical

laser powers used are 10 µW of 422 and 50 µW of 1092, with 1/e2 beam waists of 50 µm.

For beams of this size, the increase in beam width over the size of the trap (Rayleigh range)

is not a concern. Ions were observed as both clouds and crystals (Fig. 5-8). The cloud

lifetime is quite short (O(10 s)), but a small crystal has been kept in the trap, illuminated

with cooling light, for up to 15 minutes. This short lifetime is attributable to the vacuum

pressure.
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Figure 5-7: (a) Schematic of the cross-section of the trap assembly. The trap electrode is
held above the CPGA center pad on top of two 1 mm thick glass slides. (b) Photograph
of the trap mounted in the CPGA. Connections for rf and GND (the grounded bottom
electrode) are shown, as are the optional control electrodes for the x̂ and ŷ directions.

A typical voltage of V = 300 V at Ω/2π = 7.7 MHz was applied to the rf electrode. Nu-

merical modeling of the resulting pseudopotential yields secular frequency values of ωr̂/2π =

300 kHz and ωẑ/2π = 600 kHz. In order to test the model, we measure both secular fre-

quencies as functions of the applied rf voltage V . We also compute a trap depth of 0.3 eV,

which is the energy required for an ion at the potential minimum to escape.

Secular frequencies were measured for one site near the center of the lattice using the

standard method of applying a low-amplitude (∼0.02 V) oscillating voltage to the top plate

at the motional frequency of the ions. When each vibrational mode of the ions is stimulated,

their heating causes measurable drops in the fluorescence intensity. This experiment was

performed and compared to the model for several values of the drive voltage (Fig. 5-9).

Agreement is very good; measured data points differ from the predicted values by at most

5%, an error that results mainly from the approximation of the trap electrodes as perfect

two-dimensional conductors for simulation. Although other sites near the center were also

loaded, secular frequency measurements are presented here for only one site of the lattice.

To implement a quantum simulation using all 36 sites of such a lattice trap, the potentials

at the edges of the trap would also need to be measured, which is outside the scope of this

work.

In summary, this experiment verifies the properties of lattice traps derived above. Ac-

cordingly, it is with some confidence that we can evaluate this trap design by calculating

the simulated coupling rates (Sec. 5.6).
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Figure 5-8: (a) A cloud of ions (circled) intersects the detection lasers traversing the trapping
region. The bright spots beneath the ions are laser scatter. (b) An ion crystal (circled) with
a lifetime of O(15minutes) is observed in the trap. The fact that it’s a crystal rather than a
cloud can be inferred from the fluorescence per pixel, which is consistent with a crystal but
not a cloud, in addition to the fact that the signal vanishes instantly, rather than gradually,
when ions are lost from the trap. Resolution in the imaging optics is insufficient to count
the number of ions.

Figure 5-9: Secular frequencies as a function of rf voltage for one site of the lattice trap.
Circles represent data points, dotted lines represent linear fits to the data, and the solid
lines are the predicted values from the model. The upper (red) data are values of ωẑ/2π,
and the lower (blue) are values of ωr̂/2π.
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Figure 5-10: Experimental setup for the macroion experiment. (a) 3-D schematic of lattice
trap setup. (b) The lattice rf plate, as mounted for the microsphere experiment. The hole
diameter is 1.14 mm and the hole spacing is 1.67 mm. The trap is supported by a printed
circuit board.

5.5 Measuring interactions between macroscopic ions

Another important test of the applicability of this lattice design to quantum simulations

is the strength of interactions between ions in different wells. This section deals with the

measurement of repulsion between charged particles in different wells of a lattice ion trap.

For this work, we used aminopolystyrene microspheres with diameter 0.44 µm (Spherotech

Part No. AP-05-10). This is because the charge to mass ratio of the strontium ions is

unsuitable for this measurement in a lattice of this (d = 1.64 mm) spacing. The charge-to-

mass ratio Q/m of macroions used in the experiment leads to observable repulsions between

ions in neighboring wells, although it takes on a relatively wide range of values due to the fact

that Q/m is not the same for every macroion. The use of macroions is also experimentally

much less demanding than atomic ion trapping, because UHV pressures and laser cooling

are not required. In fact, ions can be trapped in atmospheric pressure more easily than

under vacuum, since air damping of ion motion increases the range of parameters suitable

for stable trapping [PLB+06, WO91, Pea06].

While the measurements of interaction strengths between macroions does not translate

directly into interaction strengths expected between atomic ions, the analysis methods in-

volved, particularly with regard to screening effects, is likely to share common points. The

measurements made in this section were conducted by Tongyan Lin and Kenneth Brown.

The author was involved, along with them, in the analysis of the data.

Fig. 5-11 is a diagram of the experiment, which is an adaptation of the experiment in

Ref. [PLB+06]. The main components of our apparatus are the electrospray system and the

4-rod loading trap. To load the ions in the lattice trap, we perform a modification of the

method in [CPK+02], skipping the washing step. We prepared a buffer solution of 5 mL

pure acetic acid, 26 mL 1M NaOH, and 5% suspension microsphere solution. The buffer

solution reduces spread in macroion charge. We sonicated the solution for 10 minutes to
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Figure 5-11: Trapping apparatus. The lattice trap is inside a plastic chamber which can be
pumped down to ≈ 1 torr. Macroions are loaded via the electrospray and the 4-rod trap,
which extends through one side of the chamber over the surface of the lattice trap.

1.14 mm
1.14 mm

Figure 5-12: Image from above of ions in the lattice. The dark holes are the holes in the rf
electrode; the grounded plane is 1.4 mm beneath them. Single macroions appear as white
dots that are levitated above the plane of the rf electrode and are illuminated by 532 nm
laser radiation at 5 mW. White dots on the surface of the rf electrode are due to stray light
scatter. The left image was taken at V = 300 V and Ω/2π = 1200 Hz and the right image
was taken at V = 300 V and Ω/2π = 1960 Hz. In the left figure, in the top well, two ions
are shown repelling each other in the same well.
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mix the microspheres evenly in the solution, added 30 mL of methanol, and again sonicated

for 10 minutes.

Compressed air, at a pressure of between 3 and 5 Psi, forces the buffer solution first

through a 0.45 µm filter and then to the electrospray system. Here a copper wire at a voltage

of 4 kV is inserted in the tubing and ionizes the solution as it passes. The ionized solution

travels through a thin electrospray tip directed at a perforated, grounded electrospray plate

and a 4-rod Paul trap just behind the electrospray plate. The electrospray tips were made

from capillary tubes, which are heated and stretched to produce narrow openings of 75-125

µm.

As the solution enters the 4-rod trap, the methanol evaporates and the charged mi-

crospheres break into small clusters, the macroions. The 4-rod trap is driven at the drive

parameters of the lattice trap and extends through the wall of a plastic chamber over the

lattice trap. Inside the chamber, the 4-rod trap extends 0.75 cm over the lattice trap and

the bottom rod of the 4-rod trap rests 1 mm above the ground plate.

The lattice trap used for this work is shown in Fig 5-10. The trap is supported by

standings inside the chamber, which can be closed on all sides to block air currents and can

also be sealed and pumped down to ∼1 torr. Glass slides, which are coated with InTiO2

so that one side is conductive, act as the top plate. They allow a top view of the trap,

and are supported approximately 15 mm above the rf plate. The ions are then confined

approximately 0.25 mm above the plane of the rf plate. An image of the ions in the trap is

given in Fig. 5-12.

Typical initial loading parameters for macroions were Ω/2π = 1000 Hz and V = 250 V.

We also applied a dc voltage of U = 0 − 10 V to the top plate to improve the trap depth.

Before studying ion-ion repulsion, we estimate the Q/m of the macroions by measuring

their secular frequencies (ωẑ). To do this, we apply a low-amplitude tickle to the top plate

and observe the resonances directly on a video camera as ions rapidly oscillate back and

forth. A measurement of ωẑ vs. Ω is shown in Fig. 5-13. Using Eq. 5.4, we fit these data

to obtain a charge-to-mass ratio of 1.9 × 10−9 ec/amu.

We measured the Coulomb interaction of ions in neighboring lattice sites for six pairs of

ions. In each pair, we measured the offset of each ion from the center of the well, as shown

in Fig. 5-12. Note that while taking data on separation of two ions, we ascertained that

wells adjacent to those containing the ions were all empty. The effect of a third ion in an

adjacent well is significant.

A simple model of the interaction of two ions across wells is given as follows. An ion is

confined by a force −mω2
r̂x1, where x1 is the ion offset from the center of the well. Since

generally x1 ≪ d, where d is the lattice spacing, the ion is approximately repelled by a force

Q1Q2/4πǫ0sd
2. Here s is a screening factor and Q1,2 are the charges of the first and second

ion, respectively. The screening factor s < 3, where s = 3 for an ion sitting at a height

0.25 mm above an infinite conducting plane.
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Figure 5-13: ωẑ vs. Ω for an isolated macroion at a drive voltage of V = 255 V. The data
for 0 V and 2.5 V come from the same ion. The fit was done only for data above 1500
Hz; data below this frequency begin diverging from this fit because the pseudopotential
approximation no longer holds.
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Figure 5-14: Ion displacement from the well center for two ions in neighboring wells, as a
function of drive frequency. Due to charge asymmetry, the maximum displacements of the
two ions differ by a factor of ten. The drive voltage is 350 V. The model breaks down for
large displacements (high trap frequencies); fits only include data below Ω/2π = 2500 Hz.
Error bars are dominated by the intrinsic error in determining the ion position from the
ccd camera image.
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Using the expression for ωr̂ derived from Eq. 5.3,

x1sd
2 ≈ Ω2 mr4

1Q2

8πǫ0V 2Q1
. (5.5)

When Q1 is not equal to Q2, then the confining forces are characterized by different ωr̂

and the two ions have different offsets from equilibrium. The ratio in offsets, if the masses

are comparable (m1 ≈ m2), should be (Q2/Q1)
2. We observed exactly such an asymmetry

between the offsets of the two ions, where typically Q2/Q1 is between 1 and 5. There may

be additional small asymmetries due to edge effects and the presence of the 4-rod trap as

well as differences in charge. Fig. 5-14 shows the displacement of a pair of ions as the rf

drive frequency is varied, for one experimental run. The spread in charge to mass ratios and

accordingly unknown values of Q and m for each ion (as in Ref. [PLB+06]) does not permit

us to compare the observed repulsion to a theoretical model. Indeed, if these data were

available, this repulsion experiment would be a very useful way to measure the screening

factor s for a given trap, perhaps prior to trapping atomic ions.

We conclude that ion-ion interaction in a mm-scale lattice trap is observable by the

mutual Coulomb repulsion of macroions. Such an experiment could be used to measure

the screening parameter s for a given trap, if knowledge of the charges and masses of the

individual particles involved were available. Although we have been able to measure the ion-

ion interaction of macroions and fit it to a model (in a certain region of parameter space),

it will be necessary to scale the trap down further in order to observe ion-ion interactions

between the atomic ions that would be used for quantum simulation.

5.6 Scaling laws for the simulated interactions in lattice traps

The lattice trap discussed in this chapter provides a fairly straightforward method for real-

izing a two-dimensional array of trapped ions. The first two steps enumerated in Sec. 4.3.3,

design and testing of the trap, have now been reported. We turn now to evaluation of

the trap design, and ask: how useful could this system be for quantum simulation of two-

dimensional spin models [PC04b]? We will need to calculate both the motional coupling

rate ωex, and the simulated coupling rate J .

5.6.1 Motional coupling rate

We begin with the motional coupling rate, which is the rate at which two coupled ions swap

motional states (provided they have the same secular frequency). Let us review the basic

physics of the system formed by two trapped ions undergoing mutual Coulomb repulsion.

The lowest-order term in the Taylor expansion of the Coulomb potential that contains an

interaction between the ions is
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VCoup =
e2
c

8πǫ0d3
x1x2, (5.6)

where d is the mean ion-ion distance and x1 and x2 are, respectively, the displacements of

the first and second ion from their equilibrium positions. Lower-order terms result in either

a shift of the overall potential energy or a shift in the ions’ motional frequencies. Defining

p1 and p2 to be the momentum operators for ions 1 and 2 respectively, the Hamiltonian for

the motional states of the ions is

HV =
1

2m
p2
1 +

1

2m
p2
2 +

1

2
mω2x2

1 +
1

2
mω2x2

2 + mg2x1x2, (5.7)

where we assume that the ions have the same secular frequency ω and mass m, and have

defined the coupling constant g as g2 = VCoup/ (mx1x2). This Hamiltonian represents a

coupled Harmonic oscillator; the rate ωex at which energy is exchanged between ions is

given by

ωex =
g2

ω
. (5.8)

The factor of ω in the denominator has important implications for the coupling rate

in lattice ion traps. The physics of ion traps demands that for constant trap depth and

stability parameter q, the drive frequency must increase as the inverse of the trap scale.

In a lattice trap, d is directly proportional to the size of the trap, and may be considered

one measure of the trap scale. Therefore, since g2 ∝ 1/d3, ωex ∝ 1/d2 in a lattice-style ion

trap. In practice, this means that over reasonable length scales for d, ωex in a lattice trap

is much lower than it would be if the ions occupied the same trap region, for instance in a

linear ion trap. We plot this comparison in Fig. 5-15.

5.6.2 Simulated J-coupling rate

So far we have remarked only on the motional coupling rate ωex. A more relevant quantity

is the simulated coupling rate J for quantum simulation of spin models. We first give a brief

review of the spin model simulation scheme of Ref. [PC04b] described in Sec. 4.2.2. This

scheme uses a laser that exerts a state-dependent force on trapped ions that are coupled by

their Coulomb interaction. In the limit in which the Coulomb interaction is small compared

to the trapping potential (which is the case for lattice traps), the coupling rate between the

ions is given by

~J =
e2
cF

2

8πǫ0m2d3ω4
, (5.9)

where F is the magnitude of the state-dependent force and the other symbols are as defined

above. For quantum simulation in a lattice trap, the frequency ω in Eq. 5.9 may be ωr̂

or ωẑ. For the sake of argument here, we assume ω = ωr̂. F is assumed to be due to a
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Figure 5-15: Plot of the motional coupling rate ωex as a function of the ion-ion spacing d in
lattice and linear ion traps. For the lattice trap, values at d=1 mm are extrapolated from
the lattice trap data in this chapter, while for the linear trap d can readily be calculated
given a frequency ω. We see that for any experimentally feasible set of values, including d,
ωex is significantly weaker in the lattice trap than in the linear trap.

tightly-focused laser beam, and arises from a spatially-dependent AC Stark shift. For a

5 W beam of 532 nm radiation that is focused from 50 µm to 3.5 µm over a distance of d =

50 µm, in traps operating at ω = 2π·250 kHz, we calculate a J coupling of 103 s−1, which

should be observable if the dominant decoherence time is significantly greater than 2π/J .

Similar values can be obtained by using less powerful lasers closer to the atomic resonance;

we use the 532 nm beam as an example only because of the readily-available solid-state

lasers at this wavelength.

The motional decoherence rate expected in microfabricated surface-electrode traps be-

comes small relative to the internal state decoherence time if the trap is cooled to 6 K;

rates for the former have been measured at as low as ṅ = 5 quanta/s [LGA+08]. Internal

state decoherence times depend on the specific ion being used and also on classical controls,

but coherence times as long as T = 10 s have been reported [LOJ+05, HSKH+05]. The

important point is that both internal and motional decoherence channels are much slower

than the J-coupling: T > 1/ṅ ≫ 1/J .

Unfortunately, the scaling properties of lattice traps do not favor such a low secular

frequency at small ion-ion spacings. The fact that ω ∝ 1/d is again problematic for the

coupling rate. According to Eq. (5.9), J actually increases linearly with d, a result also

noted in Ref. [CW08]. In Fig. 5-16, we plot a comparison of the J-coupling rates in lattice

and linear traps.

Greatly increasing the trap size is not only impractical, but renders the width of the

ground state wave function of each trapped ion comparable to the laser wavelength, leaving

the system outside the Lamb-Dicke confinement regime. Fig. 5-16 illustrates how the J
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Figure 5-16: Simulated J-coupling rates in lattice and linear ion traps as a function of
ion-ion distance d. The maximum value of d given here, 100 µm, is the point at which
the Lamb-Dicke parameter is approximately 0.1. The J values for lattice and linear traps
intersect at higher d values, when the ion is no longer in the Lamb-Dicke regime.

values obtained in the lattice trap are much weaker than a comparable linear trap within

the Lamb-Dicke regime. While some gains might be made from using the stronger field

gradients of a standing wave configuration for the “pushing” laser, it is clear that the

scaling of ω with 1/d is a discouraging feature of lattice traps.

These scaling laws for ωex and J hold regardless of how a given lattice geometry has

been “optimized,” whether for trap depth, low motional frequencies, or even ωex at some

length scale. This point bears emphasizing, since recent reports [SWL09] have detailed

methods of designing array trap electrodes such that the trap curvature is maximized at

each site for a given set of experimental parameters. While this approach is interesting and

potentially useful for some applications, it is not clear how the above scaling behavior could

be circumvented.

5.6.3 Trap depth

An interesting and still unanswered question is whether it is possible to modify the lattice

trap design to allow for low motional frequencies even at small ion-ion spacings, with an

adequate trap depth. One simple idea would be to decrease the drive voltage V (and

consequently the trap depth) once the trap is loaded with ions and they have been laser-

cooled to a temperature much lower than the trap depth. However, the trap depth in this

case would be extremely low. To understand why this is the case, consider the following

argument. Suppose that one wishes to keep ω constant a the trap scale changes. From the

above formulas, we see that the trap depth is proportional to V 2/Ω2, and also to qV , where

q ∝ V/(r2
0Ω

2). We arrive at the following relation for ω:
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Figure 5-17: Dependence of the trap depth D on the trap scale r0 for a constant secular
frequency ω. The values for r0 = 1 mm, the approximate scale of the lattice trap presented
in this chapter, are D = 0.3 eV, ω = 2π×200 kHz, and Ω = 10ω.

ω ∝ ecV

mr2
0Ω

. (5.10)

We note that in order to hold ω constant as r0 is varied, the following scaling law must

hold: r2
0 ∝ V/Ω. Whether one reduces V or increases Ω, or some combination thereof,

the trap depth is reduced in proportion to either V 2 or 1/Ω2. Taking some typical baseline

experimental parameters for the lattice trap, we plot in Fig. 5-17 the trap depth as a function

of the trap scale. In this particular case, we varied the drive frequency Ω, but according to

the above argument, varying V would yield the same trap depth.

The result given in Fig. 5-17 completes our exposition of the scaling behavior of lattice

traps. For ion-ion distances for which an appreciable coupling rate might be achieved, as

in our above example for J = 1 kHz at d = 50 µm and ω = 2π×200 kHz, the trap depth

is reduced to the order of a mere 100 µeV. While there is no fundamental reason why a

laser-cooled ion may not be trapped at such a depth, such trapping has never been reported,

to our knowledge, in the literature. In fact, this value is below the Doppler limit for most

ions. We again note that even a hypothetical factor of 100 improvement in the ratio of

trap depth to secular frequency would result in a trap depth of only ≈ 10 meV, still a very

challenging figure.

5.7 Conclusions

In this chapter we have presented the design, testing, and evaluation of a macroscopic

lattice ion trap. Our main experimental achievement was verifying that, for two very

different systems (atomic and macroion), our theoretical model of the trap is accurate. The
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principal method of measuring the trap potentials is by measuring the secular frequencies,

as was done with both macroions and 88Sr+ ions. The repulsion experiment using macroions

is primarily useful for demonstrating the possibility of measuring properties of a trap such

as the electrostatic screening factor using a simpler experimental setup than that needed

for atomic ions.

Building a prototype trap of a macroscopic scale (mm rather than 10’s of µm) is useful

because it enables us to very closely examine a given design in less difficult experimental

circumstances, for instance without excessive heating due to small ion-electrode distances or

laser scatter off the trap. In this case, our investigation of the interaction strength between

the macroions led somewhat indirectly to our conclusions about the poor scaling properties

of lattice traps from Sec. 5.6.

The poor scaling behavior of lattice traps indicates that other avenues should be sought

for creating 2-D lattices of trapped ions. Some possibilities include confining ions within the

same trap region in Paul traps, or development of a way to apply global state-dependent

forces to ions in Penning traps despite the rapid rotation of the ion crystal. Another

possibility would be to modify the electrode design of a lattice trap in such a way that

the ratio of trap depth to motional frequency is optimized; perhaps then sufficient coupling

rates could be achieved. It remains to be seen which method of preparing 2-D lattices of

ions, if any, will succeed in supporting analog quantum simulation.
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Chapter 6

Surface-electrode PCB ion traps

for trap development

In Ch. 4, we explained how proposals for analog ion-trap quantum simulation of spin frustra-

tion rely upon a 2-D lattice of potentials. However, as reported in Ch. 5, we discovered that

the interactions between ions held in individual potential wells are quite weak, for a given

ion-ion distance, when compared to other designs (e.g. linear ion traps). This motivates us

to design ion traps that can confine a 2-D array of trapped ions all in the same potential

well. In order to design and test such a trap, we have chosen to use printed circuit board

(PCB) ion trap technology. These traps are relatively simple to design and manufacture,

and can be used to measure all the basic properties of a trap, as was done without the use

of PCB’s in Ch. 5. The large (∼ 100 µm) minimum feature size of PCB’s prevents scaling

to a “microfabricated” scale trap, should the need arise. Nevertheless, we find them to be

a useful tool for trap design and basic testing.

In this chapter, we explore some basic questions regarding the loading of ions into such

a trap. With PCB’s, the presence of dielectrics in between the trap electrodes presents the

problem of stray charge buildup. When using the conventional technique of electron impact

ionization, we must ask ourselves how much this trapped charge affects the trap potentials,

and even if, in extreme cases, it could prevent trapping at all. We also ask the question

of how these effects might be mitigated. In the course of this work, we solve this problem

in two ways, first by removing as much dielectric as possible from the trap structure, and

then by using a helium buffer gas to cool the ion clouds that suffer greatly from rf heating

in the presence of stray fields. We explore whether it’s possible, via this technique, to trap

a laser-cooled sample of ions at UHV pressures, even in the presence of large stray fields.

In the second experiment presented in this chapter, we study direct laser ablation of

ions into surface-electrode traps. In so doing, we again address issues of charge buildup,

but the emphasis is on the low trap depths of surface-electrode traps. We ask the question

of how shallow a trap may be loaded with this method, and how that result compares to
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other techniques, including electron impact ionization and photoionization. We also probe

some other related practical questions, including how the loading efficiency depends upon

the composition of the material that is ablated and upon the ablation laser power, and how

the number of ions loaded depends upon the ablation laser power. We also qualitatively

discuss the buildup of stray electric charge, relative to other loading methods.

Although we present PCB’s here as a step towards development of 2-D arrays, our work

on them chronologically precedes the work on the lattice trap of the previous chapter. The

traps presented in this work are surface-electrode (purely two-dimensional) versions of the

well-known linear ion traps from quantum information research. All the experiments were

done in a room-temperature vacuum vessel, and the basic questions on which we focused

are how ions might be loaded into such a trap, and what effects the loading methods have

on the subsequent trapping potentials. Our work on buffer-gas loading with electron impact

ionization into a PCB ion trap was the first demonstration of a PCB ion trap for atomic ions,

and was presented in Ref. [BCL+07]. Our work, following this, on laser ablation loading of

PCB ion traps, was published as Ref. [LCL+07]. Following our work, the use of planar PCB

ion traps has spread around the world, with traps of our design being used in Innsbruck,

Austria, and Osaka, Japan. Additionally, work has been published on the construction of a

3-D segmented linear ion trap from PCB components [HDS+08], with the goal of creating

an extremely accurate single-ion source.

