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The interaction of solid-state qubits with environmental degrees of freedom
strongly affects the qubit dynamics, and leads to decoherence. In quantum
information processing with solid-state qubits, decoherence significantly limits
the performances of such devices. Therefore, it is necessary to fully understand
the mechanisms that lead to decoherence. In this review, we discuss how
decoherence affects two of the most successful realizations of solid-state qubits,
namely, spin qubits and superconducting qubits. In the former, the qubit is
encoded in the spin 1/2 of the electron, and it is implemented by confining the
electron spin in a semiconductor quantum dot. Superconducting devices show
quantum behaviour at low temperatures, and the qubit is encoded in the two
lowest energy levels of a superconducting circuit. The electron spin in a quantum
dot has two main decoherence channels, a (Markovian) phonon-assisted
relaxation channel, due to the presence of a spin–orbit interaction, and
a (non-Markovian) spin bath constituted by the spins of the nuclei in the
quantum dot that interact with the electron spin via the hyperfine interaction. In
a superconducting qubit, decoherence takes place as a result of fluctuations in the
control parameters, such as bias currents, applied flux and bias voltages, and via
losses in the dissipative circuit elements.
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1. Introduction

1.1. What is coherence and why is it interesting?

Coherence is a defining property of quantum mechanics. It can be argued that quantum

coherence is the property that draws a line between the ‘quantum world’ and the ‘classical

world’. However, what exactly is coherence? In physics, the term coherence refers to the

property of waves to interfere, showing well-known interference patterns. Two waves,

depending on their relative phase, can produce a constructive interference, characterized by

an enhancement of the amplitude of the wave, or destructive interference, accompanied by a

suppression of its amplitude. Only the relative phase of the two waves makes the difference.

To be precise we should therefore speak about phase coherence of quantum states.
By quantum states here we mean states of a quantum system, which in turn can be

constituted by more than one quantum object. The same rules of quantum mechanics that

allow us to explain and predict interference of one object with itself, as the case of an

electron through a double slit, predict that a system composed by two quantum

subsystems can be in a state that has no classical counterpart, being a superposition with

a precise phase of two or more quantum states of the whole system. This property of

quantum states goes under the name of entanglement, and entangled states need to be

phase coherent. In particular, coherence, as a property of quantum mechanical

phenomena, disappears in the classical world, and it is therefore of fundamental interest

to study it in theory and experiment. It is never completely possible to isolate a quantum

system from the surrounding world. The system and its surroundings interact and, as

a result, a randomization of the phase of the quantum system takes place, resulting in

a loss of information. This process is known as decoherence.
Only in recent years, thanks to the advances in technology, has it become possible to

study quantum effects involving single quantum objects, such as single photons, ions,

electron spins, etc. Particular attention has been paid to observing coherence from an

experimental point of view, and to understand its limitations. In fact, although remarkable

improvements have been achieved, nowadays, to see coherence, a lot of effort must be spent

on understanding how to preserve coherence. Over the last few decades, the idea of joining

quantum physics laws and information science gave birth to a new and intriguing branch of

science, quantum information theory, which studies the possibilities that quantum rules

offer to information processing. In particular, the superposition principle opens the

possibility to perform new and fast algorithms. The physical implementation of quantum

information processing represents a challenge because one has to deal with the competition

between fast and reliable quantum control, that requires interaction with the outside world,

and good isolation of the quantum devices in order to ensure long coherence times.
Therefore, it is important to understand theoretically how decoherence happens in the

systems under study (here, solid-state systems) in order to make progress towards this

ambitious goal (that is, implementing quantum information).

1.1.1. The quantum bit

Classical information is based on binary logic, in which information is encoded in a series

of bits (binary digits) that can assume only two values, 0 or 1. A typical example is
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a switch, with its two possible states ‘on’ and ‘off ’. All classical logical operations can be
implemented as algorithms based on one- and two-bit operations, the so-called gates.

The building block of quantum information is the quantum bit, or qubit. Using the
Dirac notation, the two states that characterize the qubit are j0i and j1i and they represent
the quantum counterpart of the classical 0 and 1. The most important property of

a quantum bit is the possibility to be in a coherent superposition state

j i ¼ �j0i þ �j1i, ð1Þ

with � and � complex numbers, characterized by a relative phase and by j�j2þ j�j2¼ 1.
According to the postulates of quantum mechanics, j�j2 represents the probability for the
qubit to be in the state j0i, whereas j�j2 represents the probability to be in the state j1i.
This means that if we prepare many copies of the same system in the state j i,
a measurement of the state of the qubit will produce the outcome 0 with rate j�j2 and the

outcome 1 with rate j�j2. In the following the two logical states are the spin up j"i and the
spin down j#i. The two states j0i and j1i form a basis of the Hilbert space
H¼ span{j0i, j1i} of the qubit.

A good example of a qubit is the spin 1/2. In order to explain the necessity to use
complex numbers � and � to characterize the state of the qubit, we describe an interference
procedure for a spin-1/2 particle. Suppose that we prepare the spin in the state j 0i¼ j"i,
that is, with probability 1 to find it parallel with respect to a certain direction z in the
space, which we choose as the quantization axis. We then rotate the spin by an angle �/2
about an axis perpendicular to z, that is, the y-axis. The result is the state

 1i ¼ e�ið�=4Þ�y
�� ��"i ¼ 1ffiffiffi

2
p ðj"i þ j#iÞ: ð2Þ

We then let the spin cross a region in which there is a magnetic field that points in the
positive z direction, B¼ (0, 0,B). Owing to the presence of the magnetic field, the two
states j"i and j#i accumulate a relative phase 2’, that depends on the magnitude of the
magnetic field and the time t spent in the region with the B field, and that for simplicity we

leave unspecified. Up to an overall phase, the state of the system that comes out from the
region with a magnetic field is given by

j 2i ¼
1ffiffiffi
2
p ðj"i þ e2i’j#iÞ: ð3Þ

Now, we again rotate the spin of �/2 about the y direction, and obtain

 3i ¼ e�ið�=4Þ�y
�� �� 2i ¼ ei’ cosð’Þj"i þ i sinð’Þj#i½ �: ð4Þ

If we now measure the state of the spin, we obtain j"i with probability cos2(’) and j#i with
probability sin2(’). We clearly see, now, that the relative phase can really affect the state of
a quantum system. This procedure is known as Ramsey interference [1] and it is used in
experiments to detect coherent oscillations in the transverse spin component.

1.1.2. One qubit as an environment

Decoherence is a consequence of the interaction of the qubit with the surrounding
environment. As an instructive example we consider the case in which the environment is
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constituted by another qubit. For the Hamiltonian describing the interaction between the
two qubits we choose (�h¼ 1)

H ¼
J

4
�z1 � �

z
2, ð5Þ

where the operator �z1 � �
z
2 is a two-qubit operator, given by the tensor product of two

single-qubit operators, and it acts in the tensor product space H¼H1�H2. We note that
our general argument does not depend on the specific form of H, as long as it describes an
interaction between the qubits. As the initial state for the two qubit system we choose
a product state jþþi¼ jþi1�jþi2, where the single qubit state is jþi ¼ ðj0i þ j1iÞ=

ffiffiffi
2
p

,
written in the basis diagonal with respect to �z, �zj0i¼ j0i, and �zj1i ¼�j1i. We let the
system evolve according to the unitary evolution generated by the Hamiltonian (5) for
a time t, after which we perform a trace operation on the second qubit and have a look at
how the state of the first qubit has evolved during the time t in which it has interacted with
the second qubit. We re-write the initial state of the first qubit as a pure state density
matrix, �1¼ jþi1hþj. In the {j0i, j1i} basis it is found to be

�1ð0Þ ¼
1

2

1 1

1 1

� �
: ð6Þ

The state of the two-qubit system after a time t is given by j (t)i¼U(t)jþþi, with
UðtÞ ¼ expð�iJt�z1�

z
2=2Þ. After some algebra the state of the first qubit at time t is given by

�1ðtÞ ¼ Tr2½j ðtÞih ðtÞj� ¼
1

2

1 cosðJt=2Þ

cosðJt=2Þ 1

� �
: ð7Þ

The diagonal element of the first qubit density matrix is left unchanged by the interaction
with the second qubit, whereas the off-diagonal elements change in time. The coherence of
a state is encoded in the off-diagonal element of the density matrix. After a time t¼�/J the
coherence is completely lost (full decoherence). However, owing to the smallness of the
environment considered, the first qubit periodically recovers its original state. It is
therefore clear that the interaction with the environment strongly affects the qubit
coherence.

1.2. Quantum open systems

According to the axioms of quantum mechanics the dynamics of a closed conservative
system is described as a unitary time evolution. In such a picture the system is considered
to be decoupled from the surrounding environment, which has no influence on the
dynamics of the closed system. Strictly speaking this is never the case. However, under
certain conditions the coupling to the environment can be considered to be weak and, to
a good approximation, neglected.

In condensed phases, the coupling to the environment can be relatively strong, and the
system under consideration cannot be separated from its surrounding. However, often
a rather complex physical situation can be modelled by a system that consists of few
dynamical variables in contact with a huge environment, constituted by a very large or
even infinite number of degrees of freedom. In this case, the small relevant system alone
has to be described as an open system.
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In general, an open system is a quantum system S which is coupled to an other

quantum system B called the environment. It can, therefore, be thought to be a subsystem

of the combined system SþB, which, in turn, is considered in many cases to be a closed
system, governed by Hamiltonian dynamics. The system S will, in turn, change according

to its internal dynamics, and as a consequence of the interaction with the environment.

Certain system–environment correlations will be established between the two parts and, as

a consequence, the dynamics of a quantum open system cannot, in general, be described in

terms of a unitary time evolution.
Denote by HS the Hilbert space of the system S and by HB the Hilbert space of

system B. The dynamics of the combined system SþB takes place in the Hilbert space

given by the tensor product spaceHSB¼HS�HB. The total Hamiltonian can be chosen to

have the general form

H ¼ HS þHB þHI, ð8Þ

where HS describes the evolution of the system S alone, HB is the free Hamiltonian of the

environment B, and HI describes the interaction between the system and the environment.

Usually when speaking about the environment of the system S, the term reservoir may

appear, which refers to an environment with an infinite number of degrees of
freedom, such that the frequency modes associated with it form a continuum spectrum.

Occasionally, the term heat bath or simply bath refers to a reservoir which is in thermal

equilibrium.
The presence of an environment is meant to model the communication of the open

system with the external world. However, the attention is focused on the subsystem under
study S, and all observations of interest refer to the subsystem S. Formally this means that

all observables of interest act on the Hilbert space HS. Denoting the state of the total

system by �, the expectation values of all observables may be written as

hOi ¼ TrS O�S½ �, �S ¼ TrB½��, ð9Þ

where O is the Hermitian operator describing the observable, �S is the reduced density

matrix of the open system S, and TrS(B) denotes a partial trace on the system S(B).
The description of the open system S is contained in the reduced density matrix �S.