The chapter is organized as follows: in Sec. 6.1, we discuss the various prior designs and

experiments in surface-electrode ion trapping; in Sec. 6.2, we present the design of our first

surface-electrode trap, along with the experimental setup used to study it; in Sec. 6.3, we

present the buffer gas loading and micromotion compensation techniques for this trap; in

Sec. 6.4, we present the second-generation PCB trap; in Sec. 6.5, we discuss past work in the

loading of ion traps using laser ablation, and then present our results using this technique;

in Sec. 6.6, we summarize and offer an evaluation of the loading methods presented in this

chapter.

6.1 Surface-electrode ion traps: history and theory

The “workhorse” of quantum information experiments with trapped ions has been, for the

past several years, the linear ion trap. As shown in Fig. 6-1, the trap consists of four long

electrodes, on two of which an rf voltage is applied, while the other two are grounded. In

this case, “long” means that the length of the electrodes is large compared to the spacing

between them. This configuration creates a quadrupole potential; near the center of the

trap, this leads to an approximately harmonic time-independent pseudopotential, as dis-

cussed in Ch. 4. Confinement along the trap axis, the ẑ direction, is created by a static

voltage applied to two endcap electrodes.

If the secular frequency in the ẑ direction is small compared to those along x̂ and ŷ,
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Figure 6-1: Schematic of a linear ion trap. Of four rods, two diagonally opposed rods carry
an rf voltage, while the other two are grounded. Confinement along the trap axis is provided
by two endcaps that carry a dc voltage. If confinement along the axis is weaker than that
along the other two directions, then a linear chain of ions (depicted as blue circles) may be
trapped.

the ions align in a linear chain along ẑ at the minimum of the pseudopotential. Quantum

operations take advantage of the fact that the ions share a common vibrational mode along

ẑ. The linear electrodes most frequently have been cylindrically-shaped. An alternative

design uses “knife-edge” electrodes; these have the advantage of minimizing the exposure of

trapped ions to conducting surfaces. This can lead to a reduction in the motional heating

rates of the trapped ions.

Despite the numerous achievements made with conventional linear ion traps, they are

evidently not scalable, due to the finite number (at most tens) of ions that may be confined

along the trap axis. Scaling to larger numbers requires a different approach. As we discussed

in Ch. 4, the rate at which quantum gates may be performed is limited by the motional

frequency. This frequency is known to scale broadly as the inverse of the trap scale. Thus,

a microfabricated trap would enable both a higher density of ions in space and overall

higher interaction rates, provided that the ions reside in the same trap region during the

interactions. In the case of a digital quantum simulator, microfabricated surface-electrode

traps are also conducive to ion shuttling operations between different trap regions. For both

analog and digital types, obtaining a higher ion density and coupling rate is advantageous.

There are two basic approaches to creating microfabricated ion traps, three-dimensional

and two-dimensional (which we refer to as surface-electrode traps). Here we review this

distinction. 3-D versions have been designed and constructed by the Wineland group at

NIST Boulder [RBKD+02], the Monroe group at the University of Michigan (now Uni-

versity of Maryland) [MHS+04, SHO+06], the National Physical Laboratory (NPL) of the

United Kingdom [BWG+05], and others. 3-D microfabricated traps have the advantage

that generally the trap depth is higher for a given drive voltage and frequency than for

comparably-sized 2-D traps. One disadvantage is that fabrication processes are more com-

plicated, and that alignment of the different layers of electrodes can be more difficult. 2-D

traps, by contrast, contain all trapping electrodes in a single plane. We refer to these

traps as surface-electrode ion traps. This idea was first proposed by the Wineland group
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[CBB+05]. Surface-electrode traps are easier to fabricate than their 3-D counterparts, but

have a lower trap depth. Because there exist methods that are capable of loading traps

with depths on the order of 100 meV, which is considerably less than conventional macro-

scopic ion traps, we have chosen to exploit the simpler fabrication processes required for

surface-electrode traps.

Following Chiaverini’s proposal, a number of surface-electrode traps were demonstrated.

The first such trap came from the Wineland group in a paper by S. Seidelin et al. [SCR+06].

This trap was made of gold electrodes patterned on quartz. They demonstrated confirma-

tion of the trapping potentials, ion crystallization, and a heating rate of 5000 quanta/s.

This is the world record low for electric field noise in a room-temperature ion trap (scaled

to ion-electrode distance and trap frequency). Heating rates as low as 5 quanta/s were

subsequently demonstrated by Labaziewicz et al. in traps that were cryogenically cooled to

6 K [LGA+08]. This work built on a previous study from the Monroe group that showed

dramatic suppression of heating rates when trap electrodes were cooled to 150 K [DOS+06].

Chronologically in between the Seidelin and Labaziewicz papers, our group pioneered

the use of printed circuit boards (PCB’s) for ion trapping. The first publication along these

lines came in 2006, when the Chuang group at M.I.T. (of which the author is a member)

used PCB traps to confine charged macroscopic particles and demonstrate all the basic ion

movement operations in surface-electrode ion traps [PLB+06]. Although this was a useful

experiment for prototyping multiplexed surface-electrode traps, the experimental conditions

were very different from those for atomic ions. To reiterate a bit from Sec. 5.5, vacuum

is not required, and in fact an ambient air pressure actually increases the stability region

for stable trapping. Also, a stable laser source is not needed, as the laser light scatters

incoherently from the trapped particles.

Our group subsequently demonstrated the first use of PCB traps for trapping atomic

ions. Our work on PCB traps has focused on methods for loading the traps, as well as

confirming basic properties (e.g. motional frequencies) of the traps. With one trap, we

used traditional electron gun loading combined with a helium buffer gas to trap in a PCB

trap, then performed micromotion compensation on a fairly large sample of ions [BCL+07].

In the second experiment, we used laser ablation to directly load a smaller PCB ion trap

[LCL+07]. These experiments are the subject of the remainder of this chapter.

6.2 Design and construction of a planar PCB ion trap

The first PCB trap to be loaded with atomic ions, dubbed “San Quentin” by our group,

was designed to be a surface-electrode version of a linear ion trap. A diagram of the

trap electrodes is shown in Fig. 6-2. The trap follows a five-rod design, in which ions are

trapped above a grounded center electrode which has rf electrodes on either side of it that

are separated from it by a gap that is milled out of the PCB substrate. The side electrodes
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Figure 6-2: Layout of the trap electrodes for San Quentin, each labeled with the voltage
applied. All voltages except Vrf are dc. A coordinate axis is also supplied; the vantage
point in this figure is from the positive ŷ axis, or above the trap.

are segmented and are held at carefully-chosen dc potentials. These electrodes both provide

confinement along the trap axis and compensate for stray dc fields. Some compensation

must be done even in the absence of stray fields, since the endcap electrodes have field

components not only along ẑ, the trap axis, but also along ŷ, which is defined to be the

vertical direction as noted in the figure. Also, optionally, a “top plate” is positioned above

the ion trap with a hole cut for fluorescence imaging. It is often grounded but may hold

a dc voltage Vtop. Such an electrode was used in the macroion, but not the 88Sr+ ion,

experiments reported in Sec. 5.5.

6.2.1 Modeling the trap

The trap is modeled using the CPO software that was discussed also in Ch. 5. The method

is to calculate the static potentials that result from voltages on the rf electrodes, then apply

the pseudopotential approximation (Eq. 4.8) to them. To this pseudopotential is added

the potential resulting from static voltages on the dc electrodes. Typical rf voltages of Vrf

= 500-1200 V were applied at Ω/(2π) = 7.6 MHz. This rf drive frequency may take a

range of values; normally a suitable range of values is found from simulations and the exact

frequency used depends on the rf properties of the combined resonator-trap system, which

is difficult to exactly predict ahead of time. Other typical voltages were V2 = 110 V, V3 =

50 V, and V4 = V5 = 0.

Surface-electrode traps have the unique property compared to 3-D Paul traps that the

trap depth can be increased by applying a voltage Vtop to the top plate. With this increase
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in trap depth, however, comes decompensation of the trap. This fact is demonstrated by

plotting cross sections of the pseudopotential for two different top plate voltages in Fig. 6-3.

With Vtop = -25.4 V, we predict that the trap should be compensated, with a trap depth of

1.0 eV. By contrast, Vtop = 15 V leads to a decompensated trap with a depth of 5.4 eV. A

typical strategy, at least in the early period of surface-electrode ion trapping in our group,

was to apply a voltage to the top plate to enhance the depth for initial trapping, and then

gradually tune the compensation voltages and laser positions while reducing Vtop to the

compensated value. In Fig. 6-4, we plot both the trap depth and the displacement of the

trap center from the rf null as a function of the top plate voltage Vtop.

We have seen the principle illustrated in Fig. 6-4 used in Ch. 5 already, in the macroion

experiment, when a high trap depth was useful, but compensation was not critical to the

measurements. In the atomic ion experiment of that chapter, fortunately, applying a voltage

to the top plate was not required. The main caveat regarding this theoretical work is that the

real compensated values may be quite different from the prediction due to stray fields. In the

next section we will actually measure the stray fields and find quite different compensation

voltages. However, it is still useful to have an idea of how the trap will behave if there are

no stray fields; hopefully, they are but a perturbation on the controlled fields.

6.2.2 Constructing and mounting the trap

The trap was manufactured by Hughes Circuits in San Diego, CA. The electrodes are

copper deposited on a fiberglass epoxy substrate, Rogers 4350B, which features a small

rf loss tangent and UHV-compatibility. The thickness of the copper is about 25 µm. The

minimum feature size is about 75 µm, which obviously limits the extension of the technology

to microfabricated traps. In addition, the slot size was set at 850 µm since this was the

smallest standard slot size. To reduce the accumulation of stray charges, the dielectric

material in between rf electrodes was milled out by Hughes, and the sides plated with

copper.

The electrodes were polished using a multi-step diamond grid process. This process

involves putting diamond grit paste containing diamond pieces of a given average size,

together with a lubricating oil, onto a paper disk that is mechanically rotated. Polishing is

done by moving the rotating disk across a trap that is mounted securely on a countertop.

Following each polishing step, the trap is thoroughly cleaned with acetone and isopropanol

and then a smaller-caliber grit paste is applied to a new disk for the next step. Diamond sizes

ranging from 15 µm to 1 µm were used. Following this process, the trap was cleaned using

the multi-step vacuum cleaning process described in Sec. 5.3.1. Fig. 6-5 is a photograph of

the trap after the polishing and cleaning processes.

Following the cleaning, the trap was mounted in the vacuum chamber using a breadboard-

style component from Kimball Physics that is secured to the “grabber grooves” that are a

part of the spherical octagon vacuum chamber. The top plate, consisting for this experi-
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Figure 6-3: Above are the cross sections of two pseudopotentials of San Quentin which were
relevant to our work. The rf voltage used was Vrf = 1260 V at ω/(2π) = 7.6 MHz, V2 =
110 V, and V3 = 50 V. The two figures (a) and (b) correspond to Vtop voltages of 25.4 and
15 V, respectively. Micromotion compensation is expected in the 25.4 V case, but with a
depth of only 1 eV, while the uncompensated 15 V case has an expected depth of 5.4 eV.
The position of the rf null is indicated in each plot by an “⊗”.
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Figure 6-4: Calculated values of trap depth (hollow circles) and ion displacement from the
rf null (solid diamonds) as Vtop is varied. As trap depth is increased, the displacement of
the ion cloud from the rf null leads to increased micromotion.

Figure 6-5: Photograph of San Quentin after polishing and cleaning. Width of the dc
electrodes along the trap axis is about 5 mm.
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Figure 6-6: Photograph of the trap with the top plate mounted 6.3 above. A slit is cut in
the top plate for ion fluorescence detection.

ment of a copper-plated PCB, was mounted above the trap using standoffs (as shown in

Fig. 6-6). Connections to the trap were made by soldering Kapton-coated wires, connected

to the electrical feedthrough, to the trap using 80/20 Au/Sn solder, applied with an ul-

trasonic soldering iron. The other components of the experiment, the vacuum chamber,

imaging optics, and laser system, will not be discussed here, since they are very similar to

those used in Ch. 5, excepting that a titanium sublimation pump was not yet part of the

setup, but that a leak valve for introducing a helium buffer gas was.

6.3 Buffer gas loading and micromotion compensation in a

PCB ion trap

6.3.1 Experimental setup and ion loading

San Quentin was loaded using the most conventional method for loading ion traps, electron

impact ionization. In this method, a resistive oven containing solid metal pieces of the

element to be ionized and trapped (c.f. Sec. 5.3.1) is aligned, across the trap, to a filament,

which in our case is made of thoriated tungsten. This filament is called an electron gun,

or e-gun. Current is flowed through both the oven and the e-gun. The current through

the e-gun causes emission of electrons, which can be enhanced by applying a (negative)

bias voltage to the filament. The electrons strike neutral atoms evaporated from the oven

within the trap region, with some probability removing an electron from the neutral atoms

and leaving the newly-minted ion with a sufficiently small kinetic energy to remain in the

trapping region. If the ion is immediately Doppler-cooled by lasers that pass through the

trapping region, this can increase the loading rate, but only works if the lasers are already

well-aligned to the trap center.

The electron impact ionization process is quite reliable, and it serves to ionize almost

any species. This fact can be viewed in both a positive and a negative light: one can load

ions without having a frequency-stabilized set of lasers, as is required for photoionization
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Figure 6-7: Photograph of the experimental setup for measurements on the San Quentin
trap. The spherical octagon vacuum chamber with 4 1/2 in. CF viewport is visible top
center, and the top plate PCB is seen within it. Above it is the 2 in. diameter lens tube.
Connection of the rf signal is top left, while connections to the dc electrodes and the e-gun
are on the small box (bottom right). Connection to the oven is top right. The 422 and
1092 nm lasers are collimated by Thorlabs collimation packages, are coaligned on a dichroic
mirror, and are then sent through the 1 1/3 in. CF viewport to the trap. Vacuum pumps
and the leak valve are outside the frame of this photograph.

(PI) loading, but at the same time species-specific loading is not possible, and “dark ions,”

particles other than the desired one that are trapped but do not fluoresce, are quite com-

mon. The key disadvantage of the technique for surface-electrode traps became evident in

our work; the e-gun deposits a stray electric charge on the exposed dielectric that is an

unavoidable part of the PCB trap. The stray fields resulting from this trapped charge can

become high enough to prevent any trapping in UHV conditions.

Our vacuum system includes a leak valve for introducing helium buffer gas. The colli-

sional cooling provided by the helium allows large samples (100’s of ions) to be trapped and

cooled even without stray field compensation or optimal alignment of the cooling lasers. In

this trap, a current in the oven of 8 A and a voltage across the filament of about 3.5 V was

used. The filament was also biased at -20 V with respect to ground to increase the flux of

emitted electrons. A photograph of our experimental setup is shown in Fig. 6-7.

Trapped ions were detected using both an electron-multiplying CCD camera (Princeton

Instruments PhotonMax) and a photomultiplier tube (Hamamatsu H6780-04). The 422 nm

and 1092 nm lasers used for inducing fluorescence were locked to low-finesse cavities. Typical

laser powers in this experiment were 1.2 mW of 1092 and 20-50 µW of 422. The width of

the 1092 was about 1 mm, so that the entire trap region would be illuminated by it, while

the 422 was focused to a 60 µm spot. The smaller spot size is useful in our measurement

of the position of the ion cloud. Ions were loaded prior to nulling the stray electric fields
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Figure 6-8: CCD image of a cloud of trapped 88Sr+ ions in San Quentin. The ions are
immersed in 1.0×10−5 torr helium gas pressure.

at a 1.0×10−5 torr pressure of ultra-high-purity helium (99.9999% purity). The ion getter

pump was switched off prior to filling. Fig. 6-8 is a CCD image of a cloud of ions trapped

in San Quentin.

6.3.2 Measurement of stray fields

We now turn to the measurement of the stray fields in this trap. This is done by measuring

the change in cloud position as the pseudopotential depth is varied [BMB+98]. An accurate

value of the stray dc electric field can be calculated from the following model. The electric

field along a coordinate x, at the rf null position, is well approximated by E(x) = E0 +E1x.

For an rf pseudopotential of frequency ω, the ions obey the equation of motion mẍ +

mω2x + ecE(x) = 0, which results in a new secular frequency ω1 =
√

(ω2 + ecE1/m), and

a new cloud center position x0 = ecE0/(mω2
1). By measuring both x0 and ω1, E0 may be

determined.

The measurement is done by translating the 422 nm laser in the x̂-ŷ plane and fitting

the fluorescence signal, as measured by the photomultiplier tube, to a Gaussian with center

(x0,y0). The trap frequency ωn̂,1 along each direction n̂ is measured by applying a 250 mV

oscillating voltage to the electrode labeled V5. This electrode can stimulate both x̂ and

ŷ motion because electric fields due to voltages on this electrode have components along

both directions. Resonant excitation of the ion motion causes dips in the fluorescence at

ωn̂,1. These measurements are repeated at 10 different rf voltages, and a linear fit of the

cloud center positions x0 and y0 to 1/ω2
x̂,1 and 1/ω2

ŷ,1, respectively, gives the stray fields Ex̂0

and Eŷ0. The stray field component along ẑ is not measured or compensated because, in

principle, confinement along this axis is due entirely to dc voltages. Therefore, stray fields

along ẑ do not lead to micromotion. In practice, there are rf field components along ẑ, but

they are much smaller than those along x̂ and ŷ.
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Our experimental results are presented in Fig. 6-9. This composite figure illustrates

several results. First, in (a), it shows that the cloud fluorescence intensity closely matches a

Gaussian fit, allowing measurement of the cloud center to within ±0.5 µm. This translates

into a precision of electric field measurement of about 10 V/m at zero field. The remainder

of this figure shows our measurements of the x̂ and ŷ electric fields as a function of Vtop.

This enables us to determine the required compensation voltages, Vtop = 1.0±0.1 V and

V5 = 1.3±0.3 V. Either V4 or V5 could be used for compensating x̂. It was convenient to

use V5, since V4 was already used for the secular frequency measurement. The estimated

residual displacement of a single ion at these voltages is 0.2 µm. The nonlinear dependence

of Eŷ on Vtop is due to the anharmonicity of the trap along ŷ, unaccounted for in the above

simple model.

6.3.3 Discussion

Our measurements demonstrate that the compensation voltages for the trap do not agree

well with the prediction of theory. At the theoretical compensation voltages V5 = 0 V

and Vtop = -24.5 V, both Ex̂ and Eŷ should be zero. We can determine the stray fields

by measuring the actual values of Ex̂ and Eŷ at these settings. At V5 = 0 V and with

Eŷ = 0 (done by setting Vtop to 1 V), Ex̂ was measured to be 30 V/m. Unfortunately,

the trap was unstable at the ideal Vtop voltage. Instead of measuring Eŷ at this point, we

extrapolate from Fig. 6-9, subfigure (c), that Eŷ ≈ 2000 V/m. This is in order-of-magnitude

agreement with a parallel plate model, Eŷ = (Vexpt − Videal − V1)/d = 4200 V/m, where

Vexpt is the measured compensation voltage (Vtop = 1.0 V), Videal is the ideal compensation

value (Vtop = -24.5 V), and d is the distance between the top plate and the trap electrodes

(d = 6.3 mm). Of course, these results depend on the agreement between our measured

and predicted secular frequencies. They agree on a 5-10% level, with greater differences

along ŷ, presumably due to the larger stray fields in that direction. These errors increase

the uncertainty in our measurements a bit, but do not change the basic conclusions.

The stray field along x̂ is comparable to those reported for 3-D ion traps [BMB+98].

However, that along ŷ is on the order of 10 times larger. This suggests significant charging

on either the dielectric on the ion trap, the top plate, or the observation window. This is

clearly a problem when using PCB ion traps. Indeed, these stray fields all but prevented

direct loading at UHV pressures, necessitating the use of the helium buffer gas. This is

mainly because the stray field degrades the trap depth, although it also can cause excessive

rf heating. This is due to the fact that, in the cloud state, driven micromotion couples

to the secular motion. Before compensation, the UHV cloud lifetime was less than 10 s.

Following compensation, ion cloud lifetimes of 10 minutes at 10−9 torr were observed. This

pressure was limited by residual buffer-gas pressure. As stated above, Rogers 4350B is a

UHV-compatible material after bakeout. Subsequent PCB traps in vacuum have attained

pressures in the 10−11 torr range.
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Figure 6-9: Measurement results showing compensation of micromotion in the trap at a
helium buffer gas pressure of 1.0×10−5 torr. (a) Cloud intensity profile along the ŷ axis, fit
to a Gaussian, for a representative value of the ŷ compensation voltage Vtop. (b) Linear fit of
the cloud center position y0 versus 1/ω2

ŷ,1. Measurements in (a) and (b) permit measurement
of the electric field Eŷ for a specific value of Vtop. (c) Plot of the ŷ electric field as a function
of the Vtop voltage, showing that the stray field is minimized at Vtop = 1.0 V. (d) Plot of
the x̂ electric field as a function of the middle electrode voltage V5, showing compensation
at V5 = 1.3 V.
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Figure 6-10: Photograph of the surface-electrode PCB trap, known as “Bastille,” used for
ablation loading experiments. The rf electrodes are spaced by 2 mm center to center, leading
to an ion height above the surface of 0.8 mm, as predicted by numerical modeling. The
long center electrode is held at rf ground, but may have a dc offset applied to it. The
segmented electrodes on the sides carry dc potentials for confinement along the long axis of
the trap, as well as elimination of stray electric fields. The wirebonds visible on the edge of
the electrodes connect them to gold pads on the CPGA chip carrier.

To summarize this section, a PCB ion trap was loaded with the aid of buffer gas us-

ing electron impact ionization. The buffer gas allows sufficient ion signal and lifetimes

to perform compensation measurements before loading in UHV with reasonable lifetimes

(O(minutes)) is achieved. There are two primary lessons from this work: the first is that

exposure to dielectric must be minimized to limit the surface area that can trap charges

that act on the ions; the second is that methods for loading ions must be found that lead

to less accumulation of charge. Buffer-gas loading was a useful expedient in this work, but

is not ideal as a long-term solution, since it results in a much higher UHV pressure than is

possible without it.

We therefore turn to a different ion trap setup and study ablation loading of surface-

electrode traps.

6.4 The second-generation PCB ion trap

Follwing successful trapping in San Quentin, we produced a new surface-electrode PCB

trap. This trap, known as “Bastille,” has become a real “workhorse” to us, since it traps

so reliably that it may be used first in a new apparatus to verify that everything else is

working before a new trap is tested. In this section we present the design of this trap, a

photograph of which is shown in Fig. 6-10.
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Figure 6-11: Bastille mounted in the CPGA.

The noteworthy features of this trap compared to San Quentin are as follows. The gaps

between rf and dc electrodes are 0.5 mm, compared to 0.83 mm. This is the minimum

width machinable by our manufacturer, Hughes Circuits. The ground electrode extends

all the way around the segmented dc electrodes. This can help prevent neutral atom flux

from the oven from shorting the dc electrodes together; atoms primarily come from the

side (x̂ direction), but with this feature, only atoms with a velocity component along the ŷ

direction can cause shorting. Aside from that, the whole trap is somewhat smaller in scale.