Since the total system evolves unitarily in time, �S(t) is obtained as a partial trace over the
environment B of �(t),

�SðtÞ ¼ TrB Uðt, t0Þ�Sðt0ÞU
yðt, t0Þ

� �
, ð10Þ

where U(t, t0) is the unitary evolution operator of the total system. The equation of motion

for the open system reduced density matrix �S(t) is

d

dt
�SðtÞ ¼ �iTrB HðtÞ, �SðtÞ½ �: ð11Þ

1.3. Generalized master equation

In many cases it is useful to model the dynamics of an open system by means of
an appropriate equation of motion for its density matrix, the so-called quantum
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master equation. The evolution in time of the total system � is governed by the well-known

Liouville equation of motion

_� ¼ �i½HðtÞ, �ðtÞ� � L�ðtÞ, ð12Þ

where the second equality defines the Liouville operator L. As the Hamiltonian can be

divided into three terms that describe the dynamics of the two systems alone, HS and HB,

and an interaction between the two parts, HI, the Liouville operator can be written as the

sum of three contributions

L ¼ LS þ LB þ LI: ð13Þ

Without going into details that are beyond the scope of this review, we just mention the

fact that the Liouvillian is a superoperator, which maps operators into operators.

The initial state for the combined system SþB can typically be chosen to be a product

state, �(0)¼ �S(0)� �B.
We have already introduced the reduced density matrix �S of the open subsystem S.

It can be formally obtained from the density matrix of the total system � by means

of a projection operation, which contains a partial trace over the system B,

�S ¼ P� ¼ TrB½�� � �B: ð14Þ

Here, �B is a fixed density matrix for the environment. Mapping operators into operators,

the projector P is also a superoperator. We may thus decompose � as

�ðtÞ ¼ �SðtÞ þ ð1� PÞ�ðtÞ, P
2 ¼ P: ð15Þ

Substituting this decomposition in the Liouville equation of motion for the total

system (12), choosing the projector in such a way that the inhomogeneous term that

depends on the initial state can be disregarded, and using that the operator P defined in

(14) commutes with the Liouvillian of the open system LS, after some algebra, the

equation of motion for the reduced density matrix �S(t) can be cast in the form of an exact

generalized master equation, the Nakajima–Zwanzig equation [2–4]

_�SðtÞ ¼ LS�SðtÞ þ

Z t

0

dt0�ðt� t0Þ�Sðt
0Þ, ð16Þ

�ðtÞ�S ¼ �iTrB LIe
ð1�PÞLtLI�S � �B

� �
, ð17Þ

where �(t) is the self-energy superoperator. The first term describes the reversible

evolution of the open system S, while the second term produces irreversibility.

1.3.1. Born approximation

The generalized master Equation (16) is a formally exact and closed description of the

dynamics of the state of the system �S, but it is very complicated from a mathematical

point of view and rather unpractical. Usually, in order to handle it some approximations

are made. In fact, the kernel of (16) contains all powers of LI, and the dynamics of �S at

time t depends on the whole history of the density matrix. If the coupling between system

and reservoir is weak, that is, kLIk�kLSþLBk, the exponential can be expanded in the
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power of LI in a perturbative way. In lowest-order Born approximation, the

interaction Liouvillian is disregarded in the exponent and LI is retained only to second

order

~�ðtÞ�S ¼ �iTrB LIe
ð1�PÞðLSþLBÞtLI�S � �B

� �
: ð18Þ

The applicability of the master equation in the Born approximation is strictly restricted to

those cases in which the coupling between the system and environment is weak, with the

decoherence and relaxation times large compared with the relevant timescales of the

reversible dynamics.

1.4. Quantum Markov process

The master equation in the Born approximation (18), although much simpler than the

exact Nakajima–Zwanzig Equation (16), is still an integro-differential equation that is very

difficult to handle. Assuming that the temporal correlations in the bath are short lived and

typically lead to exponential decay of the coherence and populations, the master equation

in the Born approximation (18) can be further simplified. In the Born–Markov

approximation the master equation for the reduced density matrix of system S assumes

the form

_�SðtÞ ¼ �iLS�SðtÞ þ ~�RðtÞ�SðtÞ, ð19Þ

~�RðtÞ ¼ �i

Z t

0

dt0 ~�ðt0Þeit
0LS : ð20Þ

In an eigenstate basis of HS, the master equation in the Born–Markov approximation

can be written as the so-called Redfield equation [5–7]

_�nm ¼ �i!nm�nmðtÞ �
X
k,l

Rnmkl�klðtÞ, ð21Þ

where �nm¼hnj�Sjmi, !nm¼!n�!m, Hsjni ¼ !njni and we have introduced the Redfield

tensor

Rnmkl ¼

Z 1
0

dtTrB hnj H
int
I ðtÞ, Hint

I ð0Þ, jkðtÞihlðtÞj�B
� �� �

jmi
� �

, ð22Þ

where we have used the interaction picture Hamiltonian and the system eigenstates in the

interaction picture

Hint
I ðtÞ ¼ ei HSþHBð ÞtHIe

�iðHSþHBÞt, jkðtÞi ¼ eiHStjki ¼ ei!ktjki: ð23Þ

The first term of (21) represents the reversible motion in terms of the transition

frequencies !nm, while the second term describes the relaxation. The Redfield tensor can

be expressed as

Rnmkl ¼ �nm
X
r

�
ðþÞ

nrrk þ �nk
X
r

�
ð�Þ

lrrm � �
ðþÞ

lmnk � �
ð�Þ

lmnk, ð24Þ
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in terms of rates given by the golden rule expression

�
ðþÞ

lmnk ¼

Z 1
0

dt e�i!nkt TrB ~HIðtÞlm ~HIð0Þnk�B
� �

, ð25Þ

�
ð�Þ

lmnk ¼

Z 1
0

dt e�i!lmt TrB ~HIð0Þlm ~HIðtÞnk�B
� �

, ð26Þ

with ~HIðtÞlm ¼ hnje
itHBHIe

�itHB jmi, and ð�
ðþÞ

lmnkÞ
�
¼ �

ð�Þ

lmnk.
We have already pointed out that the dynamics of an open system cannot be described

as a unitary evolution. However, the mapping describing the evolution is required to be

completely positive [8], implying �!
P

n On�O
y
n, where {On} is a set of linear operators on

the reduced state space that satisfy
P

n O
y
nOn ¼ 1, such to preserve the trace of �. In the

framework of Lindblad theory [8], the master equation can be cast in the form

_�ðtÞS ¼ �i½HS, �SðtÞ� þ
1

2

X
j

Lj�SðtÞ,L
y

j

h i
þ Lj, �SðtÞL

y

j

h in o
: ð27Þ

The Lindblad operators Lj describe the effect of the environment in the Born–Markov

approximation.

1.4.1. Two-level systems and Bloch equations

The aim of this review is to provide a overview on the mechanisms that affect

qubit dynamics and induce decoherence in solid-state realizations of qubits. Therefore,

we concentrate on two-level systems and their coupling to the surrounding

environment.
The density operator of a two-state system is a two-dimensional positive Hermitian

operator with trace one. It can thus be expressed in terms of a basis of Hermitian operators

given by the three Pauli operators p¼ (�x, �y, �z) and the 2� 2 identity,

� ¼
1

2
ð1þ p � rÞ, p ¼ Tr½�r� ¼

�01 þ �10

ið�01 � �10Þ

�00 � �11

0
B@

1
CA: ð28Þ

The vector p is known as the Bloch vector, and for a spin-1/2 object it represents the

expectation values of the spin components p/2�hSi ¼Tr[S�], where S¼p/2, with �z
diagonal in the j0i j1i basis, �zj0i¼ j0i and �zj1i¼�j1i. Combining the last equation with

the Redfield Equation (21) in the case that n, m, k, l¼ 0, 1, the master equation within the

Born–Markov approximation for the density matrix of a two-level system can be expressed

as a first-order time differential equation for the expectation value of the spin component

hSi ¼ (hSxi, hSyi, hSzi),

h _Si ¼ x� hSi � RhSi þ hS0i, ð29Þ

with x¼ (0, 0,x01). In case of a spin-1/2 particle in a magnetic field defining the

z direction, !01 represents the Zeeman splitting. The inhomogeneous term hS0i and the

relaxation matrix R depend on the rates (25) and (26). If !01	Rnmkl, it is possible to make
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a secular approximation, retaining only terms Rnmkl with n�m¼ k� l (see [9]) such that
the Redfield tensor can be approximated by the diagonal form

R 


T�12 0 0

0 T�12 0

0 0 T�11

0
B@

1
CA, ð30Þ

where the relaxation time T1 and the decoherence time T2 are given by

1

T1
¼ 2Re �

þð Þ

0110 þ �
ðþÞ

1001

� �
, ð31Þ

1

T2
¼

1

2T1
þ

1

T�
, ð32Þ

with the pure dephasing time T�, given by

1

T�
¼ Re �

þð Þ

0000 þ �
ðþÞ

1111 � 2�
ðþÞ

0011

� �
: ð33Þ

For a system–environment coupling given by a simple bilinear form HI¼OS�XB, with
OS an operator acting in the system space HS, and XB an operator acting in the
environment space HB, the relaxation and dephasing times T1 and T� can be written as

1

T1
¼ 4jh0jOSj1ij

2Sð!01Þ coth
!01

2kBT
, ð34Þ

1

T�
¼ jh0jOSj0i � h1jOSj1ij

2Sð!Þ

!

����
!!0

2kBT, ð35Þ

where the spectral density J(!) is the Fourier transform of the environment time correlator

Sð!Þ ¼

Z 1
�1

dtTrB XBXBðtÞ�B½ �e�i!t: ð36Þ

The first term in (29) produces a rotation of the Bloch vector along the z direction.
If R¼ 0 we have the classical picture of a magnetic moment precessing along the externally
applied magnetic field. The second term proportional to R describes an exponential
damping of the component of the Bloch vector. Here T1 describes the decay of the
longitudinal component of the Bloch vector, while T2 describes the decay of the transverse
component.

We remark that the Markovian results (32) satisfy the expected fundamental Korringa
relation [10].

1.5. Theory of noise-induced qubit decoherence

In the previous section we have seen that the spectral density SX(!) of the bath variable XB

enters the decay rates 1/T1 and 1/T� in the Markovian approximation. Fluctuations in the
bath variable XB coupled to a system variable OS can be seen as noise induced in the
parameters entering the qubit Hamiltonian. Each noise source affecting the parameter X is
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described in terms of its quantum spectral density SXð!Þ � ð1=2�Þ
R
dt h�X̂ð0Þ�X̂ðtÞie�i!t,

that quantifies the ability of the source to absorb an energy quantum �hj!j from the system
(positive �!z), and emit it towards the system (negative !). Relaxation processes involve
absorption of energy at a frequency !01, where �h!01 is the unperturbed energy gap of the
qubit, therefore involving SX(þ!01), while dephasing, involving no energy exchange, is
characterized by SX(!
 0).