The trap is polished using a process similar to that of San Quentin, but the mounting

process is quite different. The trap is mounted in a ceramic pin grid array (CPGA) chip

carrier, like that used in Ch. 5. The trap is held above the center gold pad of the CPGA

by 1 mm thick glass slides; UHV-compatible epoxy (EpoTek 353ND) holds it together.

Wirebonds connect the trap electrodes to gold pads on the CPGA, which connect to pins

on the underside of the chip carrier. These fit in a socket that connects to the electrical

feedthrough. A photograph of the trap mounted in the CPGA is given in Fig. 6-11.

6.5 Ablation loading of planar PCB ion traps

In this section we present our work on loading ion traps using laser ablation. Ablation is a

process in which a high-energy pulsed laser is used to eject high-energy material, including

neutral atoms, ions, electrons, and molecules, from the surface of a solid. It has found

wide usage in the physical chemistry community for producing molecules to be studied with

laser spectroscopy or mass spectrometry [Phi07], and has had some limited usage in the ion

trapping community.

Laser ablation of a solid target has been used to load ion traps as early as 1981 [KGF+90].

In contrast to other methods of loading ion traps, atoms are not ionized once already inside

the trap region. Instead, a pulse of high-energy electrons from the ablation plume reaches

the trap first, shorting it out for a time of O(10µs). While the trapping potentials are thus
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Figure 6-12: Measured pickup from the rf electrode during laser ablation. The rf begins
recovering after about 15 µs, and during this time ions are trapped. Figure reproduced
from Ref. [HMO+06].

lowered, some ions enter the trap, which returns to full strength with some ions already

inside it. This was first observed by Hashimoto et al. [HMO+06], and the relevant plot from

that paper is presented in Fig. 6-12. The loading of ions into a conservative trap potential

requires a nonconservative step; normally, it is the conversion of neutral atoms into ions

within the trap, but with ablation loading it is an induced time-dependence of the trapping

potentials themselves. We note also that lower-energy ablation pulses have been used in lieu

of an oven to produce neutral atoms that are then photoionized within the trap [HGH+07].

Laser ablation has a number of possible advantages. For one, it requires only a single

laser, and the process is not sensitive to its frequency. For instance, if one wished to load

simultaneously atomic and molecular ions, an ablation pulse (or set of synchronized ablation

pulses) might do the trick. As with e-gun loading, however, the lack of isotopic selection

could potentially lead to unwanted trapped species. Second, it is very fast: carefully-

calibrated ablation loading could thus be very useful for loading the many ions needed in

a scalable quantum simulator. If an ion was lost during a simulation, one could envision

a classical subroutine that pauses execution of the algorithm and then reloads an ion in

the correct spot using a single ablation pulse. The ion could be trapped and re-cooled

in much less than one second. Third, ablation loading does not create a large heat load.

In a cryogenic environment, the heat generated by a resistive oven could be conducted to

the trap electrodes, increasing decoherence rates. In our later work, we solve this problem

by placing the oven in contact with the 40 K radiation shield, which has enough cooling

power to handle the heat load. In the future, however, it may be advantageous to have very

site-specific loading, as in the scenario described above. In this case, ablation loading may

be a superb option.
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Figure 6-13: A diagram of the setup showing the position and orientation of the ablation
target relative to the ion trap. The surface of the ablation target is approximately 25 mm
from the trap center and is orthogonal to the direction to the ion trap. Not to scale.

Attractive as laser ablation loading is, there is much that is not well-understood about

it, especially on a practical level. This motivates the following research questions:

1. How shallow a trap may be loaded with direct laser ablation, and how does that value

compare to other techniques, including electron impact ionization and photoioniza-

tion?

2. How does the loading efficiency depend upon the composition of the material that is

ablated, and upon the ablation laser power?

3. How does the number of ions loaded depend on the ablation laser power?

4. Is the buildup of stray charge an issue when using this method, especially with a

surface-electrode trap?

In the remainder of this section we present an experimental study of the ablation loading

of ion traps, focusing on our experimental setup and results, with a goal of evaluating the

utility of the technique for loading ion traps in view of the above questions.

6.5.1 Experimental setup

The trap is driven with an rf voltage with amplitude 200-600 V at 8 MHz. The dc voltages,

not discussed here in detail, are chosen to provide sufficient ẑ confinement (with depth at

least equal to that in the x̂ and ŷ directions) and rough compensation. The ablation laser

is a frequency-tripled pulsed Nd:YAG laser (Continuum Minilite) at 355 nm. It produces

pulses from 1-10 mJ at a duration of 4 ns. The 422 nm and 1092 nm lasers are directed in

a direction along the ẑ and x̂ directions, while the ablation laser is along ẑ; this is depicted

in Fig. 6-13. As in the last section, a CCD camera and PMT are used for ion detection.

145



The base pressure of the vacuum chamber was 2×10−9 torr, but rose to 3×10−9 torr

when the ablation laser was fired 10 times in 10 seconds. This rise is less than the typical

value when one is first using an oven, but somewhat larger than the pressure rise due to an

oven after a long period of use.

A number of different ablation targets were tested. These include Sr metal (99% pure

random pieces from Sigma-Aldrich), Sr/Al alloy (10% Sr, 90% Al by mass from KB Alloys),

single crystal SrTiO3 (〈100〉 crystal orientation from Sigma-Aldrich), and SrTiO3 powder in

an epoxy resin (5 µm SrTiO3 powder from Sigma-Aldrich mixed with Loctite 5 min epoxy).

Of all the targets only Sr metal oxidizes in air, so although it’s the most obvious choice

of material, it may not be best. Results obtained with each of these targets are presented

below.

6.5.2 Experimental results

We now present data to answer each of the above research questions. We begin with

studying the effects of the composition of the target material. The goal is to measure both

the efficiency of the loading process and the number of times a single spot on the target

may be ablated before the efficiency begins to decrease. This is known to happen due to a

profile being formed in the material that modifies the ablation process [CH94]. This process

is not a fundamental limitation, however, since the spot being ablated can be varied from

shot to shot.

We study this question by ablating a given spot on each target a number of times,

and measuring the ion signal in each load. Since the electrons that short the trap during

ablation remove the ions already in the trap, we measure after each shot only the number

of ions loaded during that shot. We find that there is some variance in the number of ions

loaded per pulse, which is not ideal. More is said on this later. The data for each target is

presented in Fig. 6-14.

In all, we find that the SrTiO3 crystal is the “best” target choice. It produces, overall

much more consistent ion numbers than the other targets, and has the longest lifetime, as

well. The overall lower number of ions loaded is not a problem, since we are interested

mainly in loading small numbers of ions. It is somewhat odd that the ion loads from the

alloy peak after around 100 loads, but it is possible that impurities on the surface must be

removed before loading efficiency can reach its maximum potential.

Next, we turn to the question of loading into low trap depths. As in all our other traps,

the depth is calculated using CPO and the pseudopotential approximation. Here, ions are

loaded into the trap at a series of decreasing rf voltages which correspond to decreasing

trap depths. We use an ablation laser pulse energy of 1.1 mJ and a spot size of 680 µm

for this experiment; these values were chosen to maximize the ion signal at low trap depth.

Our results are presented in Fig. 6-15. We found that ions could be loaded into a minimum

trap depth of 40 meV, comparable to the shallowest depths loaded with photoionizaton of
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Figure 6-14: A plot of the trapped ion signal as a function of the number of ablation pulses
fired on a single spot of each of several targets. Each point represents the signal due to a
single ablation pulse of energy 8 mJ. The ablation laser was focused to a spot size of 300 µm
for this experiment. For reference, a single ion scatters roughly 0.2 photons/ms into the
PMT in this setup.

a thermal atomic beam [SHO+06]. The same trap loaded with electron impact ionization

of a thermal beam had a minimum loading depth of 470 meV.

Next, we wish to address the possibility of loading single ions on demand. As stated

above, the number of ions loaded per pulse varies greatly. Is it possible to tune the laser

power to obtain a single ion at a time? The study of ablation targets in Fig. 6-14 involved

loading hundreds of ions per shot. For this experiment, the pulse power was set at 2 mJ

and the width of the spot at 0.5 mm. We present in Fig. 6-16 a plot of the probability of

loading a certain number of ions with this set of parameters.

The experimental probability distribution fits well to a Poisson distribution with a mean

ion number of 0.16. With these parameters, it takes on average seven pulses to load and the

probability of loading more than one ion is 8%. This is a satisfactory result, as these ions

can simply be removed and the trap reloaded if only one ion is desired. The probability of

loading more than two ions could also be lowered by further reducing the pulse intensity.

Finally, we turn to a somewhat more qualitative discussion of the final question above,

that is, the buildup of stray charge and other material during the loading process. Indeed,

this is an issue that is more unique to surface-electrode traps, compared to macroscopic 3-D

traps. Not only can charged material alter the trap potentials, but even additional neutral

metal deposited is thought to alter the heating rate of trapped ions by changing the the

makeup of the surfaces to which the ions are exposed [DK02, RBKD+02, TKK+99].

After 5000 ablation pulses, we do not see any qualitative change in trap behavior. This
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Figure 6-15: A plot of the trapped ion signal as a function of the computed trap depth for
both ablation and electron impact ionization loading. An ablation pulse energy of 1.1 mJ
was used with a spot size of 680 µm. Each point is the ion signal obtained from a single
pulse of the ablation laser or from loading using electron impact ionization until the ion
signal stops increasing.

Figure 6-16: Probability distribution for the number of ions loaded with a single ablation
laser pulse. The circles are experimental data and the line is a Poisson fit with a mean ion
number of 0.16.
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allows us to upper-bound the amount of material deposited at one monolayer, as this amount

or more would electrically short the trap electrodes and radically alter the pseudopotential.

However, the stray fields created by ablation do seem to be on the same order of magnitude

as those from electron impact loading (although not at the extreme level seen above with

San Quentin). In principle, it should be possible to reduce the amount of charging caused

by ablation loading by using ion optics to remove the electrons from from the ablation

plume and focus the ions. Alternatively, the approach in Ref. [HGH+07] could be followed,

requiring a photoionization laser.

6.6 Conclusions

In this chapter, we have presented the design and testing of printed circuit board ion traps,

loaded using both electron impact ionization and ablation loading. We have found that by

almost any measure (except cost) the ablation method is to be preferred. However, neither

is better for our specific purposes than photoionization loading, and thus we will return to

that method in the next chapter.

We also have seen that the stray fields near PCB ion traps can be quite large, up to

ten times larger than those that normally exist in 3-D linear ion traps. Fortunately, the

buffer gas technique enabled us to load and characterize the San Quentin trap even in

the presence of such fields. We found that the e-gun loading method renders the trap

particularly susceptible to the accumulation of stray charge.

The traps presented here were surface-electrode versions of linear ion traps, which have

application most especially to digital-type quantum simulations. Such traps could form a

basis for the CCD-style architectures, which were briefly discussed in Ch. 1. However, if ions

are meant to be kept in static positions, or interlinked by photons or electrical currents,

it is not strictly necessary for the trap to have this structure. For instance, the trap in

Ch. 5 was specifically designed to have a set of ions in a fixed configuration in space. A

surface-electrode analogue of the lattice trap of Ch. 5 could in fact be made from PCB

technology.

We conclude both that PCB ion traps are suitable for the rapid development of ion trap

designs, and that photoionization loading is preferable, as compared to electron impact

or ablation, for the investigation of trap designs for analog quantum simulation. These

conclusions may be applied to the design, construction, and evaluation of ion trap designs

for quantum simulation, a task that is described in Ch. 7.
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Chapter 7

Quantum simulation in

surface-electrode elliptical ion

traps

As discussed at length in this thesis, two-dimensional arrays of trapped ions have great

potential for a number of types of quantum simulations, most particularly for the simulation

of spin frustration. We report in Ch. 5 that an array of individual microtraps, although

appealing for its ability to generate an evenly-spaced array of ions, suffers major drawbacks

in the interaction rate between neighboring trapped ions, whether considering motional

coupling or the simulated spin-spin interaction rate. This motivates our present study of

ion-ion interactions between ions in the same potential well that form a 2-D array through

mutual Coulomb repulsion. In this case, the motional coupling rate is on the same order of

magnitude as that in a linear ion trap with the same ion-ion spacing.

In this chapter, we explore one example of an trap that creates a 2-D array of ions: a

surface-electrode elliptical Paul trap. We choose the Paul trap approach in order to avoid the

large Zeeman shifts and crystal rotation associated with Penning traps, as we did in Ch. 5.

The surface-electrode geometry, as in Ch. 6, is beneficial for simplicity of microfabrication

and eventual scaling down to microscopic sizes, if required. Prior to this work, the only

2-D ion crystal prepared in a Paul trap had been in a linear trap. An added benefit of

our elliptical trap approach is the ability, in principle, to apply magnetic field gradients

to wires that reside in the plane of the trap electrodes, creating magnetic field gradients

that can effect state-dependent forces in a manner similar to that proposed in Ref. [CW08],

but with theoretically much stronger interaction rates. This is another advantage of the

surface-electrode elliptical trap over other methods for generating a 2-D array of ions in the

same potential well.

A sensible objection to this technique is the existence of micromotion that cannot be

compensated away and that affects every ion in the trap. The reason for this is that
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the rf null in such a trap exists only at the center of the trap, which is the minimum

of the potential in three dimensions. Thus, only one ion may be confined without excess

micromotion. One of the principal questions discussed in this chapter is the effect, in theory,

that this micromotion has on an example quantum simulation. The structure of large 2-D

crystals, as well as the impact of rf heating and background gas collisions, was discussed in

Ref. [BKGH08]. However, the question of micromotion had not previously been adequately

addressed.

We also construct and demonstrate a test elliptical trap, to verify a portion of the above

theoretical work. Since it is crucial to reduce motional decoherence (anomalous heating)

in such a trap, we construct a new closed-cycle cryostat apparatus for the testing of these

traps, in order to provide an electrical noise environment in which progress toward quantum

simulation can be made. We then test our predictions of the crystal structure and motional

frequencies of ions in this trap. We come to the conclusion that quantum simulations with

at least a few ions should be possible in this trap.

The chapter is organized as follows. In Sec. 7.1, we introduce the basic model of the

elliptical trap, and present calculations of the structure of ion crystals therein. In Sec. 7.2,

we discuss the effects of micromotion on the fidelity of a quantum simulation, by numeri-

cally simulating the quantum dynamics with a time-dependent potential resulting from the

micromotion. The expected coupling rates due to laser pushing forces are also calculated.

In Sec. 7.3, we study the origin of the state-dependent forces, looking at optical forces, and

also at magnetic field gradients. In Sec. 7.4, we discuss the closed-cycle cryostat appara-

tus used for testing the elliptical traps. We put our theoretical predictions to the test in

Sec. 7.5, measuring the motional frequencies and structure of crystals in the elliptical test

trap. Finally, we evaluate the suitability of the elliptical trap design for quantum simulation

in Sec. 7.6, and then conclude in Sec. 7.7.

7.1 Elliptical ion trap theory

In this chapter, we explore the idea of using elliptical ion traps to perform quantum simu-

lation in 2-D. Elliptical traps were proposed and demonstrated by DeVoe [DeV98] with the

aim of producing a miniature linear ion trap with relatively simple fabrication and fairly

favorable amounts of micromotion. Here, we study instead 2-D ion crystals in such a trap.

To obtain an ordered lattice of ions in a single plane, it is desirable to have a trap

with approximate cylindrical symmetry. However, in such traps (the ring trap included),

the two “radial” vibrational modes are degenerate; hence, there is no preferred axis along

which the ion crystal may align. This undesirable condition can be rectified by introducing

an asymmetry in these two directions. In such a trap, ions will align in a 2-D array until

a critical ion number is reached, at which point the crystal may minimize its energy by

transitioning to a 3-D shape. This is the primary motivation for making the trap elliptical.
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Figure 7-1: Left: Uraniborg 1, as rendered by the EAGLE scripting language. The lengths
of the rf semimajor and semiminor axes are shown as dimensions A and B, while the ground
semimajor and semiminor axes are shown as a and b. Four dc electrodes surround the rf
electrode to provide dc compensation voltages, and the ground ellipse can be controlled as
well. A gap of ≈ 0.1 mm is present between all electrodes due to fabrication constraints.
Right: Uraniborg 2. The trap is identical to Uraniborg 1, except that the rf semiminor axis
is different on the two sides of the ground ellipse.

Our project in this section is to calculate this crystal geometry and transition point for a

model trap geometry.

Our model elliptical trap consists of two electrodes in a single plane. There is an

elliptical rf ring electrode surrounding a grounded electrode (also elliptical). Four numbers

are required to specify the semimajor and semiminor axes of the ground and rf ellipses,

but in this model we will assume that the rf ellipse is similar to the ground ellipse, and

thus three numbers are used to specify the trap electrodes: the dimensions of the grounded

ellipse and a scaling factor that specifies the size of the outer ellipse.

Calculations are presented in this section for the traps that we tested, which are named

“Uraniborg.”1 Secular frequencies for traps of a different scale may be estimated by scaling

the curvature of the potentials appropriately with the trap size. There are two different

elliptical traps presented here; in the first, Uraniborg 1, there is a single semiminor axis

length for the rf ellipse, while in the second, Uraniborg 2, one side is made longer than the

other in an effort to tilt the vertical principal axis and thereby increase the Doppler cooling

efficiency. Diagrams of these traps are presented in Fig. 7-1.

An appropriate rf voltage Vrf is applied to the ring electrode, while the center ellipse

is grounded. These voltages result in a trap region characterized by secular frequencies ωn̂,

where ωẑ = ωx̂ + ωŷ. This relation should always hold for the elliptical trap, as long as the

confinement is due entirely to rf fields. Below we present the calculation of the trap depth

1After the observatory where Tycho Brahe made his measurements of planetary orbits, enabling Johannes
Kepler to discover that the orbits were actually ellipses.
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Figure 7-2: Calculated q parameters and trap depths for a series of rf drive voltages and
an rf frequency of 3.5 MHz. The q parameters are blue, cyan, and green for x, y, and z
respectively, with qẑ > qx̂ > qŷ. The trap depths are plotted in red and measured in eV.
The trap is stable along all three directions and also deep enough to trap for this parameter
set.

and secular frequencies, along with the ion crystal structure in the trap.

7.1.1 Secular frequencies and trap depth

The secular frequencies and trap depth are calculated numerically, using the CPO numerical

modeling software (as in Chs. 5 and 6), for a given set of trap dimensions and rf signal. We

present this calculation here for Uraniborg 2. The trap geometry that was an input to CPO

was generated by parametrically drawing the ellipses using a Matlab program. The rf drive

frequency was Ω/(2π) = 3.5 MHz, which is suitable for a trap of this size. In Fig. 7-2 and

Fig. 7-3, we plot the simulation results. In Fig. 7-2, we plot the trap depth and Mathieu

q parameters as a function of rf drive voltages, and in Fig. 7-3, we plot the three secular

frequencies as a function of the same. All dc voltages were assumed to be zero.

It is only necessary to compute the secular frequencies for a single trap size, since scaling

to smaller traps may be done by changing the unit size in the electrostatic computation.

We expect that the secular frequencies will scale as 1/r0, where r0 is a characteristic length

of the trap. In practice, this quantity is numerically calculated and does not correspond to

some specific distance. The height of a single trapped ion above the plane of the electrodes

does, however, obey the same scaling law. We plot in Fig. 7-4 the secular frequencies as a

function of the ion height. A caveat is that even if the dimensions of the electrodes remain

the same, there will be some minimum spacing between electrodes that is given by the

fabrication process used. For microfabricated traps, this is typically a few microns. For
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Figure 7-3: Calculated secular frequencies for the trap at 3.5 MHz and a series of rf am-
plitudes. The frequencies are blue, cyan, and green for x, y, and z respectively, with
ωẑ > ωx̂ > ωŷ

PCB traps, it is on the order of 100 µm.

7.1.2 Ion crystal structure

The structure of ion crystals is computed by numerically minimizing the potential energy

of a given number N of trapped ions. We intuitively expect the crystals to align in the

x̂-ŷ plane. As the number of ions increases, the potential energy can be lowered by the ion

crystal extending itself along ẑ. However, we expect that since the vertical confining fields

are still roughly twice as strong as the horizontal fields, the extent along x̂ and ŷ should

still be larger than that along ẑ, so that perhaps the ion crystal will still be approximately

planar.

We calculate the ion crystal structure using the Mathematica notebook included in

Appendix B. We first check this program against the analytical value for the separation of

only two ions, which is simple to compute by balancing the Coulomb and trap forces (see

Eq. 7.2). The ions are expected to align along the direction of weakest secular frequency,

which is ŷ. The analytical value for ωŷ/(2π) = 151 kHz is 16.12 µm. From the Mathematica

code, the value is 16.16 µm. This gives an idea of the inaccuracy level of the numerical

calculation; it is quite close to the analytical value.

In the calculations below, we assume the motional frequencies calculated above for Vrf

= 150 V. We first study the structure of 2-D crystals, and then observe (in theory at least)

the expansion of the crystal into the vertical direction as the number of ions is increased.

Fig. 7-5 shows the structure of 2-D and 3-D ion crystals for four, seven, and 15 ions. Fig. 7-6

is the same for 30 and 60 ions.
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Figure 7-4: Scaling of the three secular frequencies in an elliptical trap as a function of
ion height (trap scale). The 1/r0 scaling is assumed. Frequencies are angular, in units of
2π s−1. Blue corresponds to ωŷ, green to ωx̂, and red to ωẑ.

We note, with the addition of ions, that the crystal transitions from an almost perfectly

2-D shape to a 3-D shape whose extent along ẑ is still considerably less than that along

x̂ and ŷ. We would now like to study how the extent into the vertical direction changes

with ion number. To impart a sense of this, the order of magnitude of vertical extent of the

crystal is plotted vs. ion number in Fig. 7-7.

The results of this calculation are interesting: for small ion numbers, the crystal is

almost perfectly planar, in that the extent along ẑ is orders of magnitude less than that

along x̂ and ŷ, which is essentially zero. At 26 ions, the crystal transitions into a 3-D

shape, for which the ẑ extent is about a tenth of the others. It alternates between this

and the planar shape as additional ions are added, until above 30 ions it remains in the

approximately planar 3-D state.

Another important note is that this elliptical trap was made with a higher eccentricity

than is probably required for breaking the degeneracy. For testing purposes, we decided

to err on the side of caution. With this eccentricity, however, the crystal is less regular

than it would be with a higher degree of symmetry. This situation has been studied by

authors including those of Ref. [BKGH08]. In fact, it may be possible to create more-

regular planar crystals for larger number of ions by increasing the ẑ motional frequency

through the addition of a dc quadrupole field. In Ref. [BH09], it is noted that the condition

for planar crystals in an ion trap is given by the following condition:

ω2
ẑ

ω2
x̂

>

(

70N

π3

)1/2

, (7.1)
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Figure 7-5: Left: Structure of 2-D crystals of four, seven, and 15 ions. Right: 3-D rendering
of the ion positions. Trapping parameters are those specified in the text, and axes are in
µm.
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Figure 7-6: Left: 2-D projection of the crystal structure of 30 and 60 ions. Right: 3-D
rendering of the positions of 30 and 60 ions. Trapping parameters are those specified in the
text, and axes are in µm.
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Figure 7-7: Scaling of the order of magnitude of the vertical extent of the ion crystal as
a function of the number of ions. Trapping parameters are those specified in the text. A
transition from an almost-perfectly planar crystal to an approximately planar crystal is
seen.

where ωx̂ = ωŷ and N is the ion number. The fourth-root dependence on N implies that

modest increases in ωẑ will lead to planar crystals for larger numbers of ions.

As an example, we calculate the crystal structure for 120 ions. According to Eq. 7.1,

and for a radial frequency of ωx̂ = ωŷ = 2π × 150 s−1, the condition for a planar crystal is

ωẑ > 2π × 608 s−1. For a frequency of ωẑ = 2π × 500 s−1, according to our algorithm, the

crystal is planar, while for ωẑ > 2π × 608 s−1 it is not. We plot the 2-D projections of the

crystal structure in Fig. 7-8. Near the center of the crystal, the ions form a nice regular

hexagonal lattice.

While it may be possible to produce the above secular frequencies using a top plate

voltage (as in Ch. 6) together with the center electrode, numerical simulations have shown

that it is not possible to create such a trapping region using only the electrodes present on

the surface-electrode elliptical trap. We calculate that the maximum number of ions for

a planar crystal in such a trap is 35, which would still be a very interesting situation for

quantum simulation. In addition, it may be possible to implement quantum simulations

using ion crystals that are only approximately planar, such as those depicted in Fig. 7-6.
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Figure 7-8: Crystal structures for 120 ions with ωx̂ = ωŷ = 2π × 150 s−1. Left: 2-D
projection of the 3-D ion crystal that results for a vertical frequency of ωz = 2π × 500 s−1.
Right: 2-D ion crystal structure for ωẑ = 2π × 650 s−1, greater than the critical frequency
for crystal planarity (according to Eq. 7.1) of ωẑ = 2π × 608 s−1.

7.2 Micromotion scaling and its effect on quantum simula-

tion

7.2.1 Scaling of the micromotion amplitude

We now turn to the calculation of the micromotion amplitude for the ions in the elliptical

trap, as well as the effect that it has on quantum simulation. The micromotion amplitude

Aµ along x̂ is given to first order by Aµ = 1
2qx̂∆x, where qx̂ is the Mathieu parameter

along the direction x̂ and ∆x is the displacement of the ion from the rf null along x̂. Similar

relations apply for the other directions. Given a numerical solution for the trapping potential

along with the ion geometry calculation presented in the last section, we can calculate this

numerically as well.

The scaling of the micromotion amplitude for two ions is straightforward. Suppose two

ions align along the ŷ axis of an elliptical trap. Then, by balancing the Coulomb and

trapping forces, the ion-ion distance is

d =

(

e2
c

2πǫ0mω2
ŷ

)1/3

, (7.2)

and the displacement from the rf null is just ∆y = d/2. Since the frequency ωŷ scales as

1/r0, the basic scaling law for micromotion is A ∝ r
2/3
0 , therefore it decreases as the overall

size of the trap is reduced. This is one motivation for decreasing the overall size of the trap.

The micromotion amplitudes of ions in larger 2-D crystals may be estimated from the

ratio of displacements of ions given above in the ion crystal structure calculations. In-

teractions between neighboring ions are impacted only by the relative motion of the ions
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involved. Because ions near the center of the trap experience oscillating electric fields in

opposite directions, their relative motion may be higher than ions further from the trap

center, even though each individual ion experiences greater micromotion.

7.2.2 Effect of micromotion on quantum simulations

The calculation of micromotion amplitudes is important, but the much more interesting

(and hotly debated) question is what effect this micromotion has on the fidelity of quantum

simulation. We now endeavor to answer this question. We will limit our study here to a

specific Hamiltonian, the transverse Ising model, which is one example of a Hamiltonian

under which spin frustration may occur. In a typical experiment, antiferromagnetism is

produced by using the “radial” modes [PC04b], which in the parlance of Porras and Cirac

means the modes perpendicular to the line segment that connects the two ions and per-

pendicular also to the plane of the trap, i.e. the vertical (ẑ) direction. In this case, the

interaction is a short-range dipolar one, with the coupling constant J ∝ 1/d3, where d is

the ion-ion distance. We are accordingly concerned with short-range, pairwise interactions.

Therefore, most of the calculations study the effect of micromotion on two ions.

The question we ask is this: for a given Hamiltonian, simulation time, and set of trap

parameters (including micromotion amplitude), what is the fidelity of the quantum simu-

lation as compared to the simulation in the absence of micromotion? We want to study

the behavior of the system for a number of cases that we believe to be relevant for future

experiments:

• Constant F in space and time.

• F constant in space, but adiabatically ramped up.

• F varying in space, and following constant or adiabatic time dependence.

The approximation that F is constant in space is good if F varies weakly across the

region of space occupied by a given ion, which, in the presence of micromotion, may be up to

a few hundred nanometers. If a standing-wave optical force is used, then the spatial extent

of the ion trajectory is comparable to the gradient of the force, and the spatial dependence

must be accounted for.

Methods

The Hamiltonian that we consider is the transverse Ising model. We define the ẑ, x̂, and ŷ

axes as being the principal axes of the elliptical trap in order of decreasing secular frequency,

while Z, X, and Y are the Pauli operators for the ionic internal states along each of these

directions. We shall simulate
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HTI = −~

∑

i,j=i+1

Ji,jZiZj + ~

∑

i

BXi (7.3)

using the approach outlined in Sec. 4.2. Noting that we make use of the vertical modes,

leading to βẑ ≪ 1, the coupling constant Jẑ along ẑ is given by

~Jẑ =
cẑe

2
cF

2
ẑ

4πǫ0m2ω4
ẑd

3
, (7.4)

where ωẑ is the trap frequency along ẑ, Fẑ is the component of the state-dependent force

along ẑ, and d is the distance between the ions. In this situation, the constant cẑ = −2.

The state-dependent force also adds a magnetic field along the ẑ direction:

µα̂B′
ẑ = µα̂Bẑ +

4Fẑ

3mω2
ẑ

, (7.5)

The above expressions describe the simulated coupling between two two ions; this is ade-

quate for our purposes since in the β ≪ 1 limit, the interactions are approximately nearest-

neighbor. This effective magnetic field is in addition to the transverse magnetic field Bx̂

that appears (as just B) in Eq. 7.3. Note that within this section, we will now drop the

directional superscripts, i.e. F ≡ Fẑ.

With nonzero micromotion, the ion-ion spacing d is no longer constant in time. This

means that the normal mode frequencies ωn also change in time, and as a consequence, J

becomes time dependent. This dependence is apparent by writing

d(t) = d (1 + 2Aµ cos (Ωt + φ)) , (7.6)

where Ω and φ are the rf drive frequency and phase. The micromotion amplitude Aµ

given here is relative to the ion-ion distance d. That is, if A is the actual micromotion

amplitude, Aµ = A/d. The time dependence of J renders the equations of motion difficult

to analytically integrate; therefore, we use numerical methods exclusively.

To begin the simulations, we pick a constant amount of evolution time, equal to approx-

imately 10J , and pick an initial state. We propagate the system forward in time, adjusting

the Hamiltonian at each time step. This requires a time step τ that satisfies τ ≪ 2π/Ω.

We then measure some expectation value 〈M(t, Aµ)〉 at each time step, and compare these

values to that which is obtained in the absence of micromotion. The error between the two

is calculated simply as the difference between 〈M(t, A 6= 0)〉 and 〈M(t, A = 0)〉 Following

this, we increase the simulation time. Unless otherwise stated, we choose the initial state

|Ψ0〉 = |↑↑〉 (in the z basis) and measure M = Z1 + Z2. The Matlab codes to do the

simulations presented here are included in Appendix A.
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Results

Before presenting the numerical results, let us offer an intuitive view of the effect of micro-

motion on the evolution of the two-ion system. Micromotion is a driven oscillation at the

rf drive frequency Ω. This causes the two ions that are undergoing an effective spin-spin

interaction to have a time-dependent spacing d, as noted above. Since the J-coupling de-

pends upon d approximately as J ∝ 1/d3, the effective J-coupling rapidly oscillates during

a simulation. The ions, being driven by the rf, will spend as much time closer to each other

as they spend further apart. However, due to the 1/d3 dependence of J , the time-averaged

interaction rate will be higher than it would be if the ions were stationary. We also expect

that since Ω ≫ J , the varying J due to micromotion may be treated as a value that is

time-averaged over many periods of 2π/J . Another way of stating this is that the only

term in the Hamiltonian which effects a spin-spin interaction is JZ1Z2, and therefore the

fastest interaction rate is set by J , even if J oscillates at a frequency Ω.

This picture is confirmed by our numerical simulations. As an example, we compute the

evolution of the initial state |↑↑〉 under the Hamiltonian written in Eq. 7.3. The parameters

for this calculation are J = −103 s−1, Ω = 106 s−1, and B = -J . The relative micromo-

tion amplitude was assumed to be Aµ = 0.1, a sensible value for many experiments. We

numerically integrate the equations of motion for the two-spin state both with and without

micromotion, and calculate the time-dependent error as the difference between the Aµ = 0

and Aµ = 0.1 time-dependent expectation values for the observable Z1 + Z2. We find that

over a time of several periods of J , the error quickly grows to a maximum value of 0.5, to

be compared to the maximum possible expectation value of 2.2 This result is plotted in

Fig. 7-9.

This calculation permits us to calculate the time-averaged J-coupling constant if the ions

are undergoing micromotion; for the above parameters, this is equal to Jav = 1.036×103 s−1.

As expected, this value is slightly higher than the J for Aµ = 0. When the simulation is

performed with Aµ = 0.1 and the calculated value for Jav, the error falls strikingly, by

about three orders of magnitude. This result is also presented in Fig. 7-9.

Although the intuitive picture of the effects of micromotion is confirmed, at least in

theory, there are important further questions. Generally, one may wish to prepare an

arbitrary state of the two ions, then apply the simulated interaction. In addition, position

dependence of the state-dependent force will also alter Jav; we must show that a similar

averaging technique works in this case as well. Further, the applied potentials may have

time-dependence, for example in the event that one wished to adiabatically apply a spin-spin

interaction in order to observe a phase transition.

We now treat each of these situations in turn, beginning with the operations on arbitrary

states. We note that in practice the two-qubit states used will not be truly arbitrary,

2This scale is arbitrary; to convert into actual angular momentum values for spin-1/2 particles, multipli-
cation by ~/2 is required.
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Figure 7-9: Calculation results for a simulated Ising model for two ion-qubits with a spatially
and temporally constant force. Left: The trajectory of the observable 〈Z〉 ≡ 〈Z1 + Z2〉 as a
function of time in the absence of micromotion is plotted on top. Below this, the trajectory
with a micromotion amplitude of Aµ = 0.1 is plotted. The difference between the two is
plotted on the bottom. Without micromotion, J = 103 s−1. Right: The same plots as on
the left, but with the correct average value Jav = 1.0305×103 s−1 used for the Aµ = 0 case.
When this is done, the error drops by three orders of magnitude.

but will consist of the tensor product of two arbitrary single-qubit states. Entanglement

between the qubits will not form until after the application of the J-coupling, but the

set of arbitrary two-qubit states states subsumes this special case. We follow the above

approach, but with random, complex amplitudes for each basis state (normalized to 1). We

find that for random states, the error is reduced using the same average coupling as before

(Jav = 1.036× 103 s−1). The average error during the course of each simulation, regardless

of the initial state, is 1.42×10−5.

The effects of a position-dependent force, i.e. F (x), may be considered by applying a

linear gradient at the position of each ion. The maximal gradient likely to occur in an

experiment is that due to an optical standing wave. We take, for the sake of argument,

400 nm to be the lower-wavelength limit of such a wave. In considering the most extreme

cases, we will also assume a maximum relative micromotion amplitude of Aµ = 0.1. The

reason for this is as follows. Suppose that two ions are on opposite sides of the rf null; then

their displacement from the rf null is equal to d/2, and the micromotion amplitude of each

is A = q
2∆x = q

2
d
2 , yielding Aµ ≈ 0.08 for q = 0.3.

We proceed by computing the Jav for a set of force gradients, then confirming that

the error indeed vanishes. A set of gradients Fr from 0 to 1, relative to the micromotion

amplitude, as used. This means that for Fr = 0, the force is constant in space, while for

Fr = 1, the force falls to zero when the ion is located at the position x = A. As expected,

the uncorrected error due to micromotion rises as the force is allowed to vary in space, but

nevertheless these errors may be corrected by using Jav rather than J , and are quenched

by three orders of magnitude. Fig. 7-10 contains plots of Jav and the uncorrected error as

a function of the relative force gradient.
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Figure 7-10: Calculation results for a simulated Ising model for two ion-qubits with a
position-dependent force. Left: The time-averaged coupling Jav as a function of the relative
force gradient as defined in the text. Without micromotion, J = 103 s−1. Right: The
average uncorrected error as a function of the relative force gradient. When using the
correct average value Jav, the error drops by three orders of magnitude.

The final problem we treat in this section is the calculation of the simulation error when

the applied force F (t) is time-dependent. We use a linear variation in time of the force F ,

rising from 0 at t = 0 to F at the final time (t = 10/J). In this case, we evaluate the time-

averaged force for both the Aµ = 0 and Aµ = 0.1 cases, and then multiply the Aµ = 0.1

value by the ratio between the two. This is demonstrated numerically to dramatically

reduce the error. Fig. 7-11 plots these results.

Discussion

For a number of important cases, it has been shown that the effect of micromotion is to

systematically shift the J-coupling rate under which the internal states of two ions evolve.

This is an interesting result, but it raises questions about how a simulation might actually

be put into practice with a 2-D array of ions. There are two cases that will be relevant:

“global” forces that impact each ion equally, and “local” forces which may be applied

pairwise between ions.

In the latter case, the effects of micromotion may be nulled by adjusting the state-

dependent force according to the site in the array being addressed. Although this requires

a substantial amount of control, there is no fundamental reason why it could not work. In

the former case, one will find a “spread” of Jav values across the ion crystal. Although

this will reduce the fidelity of the simulation, it may still be possible to observe interesting

quantum phases.

We would also like to note that there are important cases that have not been addressed in

this work. We believe that the examples presented here, however, shed light on the cases that

are still unaddressed. Three such cases are a “hard pulse,” in which F = 0 for some time,
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Figure 7-11: Calculation results for a simulated Ising model for two ion-qubits with a time-
dependent force. Left: The Aµ = 0 (top) and Aµ = 0.1 (center) plots show significant
deviations in the measured expectation value as the state-dependent force becomes large
late in the simulation. Right: The error in the simulation is virtually removed by multiplying
J for the Aµ = 0.1 case by the ratio of average J couplings for the Aµ = 0 and Aµ = 0.1
cases.

then F 6= 0 for some time, and then F = 0 again; a nonlinear time dependence of F ; and a

nonlinear spatial gradient. With respect to the first, we note that our current simulations

already treat a hard pulse. They begin with a random state (that could well be considered

to be the result of evolution with F = 0), and then evolve under the Hamiltonian with

F 6= 0. After this, F could be set again to zero and the states freely evolve until measured.

In the second case, we note that any smooth and continuous force F may be approximated

by a number of linear segments; for each segment then, an appropriate effective J could

be applied. For the third case, we again invoke the idea that for small displacements, any

force function may be approximated as a series of linear gradients, and the appropriate Jav

calculated and applied. Therefore, it appears that for two ions, the effects of micromotion

may be nulled for a great number of cases, provided sufficient control is available.

In this section, we have focused on the effect of micromotion on the spin-spin evolution

under which the internal states of ions evolve. However, this is not the only effect of

micromotion. The most notable other effect is the broadening of the spectral lines through

the Doppler effect, which increases the Doppler cooling limit. Therefore, even when effective

controls are present to implement the correct Jav values, it is still desirable to minimize

the micromotion amplitudes. One way in which this can be done is by reducing the overall

dimensions of the trap; recalling the relation A = 1
2q∆x, the micromotion amplitude A may

be reduced by keeping q constant and decreasing the ions’ displacement from the rf null

∆x. In contrast to methods based on 3-D linear ion traps, the surface electrode trap is

amenable to microfabrication.
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7.3 Magnetic gradient forces

Now that we have seen that in many cases quantum simulations may be performed in an

elliptical trap (or other trap with nonzero micromotion), we are ready to discuss the actual

source of the state-dependent forces F . Optical forces have been discussed at length in

Ref. [PC04b], and in the thesis of Ziliang Lin [Lin08]. We focus in this section, rather, on

fields of a magnetic origin. This has been treated in Ref. [CW08], but for the case of an array

of microtraps, similar to the trap design studied in Ch. 5. The weakness of interactions

between ions contained in different trapping regions motivates our work here on ions in the

same trap. Two questions drive this work:

1. What types of forces may be created using wires in the ground plane of the elliptical

trap?

2. How does the magnitude of this force and the magnitude of the J coupling rate scale

with the trap size?

A state-dependent force based on magnetic fields requires a field gradient in space, giving

rise to a force ~F = −∇(~m · ~B), where ~m is the magnetic moment of the atom. For the

present work, we will consider the Zeeman-split sublevels of the ground S state in a 40Ca+

or 88Sr+-like ion. The absolute value of the magnetic moment is then m = gJµBmJ , where

µB is the Bohr magneton and mJ is the magnetic quantum number for the projection on the

ẑ axis of the total angular momentum J . This choice is made to facilitate straightforward

estimates for the types of ions discussed in this thesis, and indeed, coherence times of

several seconds have been observed for such qubits encoded in decoherence-free subspaces

[HSKH+05]. However, hyperfine levels may prove to be a better choice because of their

excellent coherence times even without such encoding.

The state-dependent force thus depends on the alignment of the atom’s magnetic mo-

ment in space, which follows the orientation of the local magnetic field. This force, for

example along direction ŷ, is given by

Fŷ = gJµB

(

mx̂
∂Bx̂

∂y
+ mŷ

∂Bŷ

∂y
+ mẑ

∂Bẑ

∂y

)

. (7.7)

7.3.1 Calculation of the gradients and interaction strengths

The calculation of the fields and field gradients can be done by direct numerical integration

of the applied surface currents. Methods used are similar to those employed by Wang et al.

[WLG+09] in their design of magnetic gradients for individual ion addressing. We assume

that the wires are infinitesimally narrow; this becomes less accurate as the trap scale is

decreased, and more sophisticated methods must be employed. Also, we limit the current

through a given wire to 1 A, comparable to the maximal currents employed in neutral atom

traps [HHHR01]. The fact that eventually, to reduce heating rates, these traps will need to
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Figure 7-12: The triple-Z wire configuration and resulting magnetic fields. The wire con-
figuration is top left; each wire carries 1A of current in the same direction. Each other
the other plots gives the magnetic field components along a given direction. In all figures,
Bx̂ is in blue, Bŷ is in green, and Bẑ is in red. Note that the field gradients are quite
constant across the volume occupied by the ions. Nonzero fields at the trap center must be
cancelled by additional pairs of Helmholtz coils to avoid unwanted Zeeman shifts, electron
alignments, and even ion crystal rotation.

be operated at cryogenic temperatures suggests that superconducting wires could be used,

mitigating resistive heating [REL+08].

We focus on two different wire configurations to give a flavor of the possibilities for

simulated Hamiltonians. The first is a “Z” shape, the classic shape of the gradients coils

used in chip-based atom traps. This shape is repeated three times, in order to further

strengthen the field gradients. The second configuration is a set of three concentric square

rings, that produce a different set of gradients.

Results from the Z shape are given in Fig. 7-12. These are based on an elliptical trap

that gives an ion height of 100 µm. We see that the gradient is of the approximate form
∂ ~B
∂xi

= ∂Bẑ

∂x ẑ + ∂Bẑ

∂y ŷ + ∂Bx̂

∂z ẑ +
∂Bŷ

∂z ẑ. Depending on the projection of the atomic dipole, as set

by the external bias fields, this yields the possibility of an Ising of Heisenberg interaction.

The specific interaction induced depends upon the direction along which F acts.

We now wish to calculate the actual interaction strengths and how they scale with the

trap size. What do we expect? First, we recall from Ch. 5 that for constant trap depth

the secular frequencies scale as 1/r0, where r0 is some characteristic length scale of the

trap (usually defined as the distance from the ion to the rf electrode). At the same time,

the distance between ions d is given by d3 = e2
c/(4πǫ0mω2), as calculated by balancing the

Coulomb and trapping forces. The magnetic field strengths scale as 1/r2
0, and plugging that

all into the formula for J (J ∝ F 2/(ω4d3)), we expect that J will scale as 1/r2
0.
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Figure 7-13: Scaling of the J-coupling rates for all three directions as a function of the ion
height in an elliptical trap, for the three concentric square rings wire configuration. The
value for each direction will only hold if the projection of the electron spin is entirely along
that direction; this would give an Ising-type interaction.

Numerically, this is nicely verified. We apply the above scaling law to the secular

frequencies, compute the mean ion-ion distance, and calculate the J coupling as a function

of h, the height of the ion above the trap surface (calculation with respect to r0 would

yield the same scaling). The highest coupling rate plotted here is 700 s−1, which will be

observable if the dominant decoherence rates are significantly lower than that.

By contrast, the fields due to the rings produce a field gradient at the location of the

ions with the form ∂ ~B
∂xi

= ∂Bx̂

∂x x̂ +
∂Bŷ

∂y ŷ + ∂Bẑ

∂z ẑ. We expect basically the same scaling law

for the rings as for the triple-Z, due to the above arguments. However, the total interaction

rates are different (and higher, overall). This is plotted in Fig. 7-15.

7.3.2 Discussion

The above results are but a small sample of the interactions that may be created with

magnetic field gradients. Indeed, one appealing thing about this approach is the sheer

variety of forces that may be created. The source of this freedom is the fact that the

wires that create the gradients are separated from the source of the trapping potentials.

Thus, the tight integration of wires and trapping electrodes proposed in Ref. [CW08] is not

required. However, this greater flexibility in the global potentials does not come without a

cost; individually switching interactions between individual pairs of ions is not possible.

The methods presented in the section will apply the same state-dependent force to

every ion in a 2-D crystal in an elliptical trap. These translate into Ising or Heisenberg

Hamiltonians, depending on the experimenter’s choice. There remain two major questions:
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Figure 7-14: The concentric rings wire configuration and resulting magnetic fields. The
wire configuration is top left; each wire carries 1A of current in the same direction. Each
other the other plots gives the magnetic field components along a given direction. In all
figures, Bx̂ is in blue, Bŷ is in green, and Bẑs is in red. Note that the field gradients are
quite constant across the volume occupied by the ions. Nonzero fields at the trap center
must be cancelled by additional pairs of Helmholtz coils to avoid unwanted Zeeman shifts,
electron alignments, and even ion crystal rotation.

Figure 7-15: Scaling of the J-coupling rates for all three directions as a function of the ion
height in an elliptical trap, for the three concentric square rings wire configuration. The
value for each direction will only hold if the projection of the electron spin is entirely along
that direction; this would give an Ising-type interaction.
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how are single-ion operations to be applied, and what is the effect of the unequal ion-ion

distance in a crystal containing more than two ions?

There exist a number of ways of implementing single-ion operations. The first is simply

to address the ions with a tightly-focused laser. This seems impractical, however, for the

surface-electrode elliptical trap, since the laser would need to be aimed directly toward the

ground electrode. Although it could be applied at an angle, it is unlikely that scatter off this

electrode would not interfere with the states of neighboring ions. A much more appealing

idea would be to do the addressing using rf or microwaves, tuned to the Zeeman or hyperfine

transition being used. The gradient wires used for implementing the state-dependent force

could be turned on to produce a small gradient that can be used for discriminating the

transitions of the individual ions in frequency space. This approach has been successfully

pioneered by our group with laser addressing of ions [WLG+09], and has been demonstrated

by the Wunderlich group with hyperfine qubits [JBT+08].