We consider the free evolution of the qubit governed by the Hamiltonian H¼�B � p/2,
which experiences the pseudo-spin freely precessing in the field B. Following [11], we
expand the qubit Hamiltonian around the value X0 of the control parameter X, up to
second order in the fluctuations �X,

H ¼ �
1

2
BðX0Þ þ

@B

@X
�Xþ

1

2

@2B

@X2
�X2 þ � � �

� �
� r: ð37Þ

Defining the three-component vectors DX¼ (1/�h)@B/@X and DX,2¼ (1/�h)@2B/@X2, the
Hamiltonian of the qubit can be rewritten in the basis of B(X0) � p as

H ¼ �
�h

2
½ð!01 þ �!zÞ�z þ �!?�?�, ð38Þ

where �? denotes the transverse spin component, which can be any combination of �x
and �y, and DX,? denotes the variation of transverse component B with respect to
the parameter X, DX,?¼ (1/�h)@B?/@X, �!?¼DX,z�XþDX2,z�X

2/2þ � � �, and �!?¼
DX,?�Xþ � � �. The coefficients D can be written as

DX,z ¼
@!01

@X
, ð39Þ

DX2,z ¼
@2!01

@X2
�
D2

X,?

!01
: ð40Þ

As already discussed, in the Bloch–Redfield approach the decay is assumed to be
exponential and it is associated with weak and short-correlated noise (white noise). In the
general case the decay can be non-exponential, particularly when the main contribution to
decoherence is due to noise that is singular close to !
 0. In many cases, however, it is
possible to factorize a contribution due to relaxation, obtaining a decay law such as
fz(t)exp(��1t/2).

As seen in the previous section, the relaxation processes produce a decay of the
longitudinal component of the pseudo-spin, and the decay rate, irrespective of the statistics
of the fluctuations, in lowest order in DX,?, is given by

1

T1
¼
�

2
S�!?ð!01Þ ¼

�

2
D2

X,?SXð!01Þ: ð41Þ

For a noise source linearly and longitudinally coupled to the qubit, with a spectral
density short-correlated in time, such that the Markovian approximation is valid, and
regular near !
 0, the pure dephasing rate is given by

1

T’
¼ �S�!z

ð! ¼ 0Þ ¼ �D2
X,zSXð! ¼ 0Þ, ð42Þ

and the Korringa relation holds, 1/T2¼ 1/2T1þ 1/T’.
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We consider now a noise spectral density that is singular at the origin !
 0. For
Gaussian noise, the random phase accumulated after a time t is

�� ¼ DX,z

Z t

0

dt0 �Xðt0Þ, ð43Þ

is also Gaussian distributed. The decay law of the free induction, that experimentally
corresponds to the Ramsey signal, in which the coherence time is inferred by the decay of
the signal between two �/2 pulses, can be calculated as fz,R(t)¼hexp(i��)i¼
exp(�h��2i/2), and it gives

fz,RðtÞ ¼ exp �
t2

2
D2

X,z

Z 1
�1

d!SX !ð Þ
sin2ð!t=2Þ

ð!t=2Þ2

� �
: ð44Þ

In an echo experiment an extra � pulse is added at the middle of the sequence. In this case
the phase acquired is the difference between the two free evolution periods,

�E ¼ ���1 þ��2 ¼ �DX,z

Z t=2

0

dt0 �Xðt0Þ þDX,z

Z t

t=2

dt0 �Xðt0Þ: ð45Þ

In this case, the decay is given by

fz,EðtÞ ¼ exp �
t2

2
D2

X,z

Z 1
�1

d!SX !ð Þ
sin4ð!t=4Þ

ð!t=4Þ2

� �
: ð46Þ

1.6. Oscillator bath versus spin bath

We have so far introduced a general formalism that allows us to study and understand
how decoherence arises as the effect of the interaction between the system under
consideration and its surrounding environment, under the particular assumptions of weak
system–environment coupling (Born approximation), and short-lived temporal correla-
tions in the bath (Markov approximation). However, we have not yet approached the
description of the kinds of bath that are physically important.

Remarkably, only two types of baths appear to play a significant role, the oscillator
bath and the spin bath. The former was introduced by Feynman and Vernon [12] to
describe a quantum system weakly interacting with a dissipative environment. A mapping
to a linear bath can be made rigorously only if the coupling is weak. As a result, oscillator
modes are the best suited for N delocalized environmental modes, the coupling being
automatically proportional to �1/N1/2, and therefore small in the large N regime.

As opposed to the linear oscillator environment, the spin bath plays a fundamental role
in describing low-energy dynamics dominated by localized environmental modes, such as
nuclear and paramagnetic spins, defects, and impurity spins. The coupling is in general
strong and independent on N. One of the main differences between the two types of
environment is that the Markov approximation is no longer valid, and that the spin bath
can cause decoherence even in the limit T! 0, involving no dissipation. The central spin
model, in which a central spin couples to a bath of spins, has application in describing
magnetic and superconducting systems.
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An exhaustive treatment of the spin–boson model and the central spin model is beyond

the scope of this review, and we refer to [13–15] and references therein for an extensive

treatment.

1.6.1. Spin–boson model

Here, we describe a particular example of a qubit coupled to a dissipative linear

environment in the Born–Markov approximation. We consider a generic two-level system

described by the Hamiltonian

HS ¼
�

2
�x þ

�

2
�z: ð47Þ

In order to include the effect of dissipation in the quantum formalism, it is customary to

follow the Caldeira–Leggett [13–15] approach. A bath of harmonic oscillators at thermal

equilibrium at temperature T is introduced to describe the degrees of freedom of the

environment. The ‘systemþ bath’ Hamiltonian is

H ¼ HS þHB þHSB, ð48Þ

HB ¼
1

2

X
�

!� by�b� þ
1

2

� �
, ð49Þ

HSB ¼ OS �XB ¼ �z
X
�

c� b� þ by�
	 


, ð50Þ

whereHS is the quantized Hamiltonian of the system (47) andHB is the bath Hamiltonian,

described by independent bosonic degrees of freedom with frequencies !�. The coupling

between the system and the bath degrees of freedom is described by HSB, where OS¼ �z,
XB ¼

P
� c�ðb� þ by�Þ, and c� are coupling parameters.

A rigorous treatment of the spin–boson model in the Born approximation without

making use of the Markov approximation is presented in [16,17]. The eigenstates of the

Hamiltonian (47) are

j0i ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�

!01

r
jþi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�

!01

r
j�i

� �
, ð51Þ

j1i ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�

!01

r
jþi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�

!01

r
j�i

� �
, ð52Þ

where j�i are eigenstates of �z, �zj�i¼�j�i, and !01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2
p

. The initial state of

a system of quantum harmonic oscillators in thermal equilibrium is

�B ¼ Z
�1
B expð��HBÞ, ZB ¼ Tr expð��HBÞ: ð53Þ

The entire information of the bath, such as the bath frequencies !� and the coupling

parameters c� appearing in the Hamiltonian, are contained in the spectral density S(!)
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of the system–bath coupling,

Sð!Þ ¼
�

2

X
�

c2��ð!� !�Þ: ð54Þ

Here, we limit our attention to the Markovian case, and make use of the general Redfield

theory described in the previous section. From the formulae (34) and (35), the relaxation

and dephasing rates take the form

1

T1
¼

�

!01

� �2

Jð!01Þ coth
!01

2kBT
, ð55Þ

1

T�
¼

�

!01

� �2
Jð!Þ

!

����
!!0

2kBT: ð56Þ

1.6.2. Central spin model

The derivation of a complete Hamiltonian for the central spin problem is not an easy task,

and it strongly depends on the system under consideration. As already mentioned,

the interaction between the central spin and the environmental spins cannot be treated

perturbatively.
Here, we are in particular interested in giving an idea of the effects that can arise when

the central spin interacts with a bath that is in a static random state. We consider, as a very

simple but instructive example, a spin 1/2 that interacts with the total spin of the spin bath,

in a magnetic field defining the z-direction, Bz,

H ¼ BzSz þ JIztotS
z þ J I�totS

þ þ IþtotS
�

	 

=2: ð57Þ

For a sufficiently large magnetic field, the transverse part of the interaction can be

neglected, and as an effective Hamiltonian we can choose

H ¼ JIztotS
z, ð58Þ

where Iztot is the z-component of the total spin of the spin bath, and calculate the decay

under Hamiltonian evolution of the initial product state

jþij Ii ¼
1ffiffiffi
2
p ðj"i þ j#iÞ

Z
dIz

1

�a2

� �1=4

e�ð1=2a
2ÞðIz�I0Þ

2

jI zi, ð59Þ

where the central spin is prepared along the x-direction and the spin bath is in

a superposition of Iztot eigenstates, Gaussian distributed, with mean I0 and variance a.

The choice of a pure state or a mixed state gives the same result, provided that the diagonal

entries of the pure state are the same as the diagonal entries of the mixed state, in the basis

where the mixed state is diagonal. Direct calculation yields

jhþjh Ije
�iHtj Iijþij

2 ¼ cos2
JI0t

2

� �
exp �

a2

32
J2t2

� �
: ð60Þ
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The temporal Gaussian decay arise from the choice of Gaussian distributed eigenstates
of Iztot. What results from this simple example is that the time decay is not exponential,
as it would be if the dynamics were Markovian.

2. Spin qubits

Per antonomasia, the two-state system that nature provides us with is the intrinsic angular
momentum of the electron: the spin 1/2. It is therefore natural to choose the electron spin
as the two-state system that encodes the qubit. The spin of the electron can have a much
longer decoherence time than the charge degrees of freedom. Nevertheless, isolating the
spin degree of freedom of an electron to a degree required for quantum computation is not
an easy task at all. Moreover, in order to be used for quantum computational purposes,
electron spin-based qubits must be designed as scalable devices that can be externally
controlled, coupled, manipulated, and read out, that is, they must satisfy the DiVincenzo
criteria [18]. A successful and promising device for the physical implementation of electron
spin-based qubits is the semiconductor quantum dot [19].

2.1. Semiconductor quantum dots

The quantum dots owe their name to the zero-dimensional character of such devices. They
can be considered as a quantum box that can be filled with electrons (or holes) which
occupy the available discretized states of the system. The electrons can tunnel on and off
the dot, which is coupled to a large reservoir via tunnel barriers. The height of the barriers,
and consequently the rates for tunnelling through the barriers on and off the dot, can be
controlled via the application of gate electrodes. Electrostatic gates can also be used to
tune the electrostatic potential of the dot with respect to the reservoirs, such that the ladder
of energy levels in the dot can be shifted up or down with respect to the energy of the
reservoir. External bias voltages can be applied and transport properties can be measured.

Quantum dots are basically characterized by the quantized level structure, for which
they are considered as artificial atoms, and by the transport state of the dot, that can be
active or blocked, and depends on the combination of bias and gate voltages applied. In
fact, the Coulomb repulsion between the electrons in the dot determines an energy cost for
adding an extra electron in the dot. At low temperatures, the tunnelling of electrons on and
off the dot can be drastically suppressed, and the dot is in the so-called Coulomb blockade.

Many kinds of quantum dots have been realized so far. Here, we focus our attention on
lateral III–V semiconductor quantum dots, such as those in Figure 1. These devices are
fabricated from heterostructures of GaAs and AlGaAs grown by molecular beam epitaxy.
The energy potential along the growth direction of such a structure has a minimum at the
interface of the two layers, which is also asymmetric with respect to the growth direction.
Free electrons are introduced by doping the AlGaAs layer with Si, which accumulate at
the GaAs/AlGaAs interface, deep down in the minimum of the vertical potential, that
provides strong confinement of the electrons along the growth direction. At the same time,
the electrons are free to move along the interface, where they form a two-dimensional
electron gas (2DEG), that can have a high mobility and a relatively low electron density
(typically 105�107 cm2/V s and approximately 1015m�2). The low-density results in
a relatively long Fermi wavelength (
40 nm) and a large screening length, such that via the
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application of an electric field, obtained through negatively charged metal gate electrodes,

placed on top of the heterostructure, the 2DEG can be locally depleted. Therefore, by

suitable designing the gate structure it is possible to isolate small islands of the 2DEG, thus

creating a dot. When the lateral size of the dot is compared to the Fermi wavelength, the

energy level structure of the dot becomes discretized, and at temperatures of tens of

millikelvin, the energy separation of the levels becomes much higher than the temperature,
such that quantum phenomena start to play a significant role.

2.2. Spin relaxation and spin dephasing mechanisms in quantum dots

The electron spin in semiconductor quantum dots can be isolated and controlled with

a high accuracy, but it still suffers from decoherence due to the unavoidable coupling with
the surrounding environment. In order to implement quantum computation algorithms

with electron spin-based qubits in semiconductor quantum dots, it is necessary to engineer

the devices in such a way as to preserve the coherence of the electron spin states for

sufficiently long timescales. In addition to the fundamental interest, it is therefore

important to theoretically understand which sources of dissipation and decoherence

affect the electron spin in quantum dots, and to find ways to reduce their influence on the

spin–qubit dynamics as much as possible.
Two kinds of environment turn out to mainly affect the dynamics of an electron spin in

a quantum dot, the phonons in the lattice, and the spins of atomic nuclei in the quantum dot.
Phonon-induced relaxation in semiconductor quantum dots has attracted some

attention from a theoretical point of view for the first time in [21,22]. The lattice phonons

do not couple directly to the spin degree of freedom. However, even without the

application of external electric fields, the breaking of inversion symmetry in GaAs gives

rise to spin–orbit (SO) interaction, which couples the spin and the orbital degrees of

freedom. These orbital degrees of freedom, being coupled to the phonons, provide an

indirect coupling between the electron spin and the phonons, which constitute a large
dissipative bosonic reservoir and provide a source of decoherence and relaxation.

Figure 1. Scanning electron micrograph of a double quantum dot. Reprinted with permission
from [18]. � 2008 by the American Physical Society.
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Short time correlations in the phonon bath induce a Markovian dynamics of the electron

spin, with well-defined relaxation and decoherence times T1 and T2. It turns out that

effectively the phonon-induced pure dephasing time T� of an electron spin in a quantum

dot in the presence of a magnetic field diverges. In the Bloch picture, pure dephasing arises

from longitudinal fluctuations of the magnetic field, while a perturbative treatment of the

SO interaction gives rise, within first order, to a fluctuating magnetic field perpendicular to

the applied magnetic field. As a consequence the decoherence time T2 is limited only by its

upper bound T1, T2¼ 2T1. In turn, the relaxation time T1 shows a strong dependence on

the magnetic field, T1/B5, that has been confirmed experimentally, where a very long

relaxation time up to T1
 1 s has been measured for a magnetic field of B¼ 1 T (see [23]).
Hyperfine interaction was first taken into consideration as a source of decoherence for

an electron spin confined in a quantum dot in [24]. In GaAs there are approximately

5� 1021 atoms in 1 cm3. Therefore, the linear extension of a typical GaAs quantum dot,

that is of order of the Fermi wavelength of around 40 nm, encompasses roughly 200 atoms,

from which it can be estimated that the wavefunction of an electron in a GaAs quantum

dot overlaps with approximately 105 nuclei. The electron spin and the nuclear spins in the

dot couple via the Fermi contact hyperfine interaction, which creates entanglement

between them and strongly affect the electron spin dynamics. It turns out that long-time

correlations in the nuclear spin system induce a non-Markovian dynamics of the electron

spin, with non-exponential decay in time of the expectation values of the electron spin

components. In a large applied magnetic field B, the dynamics in the nuclear field due to

the hyperfine interaction can be treated perturbatively and it turns out that flip–flop

dynamics starts to affect the nuclear field in a time that scales as the number of nuclear

spins (/ N ). For shorter times the nuclear field is static and the transverse component

shows a Gaussian decay, that is due to the statistical distribution of nuclear spin states.
We remark that the phonon-induced relaxation rate of the electron spin is enhanced by

an applied magnetic field, whereas the influence of the hyperfine interaction is reduced by

a large Zeeman splitting.

2.3. Hyperfine-induced decoherence in spin qubits

2.3.1. Hyperfine interaction

The spin of an electron and the atomic nuclear spin can interact through the hyperfine

Fermi contact interaction, a spin–spin interaction that takes place when the electron and

the nucleus occupy the same position in space, for which we use the term ‘contact’.

The origin of the hyperfine coupling can be understood considering the electromagnetic

interaction of an electron with the magnetic field produced by a nucleus. Without loss of

generality the magnetic properties of a nucleus can be described as those of a magnetic

dipole lN¼	N�hI, where 	N is the nuclear magneton, and I is the nuclear spin operator.

The interaction of a nuclear dipole lN with the electronic shell gives a rather small effect,

and can be treated using a perturbative method. In the non-relativistic Pauli description of

the electron, the Hamiltonian of an electron in a magnetic field B¼r�A produced by

a vector potential A is given by

H ¼
1

2m
pþ

e

c
A

� �2
þ2	BS � ðr � AÞ, ð61Þ
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where S is the electron spin operator. The vector potential produced by a magnetic dipole
l at position r is, according to classical electromagnetism, A¼ (l� r)/r3¼r� (l/r).

Neglecting the quadratic term in the vector potential and replacing �hL¼ r�p for the
electron orbital momentum operator, the Hamiltonian (61) can be written as

H ¼ 2	B
L � l

r3
þ 2	BðS � rÞðl � rÞ

1

r
� 2	BðS � lÞr

2 1

r
: ð62Þ

The magnetic interaction of the nuclear spin and the electron spin is contained in the
second and the third term of (62), and it is obtained after integration over the orbital
degrees of freedom, that is, it has to be understood as applied to an electron orbital state

 el(r). For r 6¼ 0, the terms involving the electron spin S in (62) behave regularly, the last
term vanishes identically, while the second term produces a usual dipole–dipole interaction
2	B[3(S � r)(l � r)/r

5
�S�l/r3]. The case r¼ 0 needs to be treated more carefully. It can be

shown [10] that the dominant contribution of the spin dependent part of (62) reduces to
(16�/3)	B(S �l)�(r), and once applied on the electron orbital wavefunction is given by

Hhy ¼
16

3
�	Bj elð0Þj

2S � l, ð63Þ

which is finite for s electrons and zero for others. The Hamiltonian for the magnetic
interaction of the electron with the nucleus can be written as

H ¼ 2	B	N�hI �
L

r3
�

S

r3
þ 3

rðS � rÞ

r5
þ
8

3
�S�ðrÞ

� �
: ð64Þ

2.3.2. Hyperfine interaction in semiconductor quantum dots

In a semiconductor quantum dot an electron is confined in a two-dimensional region of
space whose linear extension is of the order of the Fermi wavelength, about 100 nm for

GaAs, which is much larger than the typical lattice spacing of the crystal (of the order of
Ångstroms). As a result a discretization of the energy levels in the dot appears, with an
orbital level spacing that, for lateral quantum dot containing single electrons, is much
greater than the typical energy scale of the hyperfine interaction. As opposed to the case of
single atoms, the electron orbital wavefunction in a quantum dot extends over a region

much larger than the lattice size, such that the electron spin couples to many nuclear spins,
as shown schematically in Figure 2. Taking into consideration only the main contribution
of the total Hamiltonian (64) that comes from the diverging part, the effective hyperfine
Hamiltonian describing the interaction of a single electron with the nuclei in the dot can be
written as

H ¼ S � h, h ¼ Av0
XN
k¼1

j 0ðrkÞj
2Ik �

XN
k¼1

AkIk, ð65Þ

where S is the electron spin operator, h is the so-called Overhauser field, given by the sum
of all of the Ik nuclear spin operators, weighted by the position-dependent coupling
strength Ak¼ v0Aj 0(rk)j, where the square modulus of the electron envelope wavefunction
at the kth lattice site. Typically the electron can be assumed to be in the quantum dot
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orbital ground state. Here, v0 is the volume of the crystal unit cell containing one nuclear

spin and A¼ 16�	B	N�h/3 is the contact hyperfine coupling strength. In GaAs the nuclear

spin is I¼ 3/2 and an estimate of the interaction strength, weighted by the abundances of

the three isotopes naturally present (69Ga, 71Ga, and 75Ga), yields A
 90 meV.
The inhomogeneity of the electron wavefunction results in a non-uniform hyperfine

coupling strength Ak, which depends on the probability to find the electron in the nuclear

lattice site k, resulting in a subtle and complex many-body quantum mechanical

behaviour, with the nuclear spin affecting the electron spin time evolution, and the

electron spin acting back on the dynamics of each of the nuclei in turn.
From the point of view of the electron spin, entanglement with the degrees of freedom

of nuclear spins arising from the hyperfine coupling constitutes a decoherence mechanism.
Since the Overhauser field h appearing in (65) is composed by the sum of a large

number of spins, it is natural to question whether the nuclear field can be approximated as

a classical object and to what extent this approximation gives correct results. In a relatively

recent work by Coish et al. [25], it has been theoretically shown that, for the special case of

a uniform hyperfine coupling constants Ak¼A/N, arising from a constant wavefunction in

the dot  0 ¼ 1=
ffiffiffiffiffiffiffiffi
v0N
p

, the dynamics obtained in the mean field approximation and the

quantum evolution show agreement up to the transverse-spin correlation time 
c, which
diverges in the zero external magnetic field case (unphysical result due to the assumption

of constant coupling), but that saturates to a finite value in case of a finite external

magnetic field.

2.3.3. Fluctuation timescales of the nuclear field

The nuclear field is a quantum many-body interacting spin system whose field

orientation and magnitude change over time. This change is due to the combined effect

of the inter-nuclear dipole–dipole interaction and the hyperfine interaction between

electron and the nuclei. The dipolar interaction does not conserve the total nuclear spin

and thus can be responsible for changes in the nuclear spin configuration. Those

changes, combined with the spatial variation of the hyperfine coupling constant, lead to

a different value of the nuclear field seen by the electron spin and thus to its

decoherence. Here, we briefly outline the timescales in which those mechanisms take

place, in order of decreasing timescales.

Figure 2. Schematic representation of the orbital wavefunction of an electron in a quantum dot.
Owing to the spatial extension of the wavefunction, the electron spin (big blue arrow) couples to
many nuclear spins (small red arrows). See online version for colour.
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The strength of the effective magnetic dipole–dipole interaction between neighbouring
nuclei in GaAs is directly given by the width of the nuclear magnetic resonance (NMR)
line to be approximately (100ms)�1 (see [26]) and its inverse can be taken as an estimate for
the timescale in which a change in the nuclear configuration due to dipolar interaction
takes place, that is, Td�d
 100 ms, which is just the period of precession of a nuclear spin in
the local magnetic field generated by its neighbours. This timescale is so long that a great
number of other decoherence mechanisms start to play a significant role before nuclear
dipole effects start to matter.