With respect to the unequal ion-ion spacing, we make a few points. The first is that

despite coupling rates that are not perfectly constant across all ion pairs, there is neverthe-

less the possibility of observing interesting physics such as phase transitions. For instance,

the transition from a paramagnetic to an antiferromagnetic state is caused by competition

between a static magnetic field and the ion-ion interaction. A J-coupling rate that varies in

space would add to the uncertainty in measuring the transition point, but this might still be

a useful measurement. The second point is that optical potentials could be used to regulate

the position of ions, as was suggested in Ref. [PC04b]. Furthermore, initial trapping of ions

in an elliptical trap could facilitate loading into a fully optical potential, as discussed in

Ref. [SRM+08]. In the case of an elliptical trap, additional state-dependent forces may be

added by the magnetic gradient coils, in addition to any forces already present from the

optical potential. Finally, we note that the same level of control required to compensate for

the effects of micromotion could be used to compensate for the unequal ion-ion spacing: if

one can compensate for one effect, then one can compensate for the other.

A final note of caution is that the ultimate number of wires, their geometry, and their

width is limited by the minimum feature size of the fabrication process used. This will in

turn limit the minimum size of the trap and gradient wire structure, limiting the interaction

rates achievable.

7.4 The cryostat and vacuum apparatus

Given the need for reducing heating rates, and the desirability of rapid pumpdown to

UHV pressures, a 4 K closed-cycle cryostat was set up to carry out the trap testing. We

use an Advanced Research Systems (ARS) DE-210 system with a DMX-20 anti-vibration

interface. The system is very similar to the closed-cycle system presented in Ref. [ASA+09].

The cryostat operates by repeated expansion of high-pressure (250 psi) helium gas into
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Figure 7-16: Photograph of the expander. This unit had been removed due to a helium
leak. Some corrosion is visible, which may be due to the presence of liquid water if the
bellows had not been adequately flushed with helium.

a low-pressure (20 psi) return line, in a process called the Gifford-McMahon refrigeration

cycle. Two stages are present on the cold head, one that cools to 40 K with a cooling power

of 35 W, and one that cools to 4.2 K, with a cooling power at that temperature of 0.8 W.

The three key components of the cryostat presented here are the expander, the compressor,

and the vibration isolation mechanism. In this section, we discuss these components, then

present the vacuum chamber housing and the mounting of the entire system.

7.4.1 The cryostat

The expander is the part of the cryostat in which high-pressure helium is allowed to expand

into a low-pressure return line and thereby fall in temperature. The low-pressure gas is then

returned to the compressor to be pressurized again. The expander contains a valve that

is operated by electrical power sent from the compressor, which opens to allow the high-

pressure helium to expand at a rate of about 2 Hz. Inside the lower portion of the assembly

is a displacer assembly, with first and second stage displacer units, the second being of a

smaller diameter. The function of the displacer units is to capture a small amount of the

helium that has been cooled by expansion, and then bring the cold head to that temperature

by the use of heat exchanging elements. The displacers open and close according to the

pressure above them. A photograph of the expander is shown in Fig. 7-16.

The compressor is the part of the cryostat that provides the necessary high- and low-

pressure helium gas flow to and from the expander. It holds a static helium pressure of
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250 psi, which increases to around 310 psi in the high-pressure line when the compressor

is running. It is water-cooled with a chilled water supply with a flow rate of about 1.5

gal/min.

The DMX-20 anti-vibration interface thermally connects the cold head to the experiment

without mechanical contact. A reservoir is filled with ultra-high-purity (99.9999%) helium

gas at a pressure of about 1 psi. The reservoir is closed with a rubber bellows that does not

transmit vibration from the expander to the experiment. Heat is exchanged by a pair of

copper coils, one attached to the cold head and the other to the DMX-20 interface, between

which helium gas is present.

When being operated, the expander is anchored to the ceiling with an 80/20 aluminum

framework, while the experiment remains fixed to the table. If alignment of the cold head

is not correct, then vibrations can be felt by hand on the experiment and the cold head

position readjusted.

7.4.2 Vacuum chamber and optical access

The experimental assembly was mounted on an optical breadboard using an 80/20 aluminum

framework. The breadboard was converted into a table using four 3 in. wide 80/20 pieces,

with rubber feet on the bottom of each and some supports across the legs for stability.

When the cryostat is not running, standoffs hold the expander in place within the DMX-20.

The vacuum chamber is mounted on a pivot so that it can be rotated up 90◦ and opened.

The vacuum chamber is made of con-flat parts for maximum isolation from atmosphere.

The DMX-20 unit is encased in a 8 in. flanged nipple. On the bottom, a 4 1/2 in. CF

viewport, AR coated for 422 nm and 1092 nm, is mounted on an 8 in. flange. When the

cryostat is opened, this flange is removed. A photograph of the exterior setup is presented

in Fig. 7-17.

Cryogenic vacuum setups differ in two main ways from room-temperature ones. On one

hand, the choice of materials is broader than in a room-temperature setup. Materials that

outgas too much at room temperature, such as plastic and lead solder, are acceptable at

4 K, making the experimental design somewhat simpler. On the other hand, obtaining this

low outgassing, as well as minimizing the electrode temperatures, requires good thermal

isolation from 300 K. Thermal “shorts” can be caused by conduction or radiation.

A radiation shield is constructed and anchored to the 40 K stage. This is composed of

a 4 1/2 in. CF spherical octagon from Kimball physics, on top of which is a copper plate

that holds the imaging lens assembly. Viewports are installed on two sides of the octagon

to permit the lasers to access the trap, while other ports of the octagon are covered with

copper baffles. Wiring from the external feedthroughs goes around these baffles. Fig. 7-18

shows the 4K baseplate with electrical connections for dc and rf. The 40K shield is also

visible around this.

Preventing thermal shorts due to conduction is achieved by a combination of good wire
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Figure 7-17: Photograph of the exterior of the vacuum chamber. The 80/20 framework
is seen; the cryostat is currently in the configuration to be cooled down, with aluminum
plates mounting the expander to the overhead framework. The box-shaped object covered
in aluminum foil is the ion pump, mounted directly to the outer spherical octagon.

174



Figure 7-18: At the center of this photograph is the 4 K baseplate. The center screw
attaches the baseplate to the DMX-20. The baseplate may be freely rotated before this
screw is tightened. A series of tapped holes in the baseplate are used for mounting. Two
sets of connectors have been glued onto the 4 K baseplate; on the right is the dc connector,
and rf is on the left. The internal octagon which is attached to the 40 K stage surrounds
the baseplate. The four 1 1/3 in. CF viewports may be seen, as well as the copper baffles
for covering open ports. The feedthrough on the bottom is for sending current to the 40 K
charcoal getters, and clockwise from that is the rf feedthrough. The oven goes in the empty
1 1/3 in. CF port on top, while the ion pump connects at the very top.
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choices and heat sinking. The wire used for the dc connections and a portion of the rf

line is a 36-gauge phosphor bronze wire, LakeShore Part No. WSL-36-500. The constant

of thermal conductivity is 48 W/(K·m). For a temperature gradient of 294 K across a

wire length of 10 cm, the thermal conductivity is 2 mW. Since this is much less than

the cooling power at 4 K and 40 K (0.8 W and 35 W, respectively), heat gain due to

conduction should be negligible. Actually, the figure is better than this, since the dc wires

were wrapped repeatedly around the 40 K shield (increasing the length and heat-sinking)

before being taped down to the 40 K baffle and then heat-sunk to the 4 K shield using

StyCast thermally-conductive epoxy.

The rf wiring was purposefully made shorter than the dc wires to reduce stray ca-

pacitance. From the exterior feedthrough, a thin wire (to break thermal conductivity) was

taped to the 40 K baffle, then attached to a thicker wire (to increase electrical conductivity),

before being soldered to a thin wire which was heat-sunk with StyCast to the 4 K base-

plate and routed to the trap. This combination was designed to provide as much electrical

conductivity as possible while still breaking the thermal connections.

Upon finishing work inside the cryostat, the system was put under turbo pump vacuum,

leading to ultimate pressure in the high 10−6 torr range. A 50 Ω heater is installed on the

cold head, and this was engaged to bring the system to a temperature of 380 K for around

24 hours, allowing some oils, water, and other residues to bake off and be removed from the

system. This is done partially to improve the ultimate pressure, and partially to remove

substances which might freeze onto the trap electrodes at 4 K. A pair of charcoal getters

were also installed on the 40 K shield, and were discharged during this time with a wire

whose resistance totaled 150 Ω. A current of 0.06 A through the getters was used.

Finally, a 20 l/s ion pump was installed directly on the outer octagon. This was turned

on before cooldown. There are two main advantages to this. The first is that the system is

completely closed from the “outside world” during cooldown. This prevents cryopumping

from actually pumping material from the turbo pump line into the cryostat. Furthermore,

in case of a malfunction of the turbo or roughing pumps, it prevents oils from being cryop-

umped into the system. The other advantage is that reading the ion pump current enables

one to upper-bound the pressure inside. Since the ion pump is connected directly to room

temperature, we expect the pressure inside the radiation shield to be considerably less than

that measured on the ion pump. It was impressive that the pressure reading on the ion

pump, when the system was fully cooled, read 0.0×10−9 torr.

The system was equipped with two diode temperature sensors. Each requires a 10 µA

current, and the temperature is inferred from the voltage across the diode. One is anchored

to the cold head, and is called the control sensor. The other can be placed anywhere else,

and is called the free sensor. We chose to place the free sensor directly on the 4 K baseplate,

anchored with StyCast. The free sensor came to a temperature of 4-5 K normally, while

the control sensor was at 11-13 K. It is not known why the temperature was not lower;
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Figure 7-19: The plastic socket that holds the cpga mounted above the 4 K baseplate (at
center of photograph). Electrical connections are made to each pin receptacle from below.

probably switching to a fully-copper 40 K shield would help, as copper is a much better

thermal conductor than the stainless steel that the octagon is made of.

Some supplementary information concerning practical aspects of operating the cryogenic

experiment may be found in Appendix C.

7.5 Experimental study of the elliptical trap

In this section we present an experimental investigation of the elliptical traps discussed in

Sec. 7.1, focusing on verifying the secular frequency and ion crystal structure calculations.

We begin by discussing the experimental setup, then report verification of our theoretical

calculations.

7.5.1 Experimental setup

Trap mounting, oven, connections

The trap is held above the 4 K copper baseplate by copper standoffs, onto which screws

a copper plate which holds a plastic socket into which the cpga is inserted. The electrical

connections are plugged into the bottom side of this socket, making reconfiguration of the

pinout relatively simple.

The socket mounted above the 4 K baseplate, surrounded by the 40 K shield, is depicted

in Fig. 7-19. Fig. 7-20 contains two photographs: first, a labeled photograph of Uraniborg
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Figure 7-20: Left: Photograph of Uraniborg 2. The electrodes are labeled with the voltage
applied to each, as referenced in the text. Right: Photograph of Uraniborg 1 mounted in a
CPGA. The width of the PCB trap is ∼ 1 cm.

2, indicating the labels given to each electrode, and second, the trap (Uraniborg 1 rather

than 2) mounted in a CPGA chip carrier for installation into the cryostat. A copper braid

(solder wick) was soldered to one of the dc electrodes, with the other end screwed into the

4 K baseplate, in an effort to heat sink the trap to 4 K.

The strontium oven for trap loading was mounted on a 1 1/3 in. CF feedthrough which

was mounted on the exterior octagon. The end of the oven was placed in a hole in one of the

copper baffles. The hole was drilled at the approximate height of the trap. This particular

oven was made of a thin stainless steel tube. Steel wires spot-welded to the feedthrough

were spot-welded to strips of tantalum foil, which were then spot-welded to the steel tube,

which was filled with strontium metal. The tantalum, which has a high electrical resistivity,

serves to heat the oven with a lower level of current than would otherwise be needed. As it

was, 2.0 A was sufficient for loading the trap, the lowest value of any oven the author has

made.

Imaging optics

Optical breadboards were mounted at a proper level to address the ions, with lasers propa-

gating roughly parallel to the plane of the trap electrodes. The 422 nm and 1092 nm lasers

were set up on one side of the cryostat. Each passes through a series of collimating and

focusing lenses before being coaligned on a dichroic mirror. The initial coalignment was

done by eye. Their beam waists were minimized and the coalignment of the beams was

fine-tuned using a ThorLabs beam profiler. On the other side of the cryostat, the 460 nm

and 405 nm photoionization beams were brought to a focus at the trap center using a fast

achromat from ThorLabs.
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Figure 7-21: The two internal lenses mounted on the 40 K shield, above an ion trap. The
top of the 40 K shield is mounted in the octagon, and may rotate by small amounts. The
lenses are also mounted on a separate copper plate that can move freely, for centering the
lenses. The lenses are mounted on a cage system, so that the focus to the trap can be
adjusted.

The detection and PI beams were made to counter-propagate across the trap. This

setup has certain advantages and disadvantages. Counter-aligning was more practical given

the geometry of the experimental setup and the space available on the optical table. Also,

aligning was fairly easy. Normally, neutral strontium atoms would be observed using the

460 nm light. The beam of neutrals was centered on the trap, and then the height of

the beam was adjusted to the height computed by CPO (about 1.3 mm). The detection

lasers were then counter-aligned to this beam. Typically only small adjustments in the

laser positions were then required to detect trapped ions. The disadvantage is mainly that

back-reflections from the PI optics caused additional 422 nm scatter, which was reduced

when the PI lasers were blocked after loading.

Detection of ions was done on an Santa Barbara Instruments Group (SBIG) ST-3200ME

CCD camera with a 422 nm interference filter in place (as in Ch. 5). The imaging optics

are as follows. Inside the cryostat, two lenses were mounted on the 40 K shield, a 20 mm

aspheric lens and a 150 mm achromat. The focusing light emerging from the cryostat

was reflected off a silver mirror into another 150 mm achromat, which collimated the light

and served as the focusing lens. A final 150 mm achromat focused the image onto the

CCD. Fig. 7-21 shows the lens assembly, including the internal 20 mm asphere and 150 mm

achromat, mounted above an ion trap.
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Electronics

The electronics for this experiment were similar to those used in previous ones (Chs. 5 and

6). Briefly, dc voltages were supplied to four of the dc electrodes on the trap using an

eight-channel voltage source that interfaces to the computer. The dc signals were filtered

by standard R-C low-pass filters with a cutoff frequency of about 100 kHz. This was chosen

to provide an rf short to ground for the dc electrodes at the drive frequency (3.5 MHz)

while still allowing the lower-frequency voltages used for secular frequency measurement to

pass through.

An rf signal was produced by an Agilent 33250 function generator and sent directly

to the helical resonator. To produce the proper voltages, no additional rf amplifier was

required. The resonator was mounted to the table and connected to the chamber with an

rf feedthrough. Grounding straps connected the rf input with the function generator, the

cryostat hoses, and earth ground, and also provided the rf ground for the dc filters.

7.5.2 Secular frequency measurements

Secular frequencies were measured by using a low-amplitude voltage applied to the electrode

DC2. The amplitude required varied a great deal between the different motional frequencies.

Prior to this, basic compensation of the trap was done by setting the dc voltages such

that the ion cloud did not move when the rf amplitude was changed. There was actually a

significant movement of the ion cloud (tens of microns) with a change in Vc of only 0.1 V;

therefore, the vertical direction could be roughly compensated by setting Vc such that the

cloud did not move out of the laser when the rf was changed. The final set of dc voltages

were V1 = -3.90 V, V2 = 1.56 V, V3 = V4 = 0 V, and Vc = -2.62 V. Fig. 7-22 is a plot of one

data set taken at a sequence of RF voltages with these dc voltages. The secular frequencies

were measured by exciting the ions at their motional frequencies and observing drops in

their fluorescence, as discussed in Sec. 5.4.

The CPO-computed frequencies for this voltage set are plotted below, in Fig. 7-23. One

sees that the agreement is not very good. Why is this? For one thing, note that the

theoretical frequencies have changed a great deal from those with only rf confinement (cf.

Fig. 7-3). Therefore, the dc voltages do not merely move the position of the ions; they

change the curvature of the trap itself. A portion of the dc voltages here merely nulls stray

fields that existed in the first place. Some portion, however, also contributes to altering the

trap curvature. Another clue is provided by the fact that although ωx̂ + ωŷ = ωẑ to fairly

good agreement in the simulation, this relation does not hold for the experimental data,

indicating that dc voltages have a contributing effect.

Another possible source of error is that the rf voltage measured on the exterior of

the cryostat does not necessarily equal the voltage on the trap. The degree to which it

does depends greatly on the specific experimental setup. The wire extending from the

feedthrough is quite long in order to reach the 4 K area and be properly heat-sunk on the
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Figure 7-22: Measured secular frequencies as a function of rf voltage amplitude for the three
motional modes of Uraniborg 2. ωx̂ is blue, ωŷ is green, ωẑ is red, and ωẑ > ωx̂ > ωŷ for all
rf voltages. Errors on each frequency measurement are ±2 kHz.

Figure 7-23: Calculated secular frequencies for the trap at 3.5 MHz and a series of rf
amplitudes. The frequencies are blue, cyan, and green for ωx̂, ωŷ, and ωẑ, respectively, with
ωẑ > ωx̂ > ωŷ.
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Figure 7-24: Images of ion crystals of two and four ions in Uraniborg 2. The principal axes
x̂ and ŷ of the trap are shown by depicting the corresponding ion-ion spacings dx and dy in
each figure.

way, and this wire forms a part of the resonant circuit that drives the trap. Therefore,

some voltage differential is expected. In some papers, the rf voltage is treated as a fit

parameter since it is difficult to directly measure [SCR+06, CLBC09]. However, in this

case the frequencies are not off by a constant factor, so this is not a completely satisfactory

explanation. It is possible that some combination of the two effects explains the discrepancy:

the dc fields at the ion location are unknown, as is the magnitude of the rf field.

A more interesting question is how well the ion crystal structures match the theory for

the measured frequencies, which we explore next.

7.5.3 Ion crystal structure

Ion crystals consisting of between one and four ions were observed in Uraniborg 2. To

obtain these images, it was necessary to readjust the imaging optics repeatedly to reduce

aberrations, to set the dc voltages carefully, and to carefully coalign and focus the detection

lasers. Without these conditions being met, somewhat misshapen crystals of two ions (but

no more) were observed. Unfortunately, it was difficult to cool more than four ions into a

crystalline state in this trap.

Although ion crystals were observed, the signal was fairly weak and long exposure times

of up to 5 s were required, using the HIGH resolution of the SBIG camera, in which each

individual pixel is displayed (no binning). Images of crystals are plotted in Fig. 7-24.

Images were analyzed as follows: the centers of each ion were determined from a Gaus-

sian fit of the intensity. The magnification was calibrated to the spacing of two ions. The

image of four ions was processed in the same way, using this magnification. Errors on the

spacing of ions were determined from the standard deviation on the centers of the ions. For

two ions, the calculated spacing is 16.5 µm, and the spacing between ions is 11±3 pixels,

giving a magnification of 4.5, or 1.5 µm per pixel.

For four ions, we calculate the spacing between the ions along the x̂ and ŷ directions.
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Along ŷ, the spacing is dŷ = 28±3 µm, while along x̂ it is dx̂ = 17±3 µm. These values are

consistent with the theoretical values of dŷ = 29.6 µm and dx̂ = 17.1µm.

Again, it was not possible to crystallize larger numbers of ions, and therefore confir-

mation of the crystal structure for higher numbers of ions was not done. However, we do

now have some confidence that the crystal structure in elliptical traps may be accurately

computed. There are a number of possible reasons for the low ion number. Among them

are the stability of the lasers used, the fact that crystals were only observed at relatively low

trap depths (0.3 eV), and the possibility of heating from the rf electrode rendering larger

crystals unstable. Indeed, the lifetime of a single ion in the absence of cooling light was at

most a few seconds, indicating that heating may indeed be a problem.

7.6 Discussion: connection to quantum simulation

We have now presented the design and testing of a new method for preparing a 2-D Coulomb

crystal in a Paul trap: the surface-electrode elliptical trap. The next step is to evaluate the

usefulness of this trap for quantum simulation, focusing again on the challenging problem

of spin frustration. We frame this discussion in terms of the requirements posed in Sec. 4.3.

There, we note that a viable trap design must:

1. Provide a regular array of stationary qubits in at least two spatial dimensions.

2. Enable sufficient control over each qubit to implement the desired simulation.

3. Possess, in principle, a low enough decoherence rate to perform meaningful simulations

given certain coupling rates.

We address these criteria one-by-one.

7.6.1 Regular array of stationary qubits

We have calculated crystal structures for the elliptical trap presented in this chapter, but

it is seen from these that a truly regular array of ions is not produced. The reason for this

is that the test trap was designed with more difference between the radial frequencies ωx̂

and ωŷ than is strictly necessary to support a 2-D crystal with fixed ion positions.

Recent calculations [BKGH08, BH09] have suggested that in a 2-D ion crystal regular

lattice structures near the center of the lattice may be observed. We expect that, in our trap,

as ωx̂ → ωŷ, that such regular structures will also appear. The calculations of Sec. 7.1.2

support this hypothesis.

7.6.2 Sufficient controls

We have outlined in this chapter two methods for implementing the state-dependent forces

required for quantum simulation of spin models: optical forces and magnetic field gradients.
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A major contrast between these approaches is that the magnetic gradient approach is well-

suited to applying global effective Hamiltonians to the system, while the optical forces may

be applied either globally or pairwise between ions. Regardless of the method used, we

would like to remind the reader that the simulated coupling rates in the elliptical trap are

of the same order of magnitude that they would be in a “linear” ion trap (the applied force

F and ion-ion spacing d being the same for both). In Sec. 5.6, we compared the interaction

rates between lattice traps and traps in which ions are confined in the same potential well.

Both the motional coupling rates and simulated coupling rates are therefore as high as they

would be in a linear ion trap, except that they can act along multiple directions.

Despite high interaction rates, the elliptical trap has certain control errors that do not

occur in lattice-style traps, most especially those due to micromotion. The unequal micro-

motion amplitudes across the crystal mean that the effective (time-averaged) J-coupling

varies across the ion crystal. If ions on the periphery of the crystal are used, such that

the ion-ion distance varies from site to site, this adds an additional control error that ex-

acerbates the one due to micromotion. Although it is arguably easier to apply magnetic

gradients to create a global force, and although this approach removes errors due to spon-

taneous scattering, pairwise interactions with an optical force have the potential to correct

the systematic errors. Adjusting the controls in such a manner is tractable, since the ion

positions and relative micromotion amplitudes are efficient to calculate. The limited system

size of about 100 ions further limits the computational resources required to do this. At

the same time, doing such implementations in practice will require excellent control (with

precision of O(∼ 1−10µm)) of the pushing laser position. Similar control would be required

to optically perform single-qubit operations in such a trap.

In summary, the question of magnetic vs. optical forces presents a tradeoff between

control and simplicity. The point remains that there is no fundamental limitation to doing

high-fidelity quantum operations in an elliptical trap. We note further that the results of

this chapter regarding control errors due to micromotion apply generally to 2-D ion crystals

in Paul traps, and are not limited to the elliptical traps that were the focus of this chapter.