In addition to spin diffusion driven by nuclear dipole–dipole interaction, the nuclear
field can undergo a change due to the flip–flop term in the Hamiltonian (65). In a large
external field B, the flip–flop term can be treated within the framework of perturbation
theory, as it will be explained in the next section. We anticipate here that the hyperfine
mediated dynamics in the nuclear field has a timescale given by /A/N. This means that up
to this timescale the nuclear field can be considered as static.

2.4. Decoherence due to hyperfine-induced electron spin dynamics

The interaction in a quantum dot of the electron spin with the nuclear field via the
hyperfine interaction belongs to the class of central spin problems briefly introduced in
section 1.6.2. An early treatment of the hyperfine interaction as a decoherence mechanism
for single electron spins confined in quantum dots whose carried out in [24]. There,
a second-order time-dependent perturbation expansion of the hyperfine interaction in
a magnetic field was performed with respect to the flip–flop transverse term
A(hþS�þ h�Sþ)/2 for a constant hyperfine coupling A, and an asymptotic electron
spin-flip probability of approximately 1/p2N is obtained, where p is the nuclear spin
polarization. As a result, in addition to a large external magnetic field, a large polarization
p and a large number of nuclei in the dot would suppress the spin-flip probability.

The first signature of the non-Markovian dynamics of the electron spin in a quantum
dot coupled to the nuclear spin bath appeared in [27]. There, an exact solution for the fully
polarized case p¼ 1 is provided. The Hamiltonian describing an electron spin S coupled to
the nuclear spin bath hN¼

P
i AiIi via the hyperfine coupling, in presence of an external

magnetic field B is

H ¼ g	BS � Bþ S � hN, ð66Þ

with Ai¼Av0j�(ri)j
2. The fully polarized initial state is �0¼ j+; ", ", . . . ,"i. At a later

time t4 0 the wavefunction will have the exact form

�ðtÞ ¼ �ðtÞ�0 þ
X
k

�kðtÞj *;" , " , #k , " , . . .i: ð67Þ

Via inserting the ansatz wavefunction in the Schrödinger equation, a system of coupled
first-order differential equation for � and �k can be written. For large Zeeman field
(j�zj	A, with �z¼ g	BBz), the correlator C0ðtÞ ¼ h�0j�ŜzðtÞŜzj 0i, with �ŜzðtÞ ¼ ŜzðtÞ� Ŝz

and ŜzðtÞ being the z-component of the electron spin operator in the Heisenberg
representation, is found to asymptotically decay algebraically, that is, C0(t)�
C0(1)� 1/t3/2. The reason of this non-exponential decay lies in the non-uniform couplings
Ai, which depend on the probability for the electron to be located at different nuclear sites.
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According to long-time power-law decay, the longitudinal electron spin component decays

of a fraction of around 1/N, in a time of approximately N/A.

2.4.1. Single-electron spin decoherence in large Zeeman splitting

A detailed and comprehensive treatment of the hyperfine interaction [28] provides an

analytical result for the electron spin dynamics for arbitrary nuclear spin I and nuclear

polarization p. A generalized master equation (GME) approach allows a treatment of the

transverse electron spin–nuclear spin flip–flop terms in the Hamiltonian with an external

field in a well-controlled perturbative way. An expansion of the self-energy in the exact

Nakajima–Zwanzig GME shows a rich electron spin dynamics, with exponential and non-

exponential decaying contributions and undamped oscillations. The form of the decay of

the transverse and longitudinal electron spin component is obtained in high magnetic field

up to fourth order in perturbation theory.
The hyperfine Hamiltonian in an external magnetic field is

H ¼ bSz þ �nzIz þ h � S, ð68Þ

where b¼ g*	BBz (�nz¼ gI	NBz) is the electron (nuclear) Zeeman splitting in a magnetic

field defining the z-axis Bz, g* (gI) the effective electron (nuclear) g-factor, and 	B (	N) the

Bohr (nuclear) magneton. In the rotating frame, with respect to the nuclear Zeeman term,

the Hamiltonian can be separated into a longitudinal (unperturbed) and transverse

(perturbation) term,

H ¼ ðbþ hzÞSz|fflfflfflfflfflffl{zfflfflfflfflfflffl}
H0

þðhþS� þ h�SþÞ=2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

:
ð69Þ

In absence of V, hSzit is constant, since [H0,Sz]¼ 0, but the transverse component hS�it
evolves in time in a non-trivial way. For a large number of nuclear spins N� 105 (GaAs

dot) a direct application of the central limit theorem gives a Gaussian distribution for the

eigenvalues of hz with mean h0¼hhzi and variance � 
 A=
ffiffiffiffi
N
p

. The transverse correlator

for an initial state given by the product state of the initial electron spin state �S(0) and
incoherent Gaussian distributed nuclear mixture state is

hSþit 
 hSþi0 exp½�t
2=2
2 þ iðbþ h0Þt�, 
 ¼

1

�
¼

2�h

A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

1� p2

s
: ð70Þ

Choosing as the nuclear initial state the pure state

j Ið0Þi ¼
Y
j

ffiffiffiffiffiffiffiffiffiffiffi
1þ p

p
j"ji þ ei�j

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
j#ji

� �
=
ffiffiffi
2
p

,

for a certain polarization p, the same result (70) with h0¼ pN comes out.
The reason for this decay lies in the choice of the initial nuclear state containing many

hz eigenstates and can also be obtained choosing the nuclear field in an hz eigenstate, but

with the electron spin in a transverse initial state. This decay is reversible and can be

removed with a standard spin echo technique [29,30]. Such an experiment therefore reveals

only the decay due to the transverse flip–flop term V (see (68)). A more suitable procedure

for a quantum computation algorithm would be a strong Von Neumann measurement of
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the nuclear field that would then prepare an hz eigenstate, leading to simple precession with

no decay [31,32].
Analysis of the GME in the Born approximation for a very high magnetic field

(jBzj	 jA/g*	Bj) provides an asymptotic form to leading orders in 1=!n ¼ 1=ðbþ hznÞ,

hSþit 
 �
osc
þ ðtÞ þ �

dec
þ ðtÞ, hSzit 
 hSzi1 þ �

dec
z ðtÞ: ð71Þ

The transverse component hSþit splits up into the sum of an oscillating term

�oscþ ðtÞ / hSþi0e
i!nt, that is proportional to the initial value of the transverse component

hSþi0 and oscillates at frequency !n, and a decaying term �decþ ðtÞ, that, for a parabolic

confinement in the dot, reads as �decþ ðtÞ / �=t
3=2, with �¼N/!n� 1. The long-time

behaviour of the longitudinal component hSzit splits up into the sum of a constant term

and a decaying term �decz ðtÞ / �=t
3=2, showing that it saturates to an asymptotic value that

is proportional to the initial expectation value hSzi1/ hSzi0. Even for a hz eigenstate, for

which no decay is expected in zeroth order in the transverse electron spin–nuclear spin

flip–flop interaction, a long-time irreversible decay takes place, which is due to the spatial

variation of the hyperfine coupling constant.

2.4.2. Single-spin electron spin resonance: universal phase shift and power-law decay

Here, we describe the situation in which the electron spin is coherently driven via pulsed

magnetic resonance, while coupled to a nuclear long-time correlated spin bath. Recent

remarkable experimental results [30] show a coherent electron spin oscillation, even for

a Rabi period much longer than T�2 ¼ 10�20 ns. A non-exponential decay of the Rabi

oscillations is observed, obeying a power-law decay with the appearance of a universal

phase shift.
In order to measure the electron spin state in the experiment [30], a spin-charge

conversion technique is implemented by operating a double quantum dot in the spin

blockade regime [33,34] in which the transport through the dots can occur only via

transitions from spin states with one electron per dot, j(1, 1)i, to the singlet state in the

right dot, j(0, 2)i. The Pauli exclusion principle, which does not allow two electron with

same spin state to occupy the same orbital, allows transport only for antiparallel spins.

Transport of the spin-triplet states is therefore blocked. The oscillating transverse

magnetic field rotates the spins, therefore unblocking an initial state with even parity spin

state [34].
Consider a quantum dot in a time-independent magnetic field defining the z direction.

In addition, an oscillating magnetic field is applied in the plane, along the x direction. For

a large number of nuclei in the dot (N� 106 in GaAs dots) the field hz is Gaussian

distributed, with mean h0 and variance � (see [27,28,35]). In the case of strong external field

(b	 �, with b¼ g*	BBz), neglecting transverse electron spin–nuclear spin flip–flop terms

in the hyperfine interaction, the Hamiltonian is (�h¼ 1)

H ¼ ðbþ hzÞSz þ bac cosð!tÞSx, ð72Þ

where bac¼ g*	BBac, ! and Bac being the frequency and amplitude of the electron spin

resonance (ESR) driving field. Here, hz is considered static (justified for t5 1 ms), and the

assumption !¼ bþ h0 is made. In the rotating wave approximation (valid for (bac/b)
2
� 1),
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after averaging over the Gaussian distribution of hz, the decay of the driven Rabi

oscillation is given by [30], see Figure 3

CESR
"" ðtÞ � 1� Cþ

ffiffiffiffiffiffiffiffiffi
bac
8�2t

r
cos

bac
2

tþ
�

4

� �
þO

1

t3=2

� �
, ð73Þ

for t	max(1/�, 1/bac, bac/2�
2), with C ¼ expðb2ac=8�

2Þerfcðbac=
ffiffiffi
8
p
�Þ

ffiffiffiffiffiffi
2�
p

bac=8�. The

remarkable features appearing in the experiment are the �1=
ffiffi
t
p

power-law decay and

the universal �/4 phase shift. The reason for the appearance of these features is that the

nuclear field hz does not change over a timescale much longer than the Rabi period. Since

different values of hz determine different oscillation frequencies, an average over the

distribution in hz give rise to a decay in the coherence of the driven electron spin, and the

off-resonant contributions also determine the phase shift. The fact that coherent Rabi

oscillations are visible even when the Rabi period is much longer than the transverse spin

decay time 
� 15 ns has its origin in the fact that the power-law decay sets in already after

a short time 1/�� 15 ns.

2.4.3. Single-triplet decoherence in a double quantum dot

An alternative way to implement a qubit with electron spin in quantum dots is to consider

a double quantum dot with two spins, one per dot, and encode the qubit in the subspace

with zero z-projection of the total spin Sz
tot ¼ Sz

1 þ Sz
2 ¼ 0. The advantage of this scheme is

the possibility of reducing the hyperfine coupling in the case of symmetric dots. At the

same time additional decoherence due to the coupling to the orbital degree of freedom and

leakage errors may appear.