7.6.3 Decoherence rates

Although not the primary subject of this chapter, decoherence rates will ultimately deter-

mine the feasibility of quantum simulation in elliptical traps (or other traps that generate

2-D ion arrays). Given the cryogenic temperature and relatively large (mm-scale) size of

the Uraniborg traps, it is possible that the motional heating rate could be well below the

interaction rate J , which may be on the order of kHz. Heating can also occur due to back-

ground gas collisions, but here the cryostat provides an excellent vacuum environment, on

par with or superior to the best room-temperature UHV systems. Since conventional ion-

ization gauges do not function at cryogenic temperatures, other methods must be used to

measure the pressure. Ref. [ASA+09] uses ion lifetimes to upper-bound the partial pressure
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of O2 to 2 × 10−12 torr.

Decoherence of the internal states depends on many factors, including fluctuations of

the parameters (amplitude, phase, etc.) that describe the control pulses, fluctuations in

ambient magnetic fields, and processes intrinsic to the atom such as spontaneous emission.

The last of these can result in decoherence even for qubits that have very small spontaneous

emission rates, such as hyperfine qubits, since spontaneous scattering during the Raman

pulses that are used can decohere the states. Although we don’t specifically treat these

decoherence processes in this thesis, we may legitimately hope that internal state coherence

times of several seconds may be obtained, in the event that hyperfine states are used.

7.7 Conclusions and future work

In this chapter we have explored the possibility of using surface-electrode elliptical ion traps

for analog quantum simulation, particularly simulation of quantum spin models. We have

presented calculations of the structure of 2-D and approximately 2-D crystals within such a

trap. These predictions were confirmed experimentally for a small number of ions. We have

also studied, in theory, how micromotion affects the fidelity of a quantum simulation, and

have seen that studies of quantum spin phases are probably possible even in the presence of

micromotion. In addition, magnetic field gradient coils embedded in the ground electrode

of the elliptical trap might prove an excellent way to produce global state-dependent forces

for implementing a variety of spin models.

On the theoretical side, this work is a starting point. For instance, other types of

quantum simulations to which ions may be well-suited have not been considered. It would

be an interesting problem to study the possibility of observing Bose-Hubbard physics in

this system. Furthermore, although we have calculated the effects of micromotion for small

numbers of ions, the work should be extended to larger numbers. Small errors in the pairwise

interactions will propagate across the system as global correlations are created, and it will

be an interesting (but computationally intensive) task to examine how the global fidelity of

the simulation is altered. We note, however, that such errors may be corrected for, provided

adequate controls are available.

Experimentally, a natural first step is attempting to form larger ion crystals in the

elliptical trap. Although the source of the relatively low lifetimes of crystals is unknown,

the heating rates in this system should be measured. If anomalously high heating rates are

a problem, even at 4 K, materials other than copper such as silver or gold, which exhibit

lower heating rates, may be used for trap fabrication. Naturally, we would someday like to

see experimentally if methods based on magnetic field gradients are viable for this purpose,

and whether the effects of micromotion for small ion numbers are as we predict.

In all, the elliptical trap appears to be a much more promising system than arrays of

microtraps for analog quantum simulations with a few tens of ions. The ability to maintain
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trap depth and to keep ions in the same trap region as secular frequencies increase means

that the coupling rate of the motional state will remain on the same order of magnitude as

the secular frequency. This is equivalent to having a β parameter on the order of 0.1, as

opposed to orders of magnitude lower, and may be crucial for observing these interactions.
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Part III

Toward ion-ion coupling over a

wire
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Chapter 8

Motivation for and theory of

ion-ion coupling over a wire

In the first two parts of the thesis, we explored digital and analog quantum simulation

using two different quantum technologies: nuclear magnetic resonance and trapped ions.

We also saw that both NMR and the types of ion traps studied in Part II have only a

limited scalability, up to at most perhaps tens of interacting particles. This provides the

motivation for studying a way to scale up quantum simulation to truly arbitrary numbers

of interacting particles.

We now turn to the third and final part of the thesis. The main goal of the research

presented here is the coupling of two trapped ions over a conducting wire. This little-studied

system could potentially be used to scale up ion trap quantum simulation, linking ions in

separate trap regions through the image charges induced in the wire by the motion of the

ions. Application to both digital and analog quantum simulation is conceivable, and in

contrast to the trap designs of Chs. 5 and 7, such coupling is, in principle, electronically

switchable, and there is no apparent limit to the number of ions that may be networked in

this way.

In this chapter, we present a theoretical treatment of the coupling of two ions over a

wire. We explain that the system has the form of two coupled oscillators, with the coupling

mediated by the image charges in the wire rather than by free-space Coulomb coupling,

which is the most common case with ion trap quantum simulation. We also present a

calculation of this coupling rate, showing how it depends on the experimental parameters

such as the ion-wire distance, the trap frequencies, and the capacitance of the wire. This

calculation permits us to set bounds on these parameters for an experimental demonstration

of the coupling, and also to estimate the rates of certain decoherence processes in the system.

These results are included in Ref. [DLC+09b].

The chapter is organized as follows. In Sec. 8.1, we motivate the study of ion-ion

coupling over a wire. In Sec. 8.2, we present the theory of ion-ion coupling over a wire

189



and calculate the relevant coupling rates, and then in Sec. 8.3 proceed to estimate the

pertinent decoherence rates. These calculations lead to the brief section on experimental

considerations (Sec. 8.4), which explains some aspects of the experimental setup in the next

chapter. Finally, in Sec. 8.5, we summarize the results of this chapter.

8.1 Motivation

Communication between trapped ions is a critical aspect of building a scalable quantum

simulator or computer. There are, to date, three proposed methods for doing this:

1. Move the ions between different zones of a trap to enable them to interact with each

other.

2. Connect ions using photons that travel between different traps.

3. Connect ions electronically, using conducting wires.

These methods are discussed in Sec. 1.4.3; here, we summarize their advantages and

disadvantages. Method 1 is attractive because it does not require precise (and probably

expensive) optical components at each ion site as in method 2, and does not rely on technol-

ogy that is as underdeveloped as method 3. Method 2, by contrast, seems very attractive if

the optical components, for example fiber optics and cavity mirrors, can be mass-produced

in a reliable and cost-effective way, and if sufficient coupling between the ion and the light

mode can be achieved. Method 3, if proven to work, may be the simplest of all; fabrication

of the wires that connect the ions can be done presumably using existing technologies, and

the couplings between ions are, in principle, electronically switchable.

The third method, linking ions over wires, is the subject of this part of the thesis.

There have been interesting ideas for the use of such technology that go beyond linking

atomic ions for a quantum simulator. One example is the proposal of Ref. [SGA+05] to link

electrons in individual Penning traps to act as a quantum processor. In another example,

it is proposed to connect an atomic ion electronically to a superconductor as a means of

scaling up quantum computation [TBZ05].

As exciting as the applications seem, there are important and unanswered questions. For

instance, what are the expected coupling rates in a realistic experimental system? What are

the expected decoherence rates? How does the wire used for coupling affect the potentials

of the ion traps? These are the questions pursued in this part of the thesis.

8.2 Theory of ion-ion coupling over a wire

We now discuss the theoretical calculation of the coupling rate between two ions, mediated

by a conducting wire. We define the coupling rate ωex as follows. For two ions, tex = 2π/ωex
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Figure 8-1: Schematic of the experimental setup. The two ions are trapped in different
potential wells, set by the segmented dc electrodes. Distances are approximately to scale
for our experiments; actual values are presented below.

is the time required for the two ions to completely exchange motional states. Normally, the

1/d3 scaling of the interaction rate ωex means that this coupling quickly becomes negligible

as the ions are moved apart. Here, we will focus on the case where free-space coupling may

be ignored, and the only observable coupling is due to the wire.

Fig. 8-1 depicts a schematic of the experimental setup. A single wire is positioned close

to two trapped ions, which are confined in a linear surface-electrode ion trap and are set

far enough apart so that coupling due to their shared normal mode is negligible. The

creation of two different trap regions is possible by adjusting the segmented dc electrodes;

fine adjustment of these voltages can also aid in setting the secular frequencies of the two

ions to be equal, a resonance condition which is important for optimal coupling.

In what follows we will follow two approaches to describe the dynamics of this system.

In the first, we solve the dynamics directly from electrostatic calculations. In the second, we

use an effective circuit model, a useful approach when studying the effects of decoherence in

the next section. This approach was followed by Heinzen and Wineland in a paper that first

treated the coupling of ions over a wire, among other related situations [HW90]. The new

contribution here is the solution of the dynamics directly from electrostatics, presented in

Sec. 8.2.1 which was undertaken mostly by the author’s collaborator Nikos Daniilidis, and

provides a more rigorous justification of the circuit model for our experimental situation.

8.2.1 Electrostatic solution

In order to solve for the behavior of the above system, we need to make some simplifying

(but reasonable) assumptions. We consider a wire of radius a and length L, positioned a

height H above an infinite conducting plane, and parallel to this plane. Treating this plane

(which is, in reality, the trap) as infinite in extent and a continuous conductor is the first

assumption. The two ions are situated at heights h1 and h2 (h1, h2 < H) above the trap,

and are some distance d apart. We assume also that h1, h2, H ≪ d < L. The ions are

treated as point charges, a very reasonable assumption. We depict this situation in Fig. 8-2.

Considering both ions to have a charge ec, and the wire to have zero net charge, it can

be shown using Green’s function techniques that the electrostatic potential of the wire with
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Figure 8-2: Diagram of the model used in our calculations.

respect to ground is

V =
ec

4πǫ0

[

ln

(

H + h1

H − h1

)

+ ln

(

H + h2

H − h2

)]

. (8.1)

To obtain the coupling rate, we need to know how the induced charges in the wire due

to one ion affect the electric potential seen by the other ion. We write down the potential

energy of each ion due to the induced charge in the wire as

Ui =
ecV

α
ln

(

H + hi

H − hi

)

, (8.2)

where i = 1,2 indexes the ions and the geometric constant α = ln [(2H − a)/a].

Equipped with this potential energy, we can calculate the coupling constant from its

second derivative. First, we switch to a more convenient coordinate system, in which the

height of the ion hi is equal to its equilibrium height h0i added to its displacement from

equilibrium zi. The coupling constant is given by

γ ≡ ∂2(U1 + U2)

∂z1∂z2
=

2e2
cH

2

πǫ0αL(H2 − h2
1)(H

2 − h2
2)

. (8.3)

Given the fact that each ion is in a separate harmonic trap, we can write the full system

Hamiltonian:

H =
p2
1

2m
+

1

2
mω2z2

1 +
p2
2

2m
+

1

2
mω2z2

2 + γz1z2 , (8.4)

where γz1z2 is the lowest-order interaction term between the two ions.

The solution to this equation is quite well known in the classical case. For higher

temperatures, this approach would be approximately correct. However, in the quantum-

mechanical case the solution is a bit more difficult. Ref. [EKN68] considers both the resonant

case (ω1 = ω2) exactly, as well as in the rotating wave approximation. These two approaches
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are in close agreement in the case of small coupling constants (γ/
(

mω2
)

≪ 1). A more

recent solution has shown that complete exchange of motional states can only occur on

resonance (ω1 = ω2) and for specific initial motional states [PRDB08].

The exchange rate, also known as the coupling rate ωex, is given by

ωex

2π
=

γ

πωm
, (8.5)

where γ and α were defined above and ω = ω1 = ω2 (the resonant case). Incidentally, it is

also equal to the classical expression!

Referring to Eq. 8.3, the above formula for ωex allows us to evaluate the sensitivity of

the coupling rate to the various parameters of our model system. For instance, the length

of the wire and ion-wire distances enter as 1/ [L(H − h1)(H − h2)], a strong dependence,

while the dependence on the wire radius a is only logarithmic (it is contained in α). Overall,

we see that a shrinking of the entire system size leads to increased coupling, as the ions

induce more charge when closer to the wire; also, a shorter wire length leads to a higher

overall charge density on the wire. The inverse dependence on the secular frequency ω is an

expected feature of coupled harmonic oscillators; we have seen similar physics at work in

the lattice traps of Ch. 5. Physically, tighter confinement (higher ω) reduces the effective

“dipole moment” of each ion, which scales as 1/
√

ω.

8.2.2 Circuit model solution

The above model leads to a physical picture of the physics of our system. In this section, we

explore a different approach, which is based on a circuit model of the system, in which each

component is treated as a lumped element: an inductor, capacitor, or resistor. This can

have two key advantages: one is that the above physical model is based on assumptions that

are not strictly true, but are good approximations. To take an example, the capacitance

between the wire and ground will differ from that computed for an infinite ground plane,

especially since the length of the wire is not much less than the width of the trap in our

experiment. A circuit model allows one to quickly plug in more reasonable estimates of

this capacitance. The second, and more compelling, reason to use a circuit model is that it

makes the treatment of decoherence simpler. This is because the main decoherence sources

are electrical in nature; dissipation of currents in the wire and Johnson noise heating are

the two prime examples. This approach was presented in Refs. [WD75] and [HW90], and

we follow it here.

We begin with the equations of motion for the ions:

ec

m
Ei = z̈i + ω2

i zi, (8.6)

where the electric field Ei is due to the voltage in the wire induced by the other ion. We

wish to write this field in terms of quantities in the above model, and the result is
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Ei = V
2H

(H2 − h2
i ) ln

(

2H−a
a

) . (8.7)

The details of this derivation are found in Ref. [DLC+09b]. We now invoke a result of

Shockley [Sho38] to find that the charge induced in the wire by a single ion may be written

as

qind = −ec

α
ln

(

H + h

H − h

)

. (8.8)

Noting that the current I in the wire is proportional to qindż, the above result enables

us to write the mechanical equation of motion as an electrodynamic one involving currents

and voltages:

Ui = Li
dI

dt
+

1

Ci

∫

Idt, (8.9)

where the effective inductance Li and capacitance Ci of a single trapped ion are given as

Li =
1

ξ2
i

mH2

e2
c

(8.10)

and

Ci =
1

ω2
i Li

, (8.11)

and the geometric factor ξi given by

ξi =
2H2

α(H2 − h2
i )

. (8.12)

These formulas enable us to answer a very interesting question: what are the effective

inductance and capacitance of a single trapped ion? The answer is that the inductance is

very large, while the capacitance is very small. Let us assume some feasible values for this

experiment: H = 200 µm, h1,2 = 150 µm, L = 10 mm, a = 12.5 µm, and ω/(2π) = 1 MHz.

For these values, L1,2 = 3.7 ×104 H and C1,2 = 6.9 ×10−19 F. This explains why trapped

ions are such excellent resonators; the usual Q factor for an electrical circuit is given by

Q =
√

L/R2Ci, and is on the order of 1011 for our trapped ions.

The motional coupling rate ωex in terms of these quantities is given by

ωex =
1

2ωLC
, (8.13)

where C is the capacitance of the wire to ground, as detailed in Ref. [HW90]. We may now

calculate the expected coupling rate. Using the above parameters and a wire capacitance

of C = 2 × 10−15 F, it is ωex = 103 s−1.
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8.2.3 Simulated coupling rates

We now address how the calculated motional coupling rates above may be translated into

a simulated coupling rate. As in Part II, we restrict our discussion to the simulated J-

coupling rate in a spin model simulation using the methods outlined in Ref. [PC04b]. We

will assume that a state-dependent force of magnitude F is applied to each of two ions,

although they may reside in different trap regions.

The J-coupling rate may be calculated by separating the motional coupling rate (parametrized

by β) from the part of J that is due to the state-dependent force. Recalling the results of

Sec. 4.2.2 and taking the β ≪ 1 limit, we find that J for a given direction may be written

as

~J =
2cβF 2

mω2
(8.14)

where ω is the secular frequency along a given direction, m is the ion’s mass, and c is a

constant of order unity that depends on the direction of the state-dependent force. Here,

we set c = 1 since we are mainly concerned with an order of magnitude for the coupling

rate. Recalling that β is the motional coupling rate per secular vibrational period, we write

it as

β =
ωex

ω
. (8.15)

For the parameters used in Sec. 8.2.2, we find that β ≈ 10−3. Taking our value from

Ch. 5 of F = 2.7 × 10−21 N, and using the mass of 40Ca+, we find that J ≈ 100 s−1.

Although this seems like a poor figure, we note that the same scaling laws that apply to

the lattice ion traps (Ch. 5) do not apply to the present situation. For instance, it may be

possible to decrease the secular frequency, even with a small ion-wire distance. Part of the

reason for this becomes apparent when we discover the effect that the wire has on the trap

potentials (Ch. 9): it may be easier with wire-mediated coupling to preserve trap depth

while lowering the secular frequency.

Naturally, there are other possible avenues to increasing J , such as applying a stronger

force. For now, we regard the simulated coupling as observable in principle, under favorable

but realistic decoherence rates.

8.3 Decoherence

We now turn to estimating the rates of decoherence in the above system. The decoherence

processes are important to understand for the obvious reason: they may tell us if coherent

information transfer is possible over a wire at all, even if the coupling rate seems adequate,

and may also help us to answer questions such as the requisite temperature and resistivity

of the wire. Because these decoherence sources are electrical in nature, we will find the
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Figure 8-3: Equivalent circuit of two ions, each with inductance Li and capacitance Ci,
defined as in the text. They are coupled by a wire with ohmic resistance R and a capacitance
of C to ground. The currents Ii are determined by the velocity of each ion, according to
Eq. 8.8.

circuit model to be of great utility. In Fig. 8-3, we have drawn a schematic of the equivalent

circuit that describes two ions and the wire.

The primary types of decoherence we will treat here are dissipation (Joule heating of

the wire), Johnson noise, and anomalous heating.

8.3.1 Dissipation

To treat dissipation, we need to calculate the current in the wire due to the motion of the

ions. Again invoking Eq. 8.8, this current is given by

I =
ecżξ

H
≈ ecξ

√

~ω/m

H
. (8.16)

For the above parameter set, this current amounts to 0.1 fA, for a wire resistance of 0.6 Ω;

thus 2 ×105 s would be required to dissipate only one quantum of vibrational energy. Given

the very small current and the I2 dependence of the heating law, this is not surprising.

Therefore, the dissipation of the induced currents will not pose a problem.

8.3.2 Electric field noise

Johnson noise and anomalous heating are two manifestations of the uncontrolled fluctuations

in electric field (electric field noise) that acts upon an ion. These processes can result in the

ion gaining kinetic energy in an uncontrolled way, and therefore decohering the motional

state of the ion.
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Johnson noise

We begin our discussion of Johnson noise by writing down the Johnson noise heating power

PJ :

PJ = kBT∆ν, (8.17)

where, as usual, kB is Boltzmann’s constant, T is the temperature, and ∆ν is the frequency

bandwidth in which the ion accepts the power. The latter is inversely related to the Q-factor

of the ion’s motion, mentioned above. To calculate the time over which one quantum of

vibrational energy is absorbed from the wire by the ion, we use the formulas Ev = hν and

Q = ν/∆ν, and arrive at

τ−1 =
PJ

Ev
=

kBT∆ν

hν
=

kBT

hQ
. (8.18)

An alternative, but equivalent expression for the Q parameter (c.f. Sec. 8.2.2) may be

derived from the dissipated power Pd = I2ℜ(Z), where I is the current due to a single ion

and ℜ(Z) is the real part of the impedance. We find that

Q =
Eion

Pd/ν
=

mż2ν

I2ℜ(Z)
=

mνH2

e2
cξ

2ℜ(Z)
. (8.19)

Putting it all together, we calculate the time constant for the absorption of one quantum

to be

τ−1 =
kBTe2

cξ
2ℜ(Z)

hνmH2
. (8.20)

Taking ℜ(Z) = 0.6 Ω at T = 298 K, and using the same parameters given above, the

heating time due to Johnson noise is τ = 0.1 s/quantum. The corresponding rate 1/τ

is thus significantly smaller than the motional coupling rate (O(103 s)) calculated above.

However, the heating rates are not expected to be dominated by Johnson noise, especially

at room temperature.

Anomalous heating

Anomalous heating is a motional heating of ions with a poorly-understood origin. It scales

as roughly D−4, where D is the distance from the equilibrium position of the ion to the

nearest trap electrode. This scaling law implies that as ion traps become smaller, the

noise level can quickly lead to too much decoherence of the ions’ motional state. Even

a very low heating rate in a room temperature trap, such as observed in Ref. [SCR+06],

will add a quantum of energy to the ion’s motional state in, on average, 200 µs. However,

as we have reported elsewhere in this thesis, cryogenic cooling can greatly mitigate this

heating. Taking our estimate of tex = 1 ms, along with the best-case heating rate reported
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in Ref. [LGA+08] in a 75 µm trap (5 quanta/s), it does seem reasonable to be able to

observe the coupling without interference from heating, provided that the trap and the wire

are sufficiently cooled. Even with a simulated coupling rate of J = 100 s−1, spin models of

a modest size may be simulated. Both of these estimates, however, depend upon internal

state coherence times being on the same order as or greater than the motional heating time.

8.4 Experimental questions

We have now calculated, or otherwise justified, the expected coupling rates and decoherence

rates for our system. However, these rates are based on a specific model, which will not

hold perfectly in the lab. Can we anticipate some effects that may require adjustment to

the model? Also, what are the steps that should be done before attempting a wire-mediated

coupling experiment? There are three main questions that drive the experimental work of

the next chapter:

1. What are the constraints on the resistance and capacitance between the wire and

ground?

2. How do the rf confining fields affect the potential on the wire?

3. How do the heating rates scale as a function of ion-wire distance?

The first question will guide the setup of the experiment, while the second and third

will require experimental measurements. We discuss each briefly.

8.4.1 DC and RF paths from the wire to ground

Intuitively, paths to ground, whether rf or dc, seem likely to reduce the coupling rate by

allowing charge to escape from the “system” to the “environment.” Here, we will briefly

justify why this is the case, and put it into a more quantitative form, in order to figure out

exactly how isolated the wire must be from ground.

We first consider the wire’s resistance to ground. The wire basically is an RC circuit,

with a very large resistance and very small capacitance. The figure of merit is the time

constant that characterizes the leakage rate of charge on the wire to ground. Clearly, a

fast time constant will result in the shorting of the current moving between the two ions

to ground, reducing the coupling rate. The necessary condition will be τleak = RC ≫ tex.

For a capacitance of a few femtofarads, we find that R = 1013 Ω will provide a leakage

time greater than 1 s. Current leakage, however, is not the only consideration. Note that a

changing total charge on the wire will randomly change the force exerted on the ions, leading

to decoherence of their motional states. Therefore, whatever the total charge on the wire

is, we require it to remain constant during an experiment. Satisfying the above condition
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should suffice. Note that the above resistance is also consistent with the requirement due

to Johnson noise presented in Sec. 8.2.2.

Next, we consider how small the capacitance actually needs to be. Intuitively, a ca-

pacitance at rf is the same as a short, and therefore the current moving between the ions

will be coupled to ground and the overall coupling between ions will be weakened. This

is mathematically borne out by Eq. 8.13, which contains the capacitance between the wire

and ground in the denominator. As noted in Sec. 8.2.2, the needed wire capacitance C may

be calculated from a target motional coupling rate, which we take to be ωex = 103 s−1.

Taking the inductance of each ion to be the calculated value of 3.7×104 H and the motional

frequencies to be ω/ (2π) = 1 MHz, we arrive at a capacitance of 3 × 10−15 F.

We see that the wire must be electrically floating to a very high degree. This affects

the choices of materials, as well as the expected potentials on the wire. For instance, a

very good insulator must be used to mount the wire near the ions. This, though, leads in

turn to the possibility of large amounts of stray charge existing on that piece. It is also

certainly true that some unknown charge will reside on the wire as well. This affects the

compensation voltages, and also raises the possibility of yet another decoherence source: the

random gain or loss of electrons on the wire during an experiment. This is not a problem

as long as the resistance is very, very high.

8.4.2 Potentials on the wire due to the rf trapping fields

Unknown, slowly-varying charges on the wire can lead to changing compensation voltages,

as well as (possibly) to decoherence. However, the charges in the wire are also influenced

by the rf trapping fields. Our model above does not include this effect, but we can expect

that the wire will be polarized by these electric fields, in such a way that the fields tend to

be cancelled near the wire. In this sense, we can think of the wire as an rf ground, despite

our best efforts to isolate it from ground. This is due to the effect that the wire will have

on the curvature of the electric field lines.

An important experiment will be to measure how exactly the secular frequencies vary

as a function of the ion-wire distance. As we have seen, increasing secular frequencies are

bad for the coupling rate. How do the changing frequencies then affect the scaling of the

coupling rate as a function of ion-wire distance? If they adversely affect ωex too much,

perhaps then we can reduce the rf trapping voltages in order to keep the ωi low. When we

do this, is the trap still stable? How does the trap depth change?

8.4.3 Heating rates vs. ion-wire distance

It has been generally observed that anomalous heating tends to have a D−4 dependence,

where D is the distance from the ion to the nearest trap electrode. This is a general trend

with a lot of scatter, however. The authors of Ref. [DOS+06] did a systematic study using

two rf electrodes with a variable distance from the ion, and found that the exponent is more
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nearly -3.5. We wish to undertake a similar experiment, but with the electrically floating

wire that will be used for the coupling experiment. Heating rates as a function of the ion’s

distance from an electrically floating conductor have not previously been measured.

Further systematic measurements of the distance dependence of heating rates should be

undertaken. These are not only germane to the eventual coupling experiment, but also are

an interesting experiment in their own right, as they may yield additional insight into the

origins of anomalous heating.

8.5 Summary

In this chapter, we have reviewed the motivation for and theory of the coupling of two ions

over a conducting wire. It has become clear from our predicted coupling rate, together with

observed heating rates at room temperature and at cryogenic temperatures, that cryogenic

cooling will probably be necessary to observe coherent transfer of information across a wire.

However, we have also pointed out some important questions, regarding the potential on

the wire arising from the trapping potentials, together with the distance dependence of the

heating rates, that can be addressed in a room-temperature apparatus.

The pursuit of the answers to these questions is presented in the next chapter. Although

the primary topic of this thesis is quantum simulation, and electronic communication be-

tween ions could certainly facilitate that goal, it is a necessary first step to take a foray into

the interaction between single ions and solid materials.
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Chapter 9

Measuring the interaction of a

single ion with a wire

We now turn to the experimental characterization of the interaction between a conducting

wire and a single ion in a Paul trap. Recalling from Ch. 8 that the wire to be used in a

coupling experiment must be electrically floating both at dc and rf frequencies, we expect

that the rf voltage which drives the trap will induce a significant voltage on the wire,

which in turn will influence the rf potential seen by the ion. In addition, the wire will

carry some unknown dc charge, which cannot flow to ground because the wire is floating at

dc. The primary purpose of this chapter is to measure how the secular frequencies and dc

compensation voltages depend on the ion-wire distance. In addition, we investigate whether

distance-dependence of the ion heating rates can be observed.

The present experiment has two main objectives. The first, in line with the overall goal

of the thesis, is exploring the possibility of electrically connecting ions in different traps

for scaling up quantum simulation. Understanding the effects of the capacitive connection

between the wire and the trap, as well as the impact of unknown charge on the wire, is

important for estimating the feasibility of the coupling experiment under the constraints

enumerated in Ch. 8. The second objective is to investigate the possibility of measuring

electrical properties of a macroscopic conductor using a single trapped ion as an extremely

sensitive detector. Indeed, recent work in measuring heating rates in microfabricated traps

not only demonstrates the suppression of heating at cryogenic temperatures [LGA+08], a

boon to quantum computation and simulation, but also provides a way to probe the surface

physics of these conductors [LGL+08]. We believe the types of measurements presented in

this chapter are another step towards measuring not only noise, but also the capacitance

and total charge of macroscopic objects using a single ion.

The chapter is organized as follows. In Sec. 9.1, we discuss the experimental apparatus

used, which will introduce a new ion species, 40Ca+. Our experimental methodology for

measuring stray dc voltages, secular frequencies, and heating rates is then presented in
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Figure 9-1: Photograph of the vacuum chamber used in Innsbruck for this ion-wire coupling
experiment. The titanium sublimation pump is mounted on the left. Near the center, the
ion pump, ion gauge, and main all-metal valve are mounted at an angle to the main axis
of the chamber. The spherical octagon is on the right, with AR-coated CF35 (metric)
viewports, roughly equivalent in diameter to 2 3/4 in. CF hardware.

Sec. 9.2. Sec. 9.3 contains the experimental results, and in Sec. 9.4, we conclude and look

to future experiments.

9.1 Experimental apparatus

Much of the apparatus is similar to that used in Part II. The basic elements of a room

temperature UHV system, and rf-driven Paul trap are the same as used at MIT on the

strontium ion. The vacuum system is shown in Fig. 9-1.

For the rest of the section, we focus on those elements that are substantially different

from the MIT setup, including the ion species, the microfabricated gold surface-electrode

trap, and the moveable wire.

9.1.1 The 40Ca+ ion

The 40Ca+ ion has a level structure very similar to 88Sr+. The structure is presented in

Fig. 9-2. The laser wavelengths for 40Ca+ (that we used) are λDopp = 397 nm and λRep =

866 nm. The spontaneous decay rate of the P1/2 level is 23 MHz with a branching ratio

of 16. Ion production is accomplished by photoionization (PI) of a neutral calcium beam

in a manner analogous to that used for strontium (Chs. 5 and 7). The requisite photons,
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Figure 9-2: Left: Level diagram for the 40Ca+ ion, showing the Doppler cooling transition
at 397 nm, the repumper at 866 nm, and the sideband cooling and coherent operations laser
at 729 nm. The spontaneous emission rate from the 4P1/2 state is 23 MHz, with the ion
decaying to 3D3/2 ≈ 1/16 of the time. The lifetime of the 3D5/2 state is ≈ 1.2 s. Right:
Photoionization transitions for 40Ca. A 422 nm photon pumps the atom from the 4s4s state
to the excited 4s4p state, then a 370 nm photon takes the atom into an autoionizing level,
resulting in the loss of a single electron.

at 422 and 370 nm, are generated from extended cavity diode lasers. A schematic of the

two-photon PI process is also given in Fig. 9-2.

The laser system was furnished by Toptica. The 397 nm Doppler cooling beam is pro-

duced by frequency-doubling a 794 nm laser diode, while the 866 nm radiation is produced

from an extended cavity diode laser directly. Photographs of these lasers are presented in

Fig. 9.1.1 and Fig. 9-4.

The lasers are locked using the Pound-Drever-Hall (P-D-H) method to a four-hole ULE

cavity under vacuum, with an approximate pressure of 10−8 mbar.1 The control electronics

for current and temperature stabilization, as well as the P-D-H lock are furnished by Toptica.

The frequencies are then monitored using a Toptica wavemeter.

9.1.2 The microfabricated trap

The trap is manufactured using standard microfabrication techniques. The credit for the

design and manufacture of the traps goes to Nikos Daniilidis, a post-doc in the Innsbruck

group who collaborated on this project with Andreas Wallraff at ETH Zürich. The trap

1In this chapter we shall use mbar rather than torr to describe vacuum pressures. Fortunately, 1 mbar
= 0.75 torr, so that they are on the same order of magnitude.
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Figure 9-3: Photograph of the 397 nm laser. The main laser diode is contained within the
larger box, while the doubling cavity is within the smaller. The distance between holes on
the optical table is 2.5 cm.

Figure 9-4: Photograph of the 866 nm laser and the outer vacuum vessel of the four-hole
cavity (background). The distance between holes on the optical table is 2.5 cm.
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Figure 9-5: Photograph of the microfabricated trap used for ion-wire coupling experiments.
The trap is mounted in a CPGA chip carrier, and wirebond connections to the gold pads
are seen.

is shown in Fig. 9-5. The substrate is a sapphire wafer, used because of the low losses in

the GHz range sought by superconductivity researchers. For our purposes, it did not need

to be sapphire, but this works as well as other substrates for us, and the knowledge of the

Wallraff group in working with this material was available to us. The metallic layers are

as follows: 5 nm evaporated titanium (the adhesion layer), 100 nm evaporated gold, and

finally 4-5 µm electroplated gold. The final rms surface roughness, as measured using an

atomic force microscope (AFM) is 20 nm.

9.1.3 The wire

The wire used for the present experiments, and probably also for future attempts at ion-

ion coupling, is a gold wire of the type used for wirebonding, with a diameter of 25 µm.

It is mounted on a stainless steel “fork” with insulating ceramic inserted into the fork

actually making contact with the wire. The wire is glued in place on the ceramic with

UHV-compatible epoxy (EpoTek 353-ND). The fork is connected to a stack of four UHV-

(and low temperature-) compatible piezoelectric actuators, furnished by AttoCube. This

permits the control of four degrees of freedom: rotation of the fork about the piezo stack,

translation of the wire forward and backward, vertical translation, and rotation of the wire

about the axis parallel to the arms of the fork. The first and second are used to move the

wire above the trap and position it slightly to one side of the trap center. The fourth is

adjusted to make the wire as parallel as possible to the plane of the trap electrodes. It is

the third that is used in our measurements to vary the distance between the wire and ion.
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Figure 9-6: Photograph of the fork holding the wire, mounted above the trap in the vacuum
chamber. The fork is machined from stainless steel, and ceramic spacers inserted into the
arms of the fork provide the wire’s electrical isolation. The wire, due to its 25 µm width,
may be difficult to see in the picture.

A photograph of this setup is presented in Fig. 9-6.

9.2 Experimental methodology

9.2.1 Compensation and frequency measurements

The measurement of secular frequencies is done as described before (Chs. 5-7). The measure-

ment of compensation voltages was done in an interesting way that has not been described

in this thesis before. The idea is to mix in the resonant voltage at the secular frequencies

directly on the rf electrodes. If the ion is at the rf null, then it will not be excited by this

field; otherwise, the excitation of the secular motion can be observed. Typically, a small

voltage will be required at first to excite an uncompensated ion. As compensation improves,

this voltage can be increased.

9.2.2 Heating rate measurements

Heating rate measurements for higher levels of heating (many quanta/s) can be done using

the method of Doppler recooling. This method was described theoretically in Ref. [WEL+07]

and then demonstrated experimentally in Ref. [ESL+07]. The method consists of the fol-

lowing steps:

1. Doppler cool a single ion to its steady-state fluorescence level.

2. Turn off the cooling laser for a period of time.

3. Switch on the cooling laser and record the ion’s fluorescence as a function of time.

206



A fit of the resulting curve returns the initial energy of the ion, provided that the laser

detuning and intensity are well-known. The detuning and saturation parameter (related to

the intensity) are plugged into the fit function, such that E0 is the only free parameter. The

derivation of this formula is presented in the theoretical paper cited above. An experiment

is repeated several times to get a good curve. Since heating is a stochastic process, the ion

heats up by a different amount each time, and averaging is required to get a good value for

the average heating rate.

9.3 Measurements

In this section we present the data for one experimental run, bringing in the wire from a

far distance (D > 4 mm) to D = 0.6 mm from the trapped ion. At each wire position,

compensation was done and the vertical compensation voltage was recorded, the vertical

and horizontal secular frequencies were recorded, and a heating rate measurement was

performed.

For all the measurements in this section, the trap drive frequency was Ω/(2π) =

14.74 MHz, with a drive voltage of Vrf ≈ 200 V. The center of the trap was set at ground,

and the voltages on the other electrodes that yielded a compensated trap were between -10

and 10 V.

Vertical compensation

Two compensation voltages, called H and V , were varied as the wire is brought in. Each

is a linear combination of the voltages on several of the dc electrodes, with H changing

primarily the electric field in the x̂ direction, and V changing the field in the ŷ direction.

Of the two, only V changes appreciably, since the wire is moving vertically down onto the

ion, with a small offset (≈50 µm) for imaging the ion. The vertical wire positions are

plotted in Fig. 9-7. We see that there is a monotonic but nonlinear dependence on the wire

position. It is possible that the dc charge on the wire changes during the course of the

experiment, either by discharging or by picking up stray charged particles from the (small)

ambient pressure or photoelectrons induced by laser scatter.

Secular frequencies

We plot here in Fig. 9-8 the secular frequency measurements for the same set of wire

positions as above. Only the horizontal (ωx̂) and vertical (ωŷ) frequencies are plotted.

The secular frequencies fit well to a 1/D2 dependence, as displayed in Fig. 9-9. The

equations are ωŷ/ (2π) = 0.124/D2 + 1.63 and ωx̂/ (2π) = 0.121/D2 + 1.44, where ωŷ and

ωx̂ are the vertical and horizontal frequencies measured in 106 s−1 and d is the ion-wire

distance measured in mm. 1.63 and 1.44 MHz are the values of ωŷ and ωx̂, respectively,

when the wire is effectively at D = ∞, and is not influencing the trap at all.
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Figure 9-7: Measured dc vertical compensation values as a function of the height of the
wire above the ion.

Figure 9-8: Horizontal (ωx̂) and vertical (ωŷ) secular frequencies as a function of the distance
from the wire to the ion.
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Figure 9-9: Linear fit of the ωŷ (green) and ωx̂ (red) secular frequencies to 1/D2, where D
is the ion-wire distance.

Why might this 1/D2 dependence appear? Our hypothesis is as follows. The rf voltage

on the wire arises from a capacitive coupling from the rf electrodes to the wire. The electric

field seen by the ion falls off as 1/D, from the elementary problem in electrostatics (assuming

the wire to be long). In addition, the induced voltage on the wire scales as 1/D. This may be

understood intuitively by considering the wire-trap system to be a parallel plate capacitor

with one plate (the wire) much smaller than the other. Since the secular frequencies are

directly proportional to the magnitude of the electric field acting on the ion, this produces

a 1/D2 scaling.

Heating rates

We now present the heating rate measurements. These were done using the Doppler re-

cooling method. At each wire position, the time-dependent fluorescence was recorded 200

times and added up to produce the data presented here. Fig. 9-10 shows an example plot

of this data and the fit to it. The initial energy can be inferred from this plot, according to

the method presented in Ref. [WEL+07].

Such plots were done for each data set, and the resulting heating rate measurements are

presented in Fig. 9-11 and Fig. 9-12.

Although we do not see a clear trend as a function of the ion-wire distance, this is

actually a positive result. After all, the ion is closer to the trap than to the wire, and

the surface area of the trap is much greater. We would expect the wire to need to get

significantly closer to the ion than the trap is before heating effects due to the wire are

noticeable. This bodes well for getting the wire close to the ions without inducing excess

heating. Indeed, in the future, cryogenic cooling should suppress this baseline heating that
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Figure 9-10: Example Doppler recooling fit. Data points are an average of 200 measure-
ments; error bars are statistical.

Figure 9-11: Heating rate as determined by Doppler recooling for a series of ion-wire dis-
tances. The heating rate is presented in eV/s.
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Figure 9-12: Heating rate as determined by Doppler recooling for a series of ion-wire dis-
tances. The heating rate is presented in quanta/s. Upon normalizing for the secular fre-
quency, the heating rate is roughly constant as the wire approaches.

we see.

9.4 Conclusions

Ion-ion coupling over a wire is an intriguing possibility for quantum networking. This could

find application in both quantum simulation and quantum computation. However, the

necessity of the wire being electrically floating at both dc and rf frequencies poses some

difficulty for this. The increase of secular frequencies as the wire approaches the ion is

detrimental to the coupling rate, and could even render the trap unstable if the frequencies

grow too high such that the q stability parameter approaches 0.9. In addition, stray charge

on the wire that does not discharge at a sufficient rate to ground influences the dc potential

seen by the ion, resulting in micromotion that must be compensated.

However, in these challenges lies an opportunity. A single trapped ion is an extremely

sensitive detector of electric fields. Perhaps measurements, such as those presented in this

chapter, may provide a way of measuring the capacitance of the wire, and the stray charge

that it holds. Such measurements would enable a more precise estimation of the wire-

mediated coupling rate, given its reciprocal dependence on the wire-ground capacitance.

The prospects for ion-ion coupling are still uncertain. It is fairly clear that the trap

potentials themselves will need to be reduced in magnitude as the wire approaches, and

the trap in a real sense becomes three-dimensional as opposed to surface-electrode in form.

Although traps of a 50 µm scale have been demonstrated, it has not been done with an

electrically floating electrode. In addition, although at the current ion-wire distance no
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systematic change in the heating rate was seen, the wire will need to get an order of

magnitude closer before ion-ion coupling at a rate of 1 kHz may be observed. A cryogenic

apparatus is now under construction in Innsbruck to deal with the future heating issue, as

well as reducing the baseline heating rates we already see, and enabling more-rapid testing

of traps and wires.
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Chapter 10

Conclusions and outlook

This thesis presents a study of two of the most important problems facing quantum sim-

ulation: precision limitations and scalability. We have looked both at digital quantum

simulation, concentrating specifically on a quantum simulation of pairing models using nu-

clear magnetic resonance (NMR), and at analog quantum simulation, focusing on scalable

two-dimensional ion trap architectures. We have also studied, in theory, the problem of

two ions interacting over a conducting wire, made experimental measurements of the effect

of the wire on the trap potentials, and discussed possible application to both digital and

analog quantum simulation. Here we summarize the main results of the thesis, and look

ahead to the new challenges raised by this work.

In Part I, we examined one method of digital quantum simulation using a nuclear spin

system. We saw that the precision of quantum simulation using Fourier transform meth-

ods faces limitations to the attainable precision arising from both intrinsic and system-

dependent sources. The intrinsic sources include the sampling rate of the Fourier transform,

related to the collapse of the quantum state upon measurement, as well as the natural de-

coherence time of the system. Further, the use of error correction increases this inefficiency

due to the large number of extra gates required. The primary system-dependent limit is

due to control errors, which although present in any experimental system, have been stud-

ied by us specifically for the NMR system. We conclude that for algorithms of this type,

quantum simulations are not necessarily more efficient than classical ones with respect to

the precision of the final result.

Despite these limits, digital quantum simulation may be of great use when no classical

approximation is available, and when a limited precision is acceptable. Since a (universal)

digital quantum simulator is essentially a quantum computer, the wealth of contemporary

research into quantum computing technology is directly applicable to quantum simulation.

However, there are to date few experimental results for digital quantum simulation using

scalable technologies such as ion traps. All the digital quantum simulation experiments

prior to this thesis were done in nuclear spin systems. Although the precision limitations

enumerated in this thesis are independent of the quantum model system being used, more
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study should be undertaken of the effects of control errors in scalable quantum computing

systems. Is it possible that the presence of control errors and the sensitivity of quantum

simulations to them is superior in one system relative to others? Is it even possible that

this system will be found not to be identical to the one that is best-suited for universal

quantum computation? We do not yet know the answers to these questions, but they are,

in our view, fascinating ones that must be pursued.

Moving to the subject of analog quantum simulation, we saw in Part II how an array

of trapped ions could be used for simulating physics such as Ising and Heisenberg spin

models, and specifically spin frustration in 2-D antiferromagnetic spin lattices. We also

saw, however, that building a scalable or even semi-scalable architecture for doing such

simulations in 2-D is actually quite difficult. This problem arises for arrays of microtraps

from the difficulty of maintaining both low secular frequencies and high trap depths at small

ion-ion distances. This is a fairly straightforward result of the physics of coupled oscillators

and the equations of motion of trapped ions. Although we have not proven that quantum

simulation in lattice traps is impossible, it does appear to be quite difficult.

We then looked for a different trap design for 2-D quantum simulation, and moved on

to studying elliptical ion traps, calculating and measuring such properties as the motional

frequencies and the structure of ion crystals in these traps. We also showed that the

unavoidable micromotion is not a fundamental detriment to quantum simulation, and that

interesting analog simulations, such as the search for quantum phase transitions, may be

possible in such an architecture. Although other trap designs exist that create 2-D lattices of

ions, elliptical traps have the advantage that they can be scaled down and microfabricated,

reducing overall micromotion amplitudes and also allowing for the integration of wires that

produce magnetic field gradients, which we showed can be used to provide a rich variety of

simulated Hamiltonians for quantum simulation.

To date, the only realization of the spin model simulation scheme has been with two

ions in a linear trap. This can and should be scaled to larger numbers of ions in a linear

chain, and efforts made to understand the sources of decoherence and control errors. At the

same time, prototype 2-D quantum simulators should also be built. We think that elliptical

traps are a good starting point. In the future, these simulations may enable us to solve

very difficult problems, such as calculating the phase diagrams of 2-D antiferromagnetic

lattices, that may, in turn, shed light on the causes of high-temperature superconductivity.

Other condensed-matter systems, such as the Bose-Hubbard model, may be simulable in

such a trap as well. Developing a good 2-D trap design is an important step toward tackling

problems that classical computers cannot efficiently solve.

Despite the possibility of exceeding the simulation power of classical computation even

with 40 ions in a single trap, the 2-D architectures we proposed are not truly scalable to

hundreds of ions or more. We mentioned a number of ideas for scaling ion trap quantum

simulators to such large numbers of qubits, including moving ions between separate micro-
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traps, linking ions using photons, and connecting ions electrically over a wire. The last of

these framed the goals for the third part of this thesis. We built a system that includes

a segmented surface-electrode ion trap and a moveable wire in vacuum. We calculated

the theoretical coupling rates and decoherence rates, and set bounds on the acceptable

experimental parameters, including the capacitance and resistance to ground of the wire.

The resulting stringent requirement that the wire be highly isolated from ground at both

dc and rf frequencies motivated the experimental work of Part III. Here, we studied the ways

in which this wire changes the electrodynamic potentials that act on a single trapped ion.

Although we have not yet observed ion-ion coupling over a wire, we have joined a recently-

growing effort to exploit the fact that trapped ions are extremely sensitive detectors of

electric fields. Most of the work to date has focused on measuring fluctuating fields, since

they affect motional heating rates. Our work is a step toward measuring electrical properties

of a macroscopic conductor from non-fluctuating fields.

This experiment will progress, first into a cryogenic chamber to quell the rather high

heating rates already observed, and then eventually to a point at which the wire is close

enough that ion-ion coupling might be observed. Sympathetic cooling or heating of an

ion in a different trap would be a good place to start. We do not yet know whether this

approach will be useful to scaling up simulators, but the continued experiments will help us

figure this out. If successful, the project will have bearing on other interesting approaches,

such as linking a superconducting qubit (a fast processor) to a single trapped ion (a long

quantum memory) over a transmission line.

In sum, then, this thesis has taken steps along three quite different approaches to quan-

tum simulation. In the course of this work several new problems were identified, which in

turn motivated new questions, which we hope will form part of the efforts of researchers

worldwide well into the future. We also hope that our work hastens the day when quantum

simulation is reliable and commonplace, and a part of the toolbox of every researcher who

can make use of it.
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phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms. Nature, 415, 39–44, 2002.

[Got97] D. Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev.
A, 57, 127, 1997.

[GP00] G. Grosso and G. P. Parravicini. Solid State Physics. Academic Press, 2000.