Figure 3. Decay of the driven Rabi oscillation in ESR showing a power-law decay / 1=
ffiffi
t
p

and
a universal phase shift of �/4, as given by (73), valid for t	max(1/�, 1/bac, bac/2�

2). For the plot the
value b¼ �¼ 0.4GHz have been chosen.
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The effective Hamiltonian for the one-electron-per-dot configuration can be written as

Hdd ¼ �zSz þ h � Sþ �h � �Sþ
J

2
S � S� J, ð74Þ

where S¼S1þS2, �S¼S1�S2, h¼ h1þ h2, and �h¼ h1� h2. Here J is the Heisenberg

exchange coupling between the two electron spins. For definiteness we work in a regime of

large Zeeman splitting due to an external magnetic field, �z¼ g*	B	max{h�hirms, hhirms},

where hOirms¼h IjOj Ii
1/2 denotes the root-mean-square expectation value of the

operator O on the nuclear state j Ii. Requiring �z	 J, where J is taken to be positive

without loss of generality, the large Zeeman splitting condition renders the relevant spin

Hamiltonian block diagonal with respect to the eigensubspaces of Sz. In the Sz¼ 0

subspace the spin Hamiltonian for the singlet jSi and Sz¼ 0 triplet jT0i, to zeroth order in

the inverse Zeeman splitting 1/�z, is given by H0¼ (J/2)S �Sþ �hz�Sz. The effective qubit

Hamiltonian in terms of the vector consisting of Pauli matrices q¼ (
x, 
y, 
z), with the

computational states jSi! j
z¼�1i and jT0i! j

z
¼ 1i, has the form

H0 ¼
J

2
ð1þ 
zÞ þ �hz
x: ð75Þ

A systematic treatment of the dynamics induced by the Hamiltonian (75) can be

found in [31,36]. The eigenstates of H0 are given by a product state between a nuclear

eigenstate jni of �hz and a superposition of jSi and jT0i, therefore H0 does not lead

to any dynamics in the nuclear field. The correlator CT0S is defined as the probability

of finding the electron spins in the state jT0i at time t4 0, provided that the initial

state (t¼ 0) was j (0)i ¼ jSi� j Ii, with j Ii¼
P

nanjni a superposition of �hz

eigenstates,

CT0SðtÞ ¼
X
n

�IðnÞjhnj � hT0je
�iH0tjSi � jnij2, ð76Þ

where �I(n)¼ janj
2 are the diagonal matrix element of �I ¼ j Iih Ij ¼

P
n �IðnÞjnihnj þP

n 6¼n0 a
�
nan0 jn

0ihnj in the {jni} basis. For a Gaussian distributed field �hz, with mean x0 and

variance �0, the asymptotics of CT0S saturates to finite value that deviates from the

semiclassical results (Csemicl
T0S
ð1Þ ¼ 1=2) for J� x0 (see [36]),

CT0Sð1Þ �

1

2
�
1

8

J

x0

� �2

, �0, J� x0,

2
x0
J

� �2
, �0 � x0 � J:

8>><
>>: ð77Þ

At short times CT0SðtÞ experiences a Gaussian decay on a timescale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4x20

q
=4x0�0, while

in the case of strong coupling J	max{X0, �0} at long times t	 J=4�20 a power-law decay

appears (see [36]),

CT0SðtÞ � CT0Sð1Þ �
e�x

2
0
=2�2

0

4�0
ffiffiffi
J
p

t
cos Jtþ

3�

4

� �
: ð78Þ

Those results show that the singlet-triplet correlator decays due to the quantum

distribution of the nuclear spin system, even for a static system. For non-zero exchange
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interaction J 6¼ 0 the asymptotic behaviour of the correlator CT0SðtÞ changes from

a short-time Gaussian behaviour to a long-time power-law (�1/t3/2) decay and acquires

a universal phase shift which is 3�/2, consistent with experimental findings for the

correlator CSS(t) (see [37]). Qualitatively similar results appear when looking at the

transverse correlator in the Sz¼ 0 subspace, although one finds different decay power and

different value of the universal phase shift.

2.5. Nuclear spin state manipulation

As mentioned in the previous sections, for a system of N unpolarized nuclei and an

effective hyperfine interaction strength A, the dephasing time in a weak magnetic field is

T�2 � 1=� �
ffiffiffiffi
N
p

=A, where � is the width of the distribution of the nuclear field hz. This

decay T �2 finds its origin in the ensemble average over the field distribution. In order to

prolong the electron spin coherence, narrowing of the nuclear field distribution was

proposed in [28] as an alternative to the strategy of polarizing the nuclear spins [24], that

would require a polarization close to 100% to be efficient, which is currently not available

[28]. Few methods for nuclear spin state narrowing have been studied: in [31] the

narrowing is due to gate-controlled Rabi oscillations in a double quantum dot in which the

exchange interaction oscillates; in [38] a scheme based on quantum phase estimation is

envisioned for a single undriven spin in a single quantum dot; and in [32] the narrowing is

achieved by optical preparation.

2.5.1. Nuclear state narrowing by qubit state measurement

Here we discuss a nuclear state narrowing technique that has been proposed in [31].

Consider for definiteness the ESR Hamiltonian (72). The effective Zeeman splitting is

given by bþ hnz , where b¼ g*	BBz and hnz is an eigenvalue of hz. The idea behind state

narrowing is that the ESR driving give rise to the resonance condition bþ hnz � ! ¼ 0, such

that the evolution of the electron spin depends on the nuclear spin state and thus

a determination of the electron spin evolution results in a determination of the nuclear

spin state.
The eigenvalues of the nuclear field, as already mentioned in the previous sections, are

Gaussian distributed in equilibrium. The diagonal elements of the nuclear spin density

matrix are �Iðh
n
z , t ¼ 0Þ ¼ hhnz j�Ijh

n
zi ¼ expð�ðhnz � hhziÞ

2=2�2Þ=
ffiffiffiffiffiffi
2�
p

�, with mean hhzi and

variance �. Therefore, initializing the electron spin in the state j"i at time t¼ 0, the

probability of finding the electron spin in the state j#i is given by

P#ðtÞ ¼

Z
dhnz �iðh

n
z , 0ÞP

n
#ðtÞ, ð79Þ

where Pn
#ðtÞ is the probability of finding the electron spin in the state j#i, for a given

eigenvalue hnz of the nuclear field hz,

Pn
#ðtÞ ¼ hnz

� ��� h#jUESRðtÞj"i � hnz
�� ��� ��2

¼
1

2

b2ac
b2ac þ 4�2n

1� cos
t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ac þ 4�2n

q� �� �
: ð80Þ
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If at time t¼ tm we perform a measurement of the electron spin and find j#i, the diagonal

element of the nuclear spin density matrix will change according to

�I hnz , 0
	 


! �ð1,#ÞI hnz , tm
	 


¼ �I h
n
z , 0

	 
Pn
#ðtmÞ

P#ðtmÞ
: ð81Þ

In the case where a measurement is performed with a low time resolution �t, �t	 1/b,

such that it gives the time averaged value, the probability turns out to be

Pn
# ¼ limT!1ð1=T Þ

R T
0 dtPn

#ðtÞ ¼ b2ac=2ðb
2
ac þ 4�2nÞ. Therefore, a measurement on the

electron spin with outcome j#i results in a multiplication of the nuclear spin density

matrix by a Lorentzian, with width bac, centred around the value hnz that satisfies the

condition bþ hnz � ! ¼ 0. The nuclear spin distribution, thus, undergoes a narrowing,

resulting in an enhancement of the electron spin coherence, if bac5 �. In the case that the

measurement outcome is j"i the diagonal element of the nuclear spin density matrix will

change according to

�I hnz , 0
	 


! �ð1,"ÞI hnz , tm
	 


¼ �I hnz , 0
	 
 1� Pn

#ðtmÞ

1� P#ðtmÞ
, ð82Þ

resulting in a reduced probability for the nuclear field to have a value that matches the

resonance condition bþ hnz � ! ¼ 0.
This procedure can be iterated many times before changes due to the slow internal

dynamics start to affect the nuclear spin state. Many measurement of the electron spin are

possible within this time, with re-initialization of the electron spin state between

the measurements. Assuming that M cycles can be performed with a static nuclear field,

we have

�I hnz , 0
	 


! �
ðM,�"Þ
I hnz , tm

	 

¼

1

N
�I hnz , 0
	 


Pn
#

� ��"
ð1� P#Þ

M��" , ð83Þ

where �" is the number of measurement outcomes j#i. If the outcome is j#i the narrowing

has been achieved; otherwise, it is necessary to wait for a re-equilibration of the nuclear

system before the next measurement.

2.5.2. Optical preparation of nuclear spins

Here, we discuss the case of optical nuclear spin preparation that makes use of spin–flip

two-photon Raman resonance in a driven three-level system (TLS) [32]. The lowest

electronic states in GaAs quantum dots that are optically active under �þ circularly

polarized excitation are the ground state of a single localized conduction-band (EC)

electron, in which a Zeeman field splits the up and down spin states, and the negatively

charged exciton (trion) jXi, given by two electrons with antiparallel spin plus one valence

band heavy hole (hh) with angular momentum Jz0 ¼þ3/2, as schematically shown in

Figure 4. The J¼ 3/2 subspace in the valence band splits up into heavy and light holes

(hh and lh) along the direction z0 of strong quantum dot confinement, that is in general

different from the z-axis in the conduction band, chosen to be the direction of the magnetic

field B. The two circularly polarized lasers stimulate the transition between j"i and jXi at

frequency !p¼!X�!"��1 and the transition between j#i and jXi at frequency

!c¼!X�!#��2, while the trion Jz0 ¼�3/2 is not excited.
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The narrowing of the nuclear field distribution is based on light scattering in the
TLS, where two long-lived spin states are resonantly coupled to the excited trion state
jXi that decays spontaneously. For the two-photon resonance condition

�¼�1��2¼ 0, where � is the detuning of the difference of the frequency of the
two lasers !c�!p from the Zeeman splitting !z of the two spin states, the system is in
a superposition of the two spin states with a vanishing excited state component, and
the system is driven to a dark state with no photon emission. In presence of a nuclear

spin field, the resonance moves to �¼ �hz, where �hz is the deviation of the Overhauser
field from its mean. Monitoring the photon emission constitutes a continuous weak
measurement of the Overhauser field hz. The absence of photon emission in the limit
t!1, corresponding to the strong measurement limit, would project the nuclear state

onto j�hz¼ 0i, with width �¼ 0, therefore letting the dephasing time to diverge,
T�2 � 1=�!1. A continuous weak measurement of the Overhauser field, supported by
an adaptive adjustment of the lasers frequencies every time a photon is detected, leads
to a narrowing of the nuclear field distribution, and an enhancement of the phase
coherence of the electron spin.

The relevant effective Hamiltonian of the TLS in the rotating wave approximation is

block diagonal, with blocks labelled by the eigenvalues �hkz of the field �hz

Hk ¼ �
�h

2

�hkz þ � 0 �p

0 ��hkz � � �c

�p �c ��

0
B@

1
CA, ð84Þ

where �¼�1þ�2. The combined system consisting of the TLS and the nuclear spins
evolves in time according to a generalized master equation _� ¼ L�, where L is the

Figure 4. Three-level system. The state 1 (2) is the spin-up (-down) conduction-band (EC) electron,
with splitting given by g	B Btotþ �hz, where �hz is the z component of the nuclear field fluctuations.
State 3 is a trion with Jz0 ¼ 3/2. Reprinted with permission from [32]. � 2004 by the American
Physical Society.
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Liouvillian operator defined as

_� ¼ L� �
1

i�h
½H, �� þW�, ð85Þ

where H is the Hamiltonian of the system, and

W ¼
X
�¼",#

�X�ð2��X��X� � �XX�� ��XXÞ=2þ
X
�¼#,X

��ð2������� � ����� ����Þ=2:

Here, the rate �X� describes the radiative decay of jXi into �¼ j"i, j#i, while �� is the pure
dephasing rate of state �¼ j#i, jXi with respect to j"i.

Taking as the initial state a product of arbitrary density matrices �0 for the TLS

and 
0 ¼
P

kk0 
kk0 j�h
k
z ihh

k0

z j for the nuclear field, the stationary solution is an entangled

state ��.
In order to describe the state of the system conditional on a measurement

record, a conditional density matrix is used. The a posteriori distribution 
kk is

found to be concentrated around the two photon resonance. The stationary emission

rate is

�em ¼ TrS ��ðtÞ ¼ �
X
k


kkhXj�kkjXi, ð86Þ

where �¼�X"þ�X# and S is the collapse operator, describing spontaneous emission of

the state jXi into j"i and j#i at rates �X" and �X#. The update rule for 
 upon photon

emission is


0kk ¼

kkhXj�kkjXiP
j 
jjhXj�jjjXi

: ð87Þ

The population in the Overhauser field �hz corresponding to the two-photon resonance

�hz¼ � is depleted by the photon emission. The electron spin coherence is quantified by

the time dependence of the transverse electron spin component, which in turn is given

by the Fourier transform of the nuclear field distribution, hSþðtÞi ¼

ð�h=2Þ
P

k 
kk expðit�h
k
z Þ. The repeated observation of the quantum dot photon emission

and consequent adaption of the laser frequencies after each photon detection leads to

a narrowing in the nuclear distribution and consequent enhancement of the electron

spin coherence time.

2.5.3. Exponential decay in narrowed nuclear state

We have seen that the nuclear spin bath induces a non-Markovian dynamics of the

electron spin, with super-exponential or power-law decay of the correlation functions. On

the other hand, it has been argued that a narrowing of the nuclear spin distribution is

expected to prolong the electron spin coherence. In [39], it is shown that, in case of a large

Zeeman splitting and for a particular narrowed nuclear spin state, a Markovian dynamics

can arise from virtual flip–flops between the electron spin and the nuclear spin system,

with simple exponential decay.
The Hamiltonian describing the interaction of the electron spin with the nuclear system

in a large magnetic field is given by (69). The energy non-conserving term V can be
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eliminated by means of a Schrieffer–Wolff transformation, �H ¼ eSHe�S 
 H ¼

H0 þ ð1=2Þ½S,V�, where S¼L0V, and L0 is the unperturbed Liouvillian, defined by

L0O¼ [H0,O]. The effective Hamiltonian H is given by

H ¼ ð!þ XÞSz þD: ð88Þ

The operators !, D, and X are nuclear spin operators and the first two are diagonal

in a product-state basis of Izk-eigenstates, whereas X is purely off-diagonal and

produces correlations between nuclear spins. Corrections of the order of around

A2/Nb in the diagonal terms of H are neglected, whereas the term of this size in X

are retained. This assumption is valid as long as the bath correlation time 
c is much

shorter than the timescale after which the diagonal corrections become relevant for

b	A, where a Born–Markov approximation is valid: 
c�N/A�Nb/A2. As a result

!¼ bþ hz.
The electron and nuclear states are assumed to be initially unentangled and the nuclear

system is prepared in a narrowed state, !jni¼!njni. For these initial conditions, the

dynamics of the transverse electron spin component hSþit is described by a GME, and can

be written in a rotating frame defined by xt¼ exp[�i(!nþ�!)t]hSþit, where �! is

a frequency shift self-consistently defined by �! ¼ �Re
R1
0 dt�ðtÞ, with ~�ðtÞ ¼

exp½�ið!n þ�!Þt��ðtÞ, through the memory kernel �(t) of the GME. The equation of

motion for xt is given by

_xt ¼ �i

Z t

0

d
 ~�ð
Þxt�
: ð89Þ

If �(t) decays to zero sufficiently fast on the timescale 
c�T2, where T2 is in turn the

decay time of xt, it is possible to approximate xt¼

xt and extend the upper limit of the

integral to infinity, t!1, obtaining a Markovian dynamics

xt ¼ expð¼ t=T2Þx0 þ �ðtÞ,
1

T2
¼ �Im

Z 1
0

dt ~�ðtÞ, ð90Þ

where �(t) gives a small non-Markovian correction that can be bounded precisely if ~�ðtÞ

is known.
For a homo-nuclear system, by expanding �(t) in the perturbation V¼X Sz and

retaining only leading orders in the Born approximation in the small parameter A/!n, the

decoherence time T2 can be cast in the compact form

1

T2
¼ Re

Z 1
0

dt e�i�!thXðtÞXi, XðtÞ ¼ e�i!tXei!t, ð91Þ

where the average stands for an expectation value taken with respect to the initial nuclear

state. Although the compact form resembles the standard result for pure dephasing valid

in a weak coupling expansion, here there is no such weak coupling expansion.

The decoherence rate 1/T2 depends on the correlator C(t)¼hX(t)Xi. For an isotropic

electron wavefunction of the form  ðrÞ ¼  ð0Þe�ðr=r0Þ
q=2 containing N	 1 nuclei within

a radius r0 in d dimension, the asymptotic dependence of C(t) at long times is C(t)/ 1/t2d/q,

for t	N/A and d/q5 2. For d/q
 1/2, 1/T2 given by (91) diverges and no Markov

approximation is valid within the Born approximation. On the other hand, for
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a two-dimensional dot with a Gaussian electron wavefunction and for unpolarized nuclear

system, (91) gives the simple result

1

T2
¼
�

3

IðIþ 1ÞA

3b

� �2
A

N
: ð92Þ

The condition for the validity of the Markov approximation, T24 
c�N/A is satisfied

whenever A/b5 1, which correspond to the range of validity of the Born approximation.

Remarkably, from the last equation it follows that 1/T2 strongly depends on the

magnitude of the nuclear spin, 1/T2/ I 4. Therefore, systems with large nuclear spin, such

as In (IIn¼ 9/2), will decay faster.
With these last results on exponential decay in a spin bath, we conclude the part on

electron spin decoherence induced by the nuclear spin system and focus on phonon-

mediated relaxation of the electron spin in quantum dots.

2.6. Phonon-induced relaxation in quantum dots

Electron spin relaxation in quantum dots takes place via transitions between spin states,

with consequent energy dissipation in the environment. In a quantum dot the dissipative

environment is represented mainly by the phonons in the surrounding crystal. Therefore,

in order to fully understand relaxation and decoherence mechanisms that occur in

quantum dots, it is important to understand the manner in which the electron spin

interacts with phonons.
Spin-orbit (SO) interaction creates an admixture of orbital and spin degrees of freedom

of the electron, and represents an effective coupling mechanism that mediates the spin–

phonon interaction, and that, ultimately, is responsible for relaxation of the electron spin.

Phonons can produce electric field fluctuations that can lead to spin relaxation of

eigenstates of the SO Hamiltonian. Two kinds of electron–phonon interactions are taken

into account, that arise, respectively, from an inhomogeneous deformation of the crystal

potential, resulting in an alteration of the band-gap, and a homogeneous strain due to

piezo-electric effect, the former taking place in all semiconductors, the latter only in

crystals without structure inversion symmetry such as GaAs.

2.7. Introduction to SO interaction

An electron that moves in an electric field experiences an effective magnetic field in its

rest frame which interacts with the spin of the electron. The internal magnetic field

depends on the orbital the electron occupies and therefore the spin and orbit are

coupled. This well-known effect comes directly from the relativistic Dirac theory of

point particles and it goes under the name of SO interaction. The SO Hamiltonian has

the general form [40]

HSO ¼
�h

4m2
0c

2
p � ðr� rVÞ, ð93Þ

where m0 is the free electron mass, c is the speed of light, p¼ (�x, �y, �z) is the Pauli matrix

vector, and V is the electric potential. In the presence of an external magnetic field
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B¼r�A, the canonical momentum p is replaced by the kinetic momentum P¼ pþ eA,

A being the vector potential.
In semiconductors such as Si or Ge the crystal lattice has spatial inversion symmetry.

For such materials, states of a given momentum k are four-fold degenerate at B¼ 0. In fact

due to time reversal symmetry, �k,"¼ ��k,# holds, and from the inversion symmetry one

has �k,p¼ ��k,p, such that �k,"¼ �k,#¼holds.
The double degeneracy can be broken either via the application of an external magnetic

field, which breaks the time reversal symmetry, or via the braking of spatial inversion

symmetry. This is indeed what happens in crystals that exhibit bulk inversion asymmetry

(BIA), such as the zincblende structure of GaAs. This effect is know as Dresselhaus SO

interaction [41,42]. The Hamiltonian for two-dimensional systems results from the

three-dimensional bulk Hamiltonian [43] after integration over the growth direction z

along [001]

HD / ��xpx p
2
z

� �
þ �ypy p

2
z

� �
þ �xpxp

2
y � �ypyp

2
x

h i
ð94Þ

where x and y point along the crystallographic directions [100] and [010]. Owing to the

strong confinement along z, the terms cubic in momentum components appearing in the

Hamiltonian are usually much smaller than the linear terms, and they are usually

neglected. Retaining only the linear term

HD ¼ �ð��xpx þ �ypyÞ ð95Þ

where � depends on material properties and on hp2zi. The spin dynamics resulting from the

Dresselhaus Hamiltonian is well understood in the case of a circular orbit, in which the

spin rotates in the opposite direction with respect to the orbit, as shown in Figure 5.
In heterostructures such as GaAs/AlGaAs, an asymmetric confining potential

additionally breaks the inversion symmetry, giving rise a further SO interaction due to

structural inversion asymmetry (SIA), known as the Bychkov–Rashba term [44,45]. For

a confining electric field along the z direction, the Bychkov–Rashba Hamiltonian

(/(E� p) �p) is

HR ¼ �ð�xpy � �ypxÞ, ð96Þ

Figure 5. Schematic representation of the apparent momentum-dependent field :(p) in the SO
Hamiltonian, :(p) � p, for the Dresselhaus and Rashba SO interactions.
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where � depends on the confining potential and on material properties. The spin dynamics

resulting from the Bychkov–Rashba Hamiltonian can also be well understood in the case

of a circular orbit, in which the spin rotates along in the same direction as the orbit, the

spin always being antiparallel to the direction of motion, as explained in Figure 5.