[GRL+03] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner,
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Appendix A

Matlab code for Ising model

simulations

This appendix contains the Matlab code for simulating the Ising model for two ions including
the effects of micromotion.

A.1 Simulation with constant force in space and time

% File: ising_small_randomstate.m

% Author: Rob Clark

% Simulates Ising model with and without micromotion, beginning with a

% random two-qubit state.

% Basis generated by {spin space of ion 1} \otimes {spin space of ion 2}

% STAGE 1: simple calculation, ising, no vibration

clear;

close all;

J = 1.0306e3;

B = -J;

A = .1;

Omega = 1.0e6;

t = 0:1/(2*Omega):10/J;

sx = [0 1; 1 0];

sz = [1 0; 0 -1];

sztot1 = kron(eye([2 2]),sz) + kron(sz,eye([2 2]));

H1 = J*kron(sz,sz) + B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

% Randomize initial state

amps = [rand(1),rand(1),rand(1),rand(1)] + i*[rand(1),rand(1),rand(1),rand(1)];
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init1 = amps/norm(amps); init1 = init1’;

expsz1 = [init1’*sztot1*init1];

for k = 2:length(t)

curr = expm(-i*H1*t(k))*init1;

expsz1 = [expsz1 curr’*sztot1*curr];

end

figure(1);

hold on;

subplot(3,1,1);

ylabel(’Magnetization’);

plot(t*J,expsz1)

axis([min(t*J),max(t*J),-2,2]);

% Now do the simulation with micromotion

expsz2 = [init1’*sztot1*init1];

tstep=t(2)-t(1);

curr = init1;

J = 1.0e3;

Jt(1) = J;

Bt(1) = B;

for kk = 2:length(t)

Jt(kk) = J*(1+A*sin(Omega*t(kk)+pi/2))^(-3);

Bt(kk) = B;

Ht = Jt(kk)*kron(sz,sz)+ B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

curr = expm(-i*Ht*tstep)*curr;

expsz2 = [expsz2, curr’*sztot1*curr];

end

Jm = mean(Jt);

figure(1);

hold on;

subplot(3,1,2);

plot(t*J,expsz2);

axis([min(t*J),max(t*J),-2,2]);

theerr = expsz2-expsz1;

figure(1);

hold on;

subplot(3,1,3);

ylabel(’Error’);

plot(t*J,expsz2-expsz1,’r-’);

xlabel(’time (J)’);

axis([min(t*J),max(t*J),-0.5,0.5]);
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err_result = mean(theerr)
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A.2 Simulation with a linear force gradient in space

The following is a function that computes the average J value, as well as the simulation
error for a given gradient of F .

% File: ising_small_rs_fn.m

% Author: Rob Clark

% Simulates Ising model with and without micromotion,

% beginning with a random two-qubit state.

% A linear gradient in space is used.

% This is a function that returns the average J value when the ion undergoes

% micromotion and also the error, calculated as the deviation from the

% micromotion-free simulation.

% Basis generated by {spin space of ion 1} \otimes {spin space of ion 2}

% STAGE 1: simple calculation, ising, no vibration

function [Jm,err_result] = isrf(J0,Jav,A,grad)

% J = -10000;

% B = -J;

% J = 1.0306e3;

J = Jav;

B = -J;

% A = .1;

Omega = 1.0e6;

t = 0:1/(2*Omega):10/J;

sx = [0 1; 1 0];

sz = [1 0; 0 -1];

sztot1 = kron(eye([2 2]),sz) + kron(sz,eye([2 2]));

H1 = J*kron(sz,sz) + B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

% Randomize initial state

amps = [rand(1),rand(1),rand(1),rand(1)] + i*[rand(1),rand(1),rand(1),rand(1)];

init1 = amps/norm(amps); init1 = init1’;

expsz1 = [init1’*sztot1*init1];

for k = 2:length(t)

curr = expm(-i*H1*t(k))*init1;

expsz1 = [expsz1 curr’*sztot1*curr];

end

expsz2 = [init1’*sztot1*init1];

tstep=t(2)-t(1);

curr = init1;
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J = J0;

Jt(1) = J;

Bt(1) = B;

for kk = 2:length(t)

Fr = 1-A*grad*sin(Omega*t(kk)+pi/2);

Jt(kk) = J*Fr^2*(1+A*sin(Omega*t(kk)+pi/2))^(-3);

Bt(kk) = B;

Ht = Jt(kk)*kron(sz,sz)+ B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

curr = expm(-i*Ht*tstep)*curr;

expsz2 = [expsz2, curr’*sztot1*curr];

end

Jm = mean(Jt);

theerr = expsz2-expsz1;

err_result = mean(theerr);
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This is the script that calls the above function, used for studying the effective J value
as a function of the gradient in the state-dependent force.

% ising_small_rs_script.m

% Rob Clark

% 27 March 2009

clear;

close all;

J = 1e3;

B = -J;

A = 0.1;

grads = linspace(0,1,10); % Gradient is relative to A.

for ii = 1:length(grads)

% Calculate average J for a given grad

Jav = J;

[Jm(ii),bigerrs(ii)] = ising_small_rs_fn(J,Jav,A,grads(ii));

% Calculate error with new average J

[Jcr,smallerrs(ii)] = ising_small_rs_fn(J,Jm(ii),A,grads(ii));

end

figure(101);

plot(grads,Jm,’ro’);

xlabel(’Force gradient’);

ylabel(’J_{av}’);

figure(102);

plot(grads,bigerrs,’ro’);

xlabel(’Force gradient’);

ylabel(’Uncorrected error’);

figure(103);

plot(grads,smallerrs,’ro’);

xlabel(’Force gradient’);

ylabel(’Corrected error’);
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A.3 Simulation with constant force in space and linear vari-

ation in time

% File: ising_small_tdep.m

% Author: Rob Clark

% Simulates Ising model with and without micromotion,

% beginning with a random two-qubit state.

% The state-dependent force increases linearly in time.

% Basis generated by {spin space of ion 1} \otimes {spin space of ion 2}

% STAGE 1: simple calculation, ising, no vibration

clear;

close all;

% J = 1.000e3;

J = 1000; %*343.6/333.34;

B = -J;

A = .1;

Omega = 1.0e6;

t = 0:1/(2*Omega):10/J;

Fr1 = t/max(t);

tstep = t(2)-t(1);

sx = [0 1; 1 0];

sz = [1 0; 0 -1];

sztot1 = kron(eye([2 2]),sz) + kron(sz,eye([2 2]));

H1 = J*kron(sz,sz) + B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

% Randomize initial state

amps = [rand(1),rand(1),rand(1),rand(1)] + i*[rand(1),rand(1),rand(1),rand(1)];

init1 = amps/norm(amps); init1 = init1’;

% init1 = [1;0;0;0];

curr = init1;

expsz1 = [init1’*sztot1*init1];

for k = 2:length(t)

H1 = Fr1(k)^2*J*kron(sz,sz) + B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

curr = expm(-i*H1*tstep)*curr;

expsz1 = [expsz1 curr’*sztot1*curr];

end

figure(1);

hold on;

subplot(3,1,1);
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plot(t*J,expsz1)

axis([min(t*J),max(t*J),-2,2]);

ylabel(’<Z> A = 0’);

expsz2 = [init1’*sztot1*init1];

tstep=t(2)-t(1);

curr = init1;

J = 1000;

Jt(1) = J;

Bt(1) = B;

Fr(1) = 0;

for kk = 2:length(t)

Fr(kk) = t(kk)/max(t);

Jt(kk) = Fr(kk)^2*J*(1+A*sin(Omega*t(kk)+pi/2))^(-3);

Bt(kk) = B;

Ht = Jt(kk)*kron(sz,sz)+ B*(kron(eye([2 2]), sx) + kron(sx,eye([2 2])));

curr = expm(-i*Ht*tstep)*curr;

expsz2 = [expsz2, curr’*sztot1*curr];

end

Jm = mean(Jt);

theerr = expsz2-expsz1;

err_result = mean(theerr)

figure(1);

hold on;

subplot(3,1,2);

plot(t*J,expsz2);

axis([min(t*J),max(t*J),-2,2]);

ylabel(’<Z> A = 0.1’);

figure(1);

hold on;

subplot(3,1,3);

plot(t*J,expsz2-expsz1,’r-’);

xlabel(’time (J)’);

ylabel(’Error’);
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Appendix B

Mathematica code for ion crystal

structure

This appendix contains the Mathematica notebook for the ion crystal structure calculations.
Although it was used in the thesis for the elliptical ion trap, it works for any trap for which
the three principal motional frequencies are known.
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In[1]:= H*

File: crystal_shape _6uraniborg .nb
Author : Kenan Diab

Calculates the structure of ion
crystals in a trap using the three secular frequencies wx,

wy, and wz and the number of ions n as inputs . The variables z3coeff
and z4coeff are optional anharmonicity terms .
*L

H* everything is done is cgs units . to simplify the coulomb
contribution to the energy , we divide everything by e^2, introducing
the factor of 0.00131 to the harmonic part. *L

wx = 2 * Pi * H.150 L * 10^6;
wy = 2 * Pi * H.150 L * 10^6;
wz = 2 * Pi * H1.3 L * 10^6;
z3coeff = 0; H*6.78372 *10^10; *L

z4coeff = 0; H*6.52396 *10^11; *L

n = 13; H* number of ions *L

H* r is the array of ion coordinates . r @3i +1D, r @3i +2D,
r @3i +3D are the x,y,z coordinates of the i'th ion . *L
r = Array @Subscript @a, ð1D &, 83 n<D;

H* mathematica uses a Hrelatively L efficient simplex method *L

ans = NMinimize @0.0006306 * 0.5 * Hwx^2 * Sum@r @@3 i + 1DD^2, 8i, 0, n - 1<D +
wy^2 * Sum@r @@3 i + 2DD^2, 8i, 0, n - 1<D + wz^2 * Sum@r @@3 i + 3DD^2, 8i, 0, n - 1<DL -

z3coeff * Sum@r @@3 i + 3DD^3, 8i, 0, n - 1<D + z4coeff * Sum@r @@3 i + 3DD^4, 8i, 0, n - 1<D +
Sum@Sqrt @1 � HHr @@3 i + 1DD - r @@3 j + 1DDL^2 +

Hr @@3 i + 2DD - r @@3 j + 2DDL^2 + Hr @@3 i + 3DD - r @@3 j + 3DDL^2LD,
8i, 0, n - 1<, 8j, i + 1, n - 1<D, r, WorkingPrecision ® 15D

H* plot points 3D *L
s = r �. Extract @ans , 82<D;
points = 8<;
For @i = 0, i < n, i ++, points = Append@points , 8s@@3 i + 1DD, s @@3 i + 2DD, s @@3 i + 3DD<D; D
ListPlot3D @points * 10 000 , AspectRatio ® Automatic , AxesLabel ® 8"x HΜ mL", "y HΜ mL" < D

H* plot points 2D, dropping z coordinate *L

s = r �. Extract @ans , 82<D;
points = 8<;
For @i = 0, i < n, i ++, points = Append@points , 8s@@3 i + 1DD, s @@3 i + 2DD<D; D
ListPlot @points * 10 000 , AspectRatio ® Automatic ,

PlotStyle ® 8Red, Thick , PointSize @Large D<,
AxesLabel ® 8"x HΜ mL", "y HΜ mL" <, PlotRange ® 88-50, 50 <, 8-50, 50 <<D

H* calculate max distance between y vals *L

yvals = 8<;
For @i = 0, i < n, i ++, yvals = Append@yvals , s @@3 i + 2DDD; D
dist = Max@yvals D -Min @yvals D

H* convert energy to electron volts *L

energy = ans @@1DD * 1.439650000000000000 * 10^ -7
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Out[6]= 947640.3623492104,

9a1 ® 0.00249526329454898, a2 ® -0.000195872421184956, a3 ® -1.01615335007377 ´ 10
-11,

a4 ® 0.00189214573083234, a5 ® 0.00137727911696546, a6 ® 1.40594914164938 ´ 10-11,

a7 ® 0.00166082992489247, a8 ® -0.00162635651624383, a9 ® 1.77142209690527 ´ 10-12,

a10 ® -0.0000126775934318443, a11 ® -0.00101272197346297, a12 ® 1.46250732157699 ´ 10-11,

a13 ® -0.00235752128707685, a14 ® -0.000687539338317872, a15 ® -2.76406689457980 ´ 10
-12,

a16 ® 0.000633404194797575, a17 ® 0.00238881774381363, a18 ® -7.62723689218269 ´ 10
-12,

a19 ® -0.00134322589463185, a20 ® -0.00193218179314517, a21 ® -2.17485783903952 ´ 10
-12,

a22 ® -0.00101011014777204, a23 ® 0.0000133934171442451, a24 ® -6.04502971918647 ´ 10
-12,

a25 ® 0.0000164747226301317, a26 ® 0.00101068514357131, a27 ® 1.49702922674624 ´ 10-11,

a28 ® 0.000259410079001472, a29 ® -0.00248369053655865, a30 ® -1.60920502290904 ´ 10
-11,

a31 ® -0.00218716833903424, a32 ® 0.00101829532993938, a33 ® -7.79342304810769 ´ 10
-12,

a34 ® 0.00101331072935728, a35 ® -0.0000157843643466466, a36 ® 9.04047848325618 ´ 10-12,

a37 ® -0.00106013484503786, a38 ® 0.00214567679997688, a39 ® -1.16983117096333 ´ 10
-11==

Out[10]=

Out[14]=

-40 -20 20 40
x HΜ mL

-40

-20

20

40

y HΜ mL

Out[17]= 0.00487250828037228

2   crystal_shape_6uraniborg.nb
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Out[18]= 0.00685854476560407

In[19]:= ystrengths = 0.1 * 85, 5.5 , 6, 6.5 , 7, 7.5 , 8, 8.2 , 8.3 , 8.31, 8.32, 8.33, 8.335 , 8.35 <;
ydiffs = 80.003177, 0.002296, 0.002064, 0.001761, 0.001075, 0.0009125 , 0.00070273 , 0.0005642 ,

0.0003123 , 0.0002613 , 0.0001934 , 0.00006865 , 3.9135 * 10^ H-8L, 2.048 * 10^ H-10L<;
ListLogPlot @Table @8ystrengths @@i DD, ydiffs @@i DD<, 8i, Length @ystrengths D<D,

PlotStyle ® 8Red, Thick , PointSize @Large D<D

Out[21]=

0.55 0.60 0.65 0.70 0.75 0.80

10-6

10-5

10-4

0.001

crystal_shape_6uraniborg.nb   3
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Appendix C

How to trap ions in a closed-cycle

cryostat

The purpose of this appendix is to offer a practical guide to the operation of the 4 K

closed-cycle cryogenic ion trap presented in Sec. 7.4. We will present the following items:

• Preparing the cryostat for cooldown.

• Turning on the compressor.

• Pressure and temperature measurement.

• Laser alignment and imaging.

• Shutdown

This appendix will be most useful after reading Sec. 7.4, which contains the basic de-

scription of the cryostat system.

C.1 Preparing the cryostat for cooldown

The cold head (expander) may be mounted in one of two configurations. In the first config-

uration, the cold head is held above the DMX-20 anti-vibration system using four spacers

with bolts that are tightened down. In this position, the cold head is decoupled from the

overhead support structure, and may be rotated up and opened. In the other configura-

tion, the cold head is attached to the overhead structure using four aluminum plates; in this

position, the cold head is vibrationally isolated from the vacuum housing of the experiment.

Before engaging the compressor, which starts the cooldown, it is important to flush and

fill the bellows of the DMX-20 with ultra-high purity (UHP) helium, which is 99.9999%

pure. The recommended procedure is as follows:

241



1. Open the safety valve on the DMX-20. This is the only manually-controllable valve

on that system.

2. Start a flow of helium gas through the DMX-20. Normally, you want to hear a faint

flow of gas out the valve.

3. Reduce the pressure somewhat, then slowly close the valve so that the helium begins to

make the bellows expand. After the bellows expands a good deal, or stops expanding,

release the pressure using the manual valve.

4. Repeat this process at least five times. The idea is simply to thoroughly flush out the

DMX-20.

5. Reduce the pressure from the gas cylinder slightly, then close off the valve. The

steady-state pressure should leave the bellows somewhat expanded.

As the system cools, one may observe the bellows contracting as the pressure of gas

inside falls. If this happens, there is not quite sufficient pressure to the bellows. Increase,

very slowly, the pressure until the bellows is slightly expanded. Also, aside from the helium

used for flushing the system, there should be very little helium expended while running the

cryostat. If the reading of the pressure inside the gas cylinder is visibly declining over a

period of days, then either too much pressure is being supplied to the DMX-20, or there

is a leak in the system. If a leak is suspected, make sure that all Swagelok connections

are tight, and cannot be rotated. Leaks not only waste expensive UHP helium, but more

seriously, can permit contaminants inside the DMX-20. This may permit water or nitrogen

to freeze inside the bellows, creating a thermal short to the outside and destroying vibration

isolation. If this occurs, the system must be warmed back up, and the bellows flushed again.

C.2 Turning on the compressor

Before turning on the compressor, the chilled water supply to and from the compressor

must be opened (turn both handles at once). The compressor is turned on by insuring that

the circuit breaker switch is in the “on” position (flipped up), and then flipping the green

switch, which will light up when the compressor is on. Immediately, you should hear the

motor begin to run, and also hear the pumping noise at about 2 Hz. The pressure gauge

for the supply line will rise to > 300 psi, and should increase periodically, in time with the

pumping action.

If the motor begins running, but there is no periodic pumping (as evidenced by lack

of sound and/ or pressure variation), then a blown fuse is the most likely culprit. On the

front of the compressor, there are two easily accessible fuses. A fast-acting 250 V, 2 A fuse

is required.
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Finally, we note that the chilled water supply must be engaged whenever the cryostat is

on, and must be switched off when the compressor is not running, to avoid water condensing

on the hoses in places it shouldn’t.

As a final caution, if the static pressure is below about 240 psi, then helium may need

to be added. This should not need to happen very often, so if the pressure has fallen a good

deal there may be a leak. We have, in the lab, a portable helium sniffer that can detect

fairly large leaks. A mass spectrometer for vacuum systems may also be run in a sniffer

mode, with higher sensitivity, if the proper attachment can be purchased or built. The

author has experienced only one major helium leak, and it was located on the cold head

itself (due to a manufacturing defect that has now been fixed).

C.3 Pressure and temperature measurement

The pressure inside the cryostat reaches UHV conditions in a matter of hours. However, it is

not possible to directly measure the pressure near the 40 K or 4 K surfaces, since ionization

gauges cannot run at cryogenic temperatures. Instead, we use the current reading on an ion

pump attached to the vacuum chamber to measure the pressure outside the 4 K shield. We

may reasonably assume that the pressure inside the radiation shield is significantly lower

than that measured on the ion pump. For instance, if the ion pump reads 0.5 × 10−9 torr,

we may expect pressure in the 10−11 torr range or better near the ion trap.

The temperature is measured using two Lake Shore DT-670 diodes, across each of which

a 10 µA current is passed. The voltage across the diode records the temperature, and the

voltage-to-temperature conversion chart is reprinted below. There are two diodes, one of

which is heat-sunk directly to the 4 K cold head, and the other of which is heat-sunk to

the experimental 4 K baseplate. The former typically reaches a temperature of 5 K, while

the latter normally reads 9-11 K. It is not known why the temperature is not lower, but

modifying the heat sinking of wires or replacing the radiation shield with an all-copper piece

may help, since copper is a better thermal conductor than stainless steel.
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C.4 Laser alignment and imaging

As discussed in the main text of the thesis, four lasers are used in the cryostat experiment.

Here, I will focus on the alignment procedure.

The PI lasers are aligned first, since they are brighter to the eye than the 422 laser. The

PI lasers are grazed across the center of the trap, then raised by a translation stage to the

correct height above the trap surface. For Uraniborg, this height is 1.3 mm. The detection

lasers are then counter-propagated against the PI lasers. This offers the advantage of very

straightforward alignment, but one disadvantage is that since the optics for the PI lasers are

not anti-reflection (AR) coated for 422 nm, back-reflections from the PI optics can increase

the scatter on the trap. It is possible to slightly adjust the angle at which the 422 and 1092

propagate to reduce this scatter.

The detection lasers are extended cavity diode lasers, but currently lack any fast ac-

tive stabilization. They may be locked to the Toptica wavemeter, which corrects drifts of

O(10 MHz) on a timescale of 2 s. This provides enough stability for the observation of ion

crystals, but would not be sufficient for experiments in which a well-defined laser detuning

is required (such as Doppler recooling).

Neutral strontium ions may be detected by removing the 422 nm interference filter in

front of the CCD camera, and shuttering all lasers other than the 460 nm laser. While

shuttering other lasers is not strictly necessary, it helps to reduce scatter and improve the

signal to noise ratio, since only 460 nm photons will carry the signal from the atomic beam.

A larger current is required to observe the beam of neutrals than for loading the trap. This

current may be as much as 3.5 A, compared to a loading current of 2.5 A or less. Therefore,

it is important to do a good alignment beforehand, to minimize the amount of time at which

the oven must be run at that high current.

C.5 What to do if you can’t trap ions

This section contains the author’s advice for debugging, in the event that ions cannot be

quickly trapped. The assumption is that the experimentalist is moving the position of the

detection lasers after each step, but not necessarily in a comprehensive fashion (covering

every spot on a 2-D grid). An ion cloud in Uraniborg is of a sufficient size (estimated to

be at least 200 µm) that an overlap of the laser with only part of the cloud will result in a

signal. Blocking and un-blocking the IR is a good way to tell ion signal apart from other

light, and switching off and back on the rf is the surest way to tell, especially if you have a

high loading rate.

So here are the debugging steps:

1. Double-check basic stuff: rf resonance is where you expect, temperature and pressure

are good, dc feedthrough is properly connected, etc.
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2. Check that 422 and 1092 are roughly coaligned (by eye with the IR card).

3. Make sure the 405 is unblocked!!! This has caused the author to waste some time in

the past.

4. If it’s been a few days since someone trapped, check our wavemeter against Shannon’s

or against the 674 laser.

5. Look for neutrals.

6. If there are neutrals but no ions, you’ll have to do some searching. Try to be sys-

tematic: map out every point on a grid with the 422/1092 lasers. If you don’t find

anything, you may vary the PI position as well, but at each point try to re-counteralign

the 422/1092 with it.

7. Check 422/1092 coalignment on the beam profiler.

8. Lower (or raise) the rf amplitude and repeat the search pattern.

9. If that fails, adjust the dc voltages. Don’t do so blindly, because that will take too

long. Try another set of voltages from the group laboratory notebook blog that have

worked in the past, or go to zero on all channels if you’re using different values.

10. Give up. Usually if the trap is going to trap well, you find ions in a couple hours or

less. There have been cases in which the author trapped nothing, then warmed up

and baked the system for a day, then cooled down and realigned, and then found ions

easily. Excessive charge getting trapped on the dielectric around the trap at 4K is a

reasonable explanation for this.

11. Good luck!

C.6 Shutdown

In this section, we focus on the procedure for shutting down the cryostat, which is really

quite simple. First flip the green switch on the compressor, shutting it down. Then, fairly

soon after, close off the chilled water supply to and from the compressor. You will see the

pressure reading on the ion pump begin to rise rapidly. Close off the main valve on the

UHP helium cylinder. Then, for a few moments, observe the bellows. Sometimes pressure

within the bellows builds up to the extent that one wishes to relieve some of the pressure

manually, using the safety valve. However, this is probably not necessary.
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