2.8. Electron spin relaxation and decoherence

Owing to the fact that the most promising semiconductor devices that make use of the

electron spin as the quantum two-level system (qubit) are realized on the basis of two-

dimensional electron gases in GaAs heterostructures, the following discussion concentrates

on spin flip mechanisms that are relevant for GaAs.
Spin relaxation of localized electrons in quantum dots shows remarkable differences

from the case of delocalized bulk electrons. The most effective mechanisms in bulk 2D are

related to the broken inversion symmetry, either the BIA or SIA case, which give rise to

a strong SO splitting in the electron spectrum, ultimately responsible for spin flip. In

addition, the piezoelectric interaction arising in non-inversion symmetric crystals provides

a strong coupling of electrons to the bosonic bath of acoustic phonons. The interplay of

these mechanisms results in an efficient spin-lattice relaxation for bulk carriers in III–V

type semiconductors and heterostructures. The strong localization of electrons in quantum

dots leads to suppression of the spin–flip rate. The phonon-assisted spin–flip mechanisms

in semiconductor quantum dots have been studied in [21,22].

2.8.1. Electron spin relaxation in quantum dots

In the case of strong confinement in the z direction, corresponding to the [100]

crystallographic axis, for a lateral dot size much larger than the degree of vertical

confinement, the Hamiltonian derived from the Kane model [46] for two-dimensional

electrons in the conduction band in the presence of an external magnetic field B is [21,22]

H ¼
p2

2m
þUðrÞ þUphðr, tÞ þ

1

2
g	Br � BþHD

SO þH
R
SO, ð97Þ

HD
SO ¼ �ð��xpx þ �ypyÞ, H

R
SO ¼ �ð�xpy � �ypxÞ: ð98Þ

Here, p¼�i�hrþ (e/c)A is the kinetic momentum, m the effective mass, g the effective

electron g-factor (in GaAs g¼�0.44), and p the Pauli matrix vector. The axes x, y, and z

coincide with the main crystallographic axes, with z perpendicular to the two-dimensional

plane. The first two terms of the Hamiltonian describe the quantum dot with confining

potential U(r), that is typically chosen to be parabolic. The third term describes the spin-

independent interaction with acoustic phonon. The fourth term is the Zeeman

Hamiltonian. Here, HSO describes the SO effects, HD
SO is the Dresselhaus term, due to

BIA, and HD
SO is the Rashba term, due to SIA. For GaAs heterostructures �
 105 cm s�1.

The Hamiltonian (97) should also contain a term describing ‘direct’ interaction

between spin and phonons, such as that due to an inhomogeneous deformation of the

lattice, and a term describing the spin–phonon coupling in the presence of a magnetic field

due to a lattice-deformation-dependent admixture of valence-band and conduction-band

states. Their contribution to spin relaxation rates turns out to be negligible with respect to
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the dominant admixture mechanism contribution owing to the Dresselhaus and Rashba

SO interaction. See [21,22,47] for a discussion of the direct spin–phonon coupling

contribution.
The phonon-induced rate for the transition between j�"n i and j�

#
n i is given by Fermi’s

golden rule

� ¼
2�

�h

X
n

�"n
� ��Hph �#n

�� ��� ��2Dð�ZÞ: ð99Þ

Here, D(�Z) is the phonon density of states at the Zeeman energy splitting �z. From

experimental results, the relevant acoustic phonons can be treated as bulk-like phonons,

showing a linear dispersion relation in the relevant energy range, for which the density

of states increases quadratically with energy [48]. The states j�"n i and j�#n i are the

effective spin states, containing more than one orbital and both the spin up and down

states. This admixture of spin and orbit comes out in taking into account the SO

interaction due to BIA and SIA as a perturbation. Owing to the localization of

stationary states in a quantum dot, it follows that the SO interaction does not directly

couple Zeeman-split sublevels in the same quantum dot orbital. It follows that within

first-order perturbation theory in the SO Hamiltonian, the effective single electron

quantum dot states are

j�"n i ¼ jn "i þ
X
n0 6¼n

ðHSOÞ
#"

n0n

En � En0 þ g	BB
jn0 #i, ð100Þ

j�#n i ¼ jn #i þ
X
n0 6¼n

ðHSOÞ
"#

n0n

En � En0 � g	BB
jn0 "i, ð101Þ

where ðHSOÞ
#"

n0n ¼ hn
0 # jHSOjn "i and {jni} are the unperturbed quantum dot orbital states.

Owing to the anisotropy of BIA and SIA SO interaction, the admixture of spin and orbit

degrees of freedom turns out to be anisotropic [49].
For spin–flip transitions involving a small energy transfer, the dominant contribution

comes from piezo-electric phonons. The electric field associated with a single phonon

scales as 1=
ffiffiffi
q
p

for piezo-phonons and as
ffiffiffi
q
p

for deformation potential phonons, q being

the phonon wave number. This is due to the fact that piezo-phonons come from

a homogeneous lattice strain, in which long wavelengths play a major role. Vice versa,

a local deformation would involve short wavelengths, and so higher energies. On the other

hand, wavelengths much longer than the dot size give rise to a global shift of the entire dot

potential, therefore the effective phonon wavelengths are those comparable with the dot

size, as seen in [50].
The electron–phonon coupling for piezo-electric phonons has the form

U
q�
phðr, tÞ / expðiq � r� i!q�tÞAq�b

y
q� þ h:c:, ð102Þ

where q� are the wavelength and the branch of the phononic modes, Aq� is effective

anisotropic piezo-electric modulus of wave q�. The matrix elements of the phonon

Hamiltonian between the Zeeman split sublevels of orbital level n, that describe the
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spin–flip process with emission of phonon q�, are given at first order in the SO

interaction by

�"n
� ��Uq�

ph �#n
�� �
¼
X
k 6¼n

U
q�
ph

� �
nk
ðHSOÞ

"#

kn

En � Ek � g	BB
þ

U
q�
ph

� �
nk
ðHSOÞ

#"

kn

En � Ek þ g	BB

2
4

3
5: ð103Þ

As a consequence of Kramer’s theorem, in case of no external magnetic field, (103) is zero.

Considering only Dresselhaus SO interaction, for small Zeeman splitting,

g	BB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2�h!0

p
, it is possible to obtain an effective spin–flip Hamiltonian which acts

on the subspace of Zeeman sublevels of orbital level n (see [22]), where a phonon-induced

electric field arise as a gradient of Uph. For a parabolic dot confinement potential, and for

the particular case of a circular dot with level spacing !0, the spin–flip rate for the

transition between the Zeeman sublevels of the dot ground state, associated with the

emission of a piezo-phonon as depicted in Figure 6, is [22]

�1 ¼
ðg	BBÞ

5

�hð�h!0Þ
4

�pð1þ cos2ð#ÞÞ, �p �
2

35�

ðeh14Þ
2�2

��h

1

s5l
þ

4

3s5t

� �
, ð104Þ

where � is the strength of the Dresselhaus SO interaction, # is the angle between the

direction of confinement in the quantum dot z, and the direction of the applied magnetic

field z0, and �p is the strength of the effective spin–piezo-phonon coupling. For given

longitudinal and transverse sound speed sl and st, crystal mass density �, and modulus of

the piezo-tensor eh14 (eh14¼ 1.3� 107 eV cm�1 for GaAs), it ranges from around 7� 10�3

to about 6� 10�2, depending on �. Equation (104) shows a strong dependence on the

magnetic field and the lateral dot confinement energy !0. For �h!0¼ 10K and magnetic

field B¼ 1T, �1
 1.5� 103 s�1. These theoretical expectations, in particular the

B-dependence, have been confirmed in experiments [51–53], and long spin relaxation

times, up to 1 s, have been measured [23].
The effect of the Rashba SO interaction has so far not been taken into account. As

the Dresselhaus term, it contributes to the admixing of spin and orbital states, and

therefore to relaxation due to phonon scattering. The effect of the interplay of these

two terms can show up in a strong difference in the their associated relaxation rates

[23,54–56]. For a quantum dot in an external magnetic field, the first and second

lowest levels show a crossing behaviour as a function of the applied magnetic field,

Γ1εZ

qph,j

Figure 6. Schematic representation of the spin–flip process associated with the emission of a phonon
of energy �Z and momentum qph,j, where j is the branch index, at rate �1.
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with the ground state unaffected. In a perturbative treatment of the SO interaction [54],

Dresselhaus and Rashba terms show a qualitative difference, in which the latter couples

the crossing levels, giving rise to an anticrossing of the levels at the point of accidental

degeneracy. For magnetic fields much smaller than the crossing level value, the these

two levels have a well-defined spin orientation, that is, a low degree of admixture. In

the region of anticrossing the admixture leads to equally weighted superposition of the

up and down states, and eventually to a reversed situation in the limit of the magnetic

field much larger than the crossing value, in which the two levels have again well-

defined spin, but reversed. Therefore, sweeping the magnetic field over the crossing

region leads to spin–flip. In particular at the avoided crossing point, the strong

admixture between spin states lead to a cusp-like behaviour of the relaxation rate as

a function of the magnetic field, at the anticrossing point.

2.8.2. Phonon-induced electron spin decoherence

In a Markovian dynamics the decoherence time T2 is limited by both spin–flip and

dephasing processes, though its upper bound is T2
 2T1. A systematic analysis of phonon-

induced spin decay was carried out in [57]. Both the Rashba and Dresselhaus SO

interactions were also treated perturbatively. The deformation potential phonons were

also considered. For a SO length �SO¼ �h/m*� much larger than the electron orbit size �,
the contribution to the spin–phonon coupling in the Hamiltonian linear in �/�SO/�, � is

due only to a finite Zeeman splitting. For B field in the range m*�2� g	B B� �h!0, the

effective Hamiltonian is

Heff ¼
1

2
g	B½Bþ �BðtÞ� � r, �BðtÞ ¼ 2B�:ðtÞ, ð105Þ

where :ðtÞ ¼ h j½ðL̂�1d nÞ,UphðtÞ�j i, j i is the electron orbital wavefunction, L̂d is the dot

Liouvillian, L̂dA ¼ ½Hd,A�. The vector n lies in the two-dimensional dot plane and

depends on �, �, and m*. The most important consequence of (105) is that within first

order in the SO coupling parameter there can only be transverse fluctuations of the

effective field.
In the case of many uncorrelated scattering events, the expectation values hSi of the

spin obeys the Bloch equation [7]

h _Si ¼ x � hSi � �hSi þ ~, ð106Þ

where x¼!B/B, !¼ g	B B/�h. In the Born–Markov approximation, for a generic �B such

that h�Bi¼ 0, the tensor � can be expressed in terms of the spectral function

JijðwÞ ¼
g2	2

B

2�h2

Z 1
0

dt h�Bið0Þ�BjðtÞie
�iwt, ð107Þ

and it is diagonal in a frame (X,Y,Z ), with Z oriented along B. The symmetric part of � is

responsible for the decay of the spin components, and it can be expressed just as function

of J�ij ðwÞ ¼ Re½JijðwÞ � Jijð�wÞ�. Here, � can be split in two contributions, �¼�r
þ�d,

where �r contains the spectral function Jij(!) at the Zeeman frequency !, and describes

spin decay due to emission or absorption of a phonon, whereas �d is due to elastic

scattering of spin. The relaxation time T1 is completely determined by �r, while the
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decoherence time T2 is affected by both �r and �d, the latter describing pure dephasing.

In the general case, the solution of (106) yields

1

T1
:¼ �ZZ ¼ �r

ZZ,
1

T2
:¼

1

2
ð�XX þ �YYÞ: ð108Þ

In many cases the contribution of �r to spin decoherence is negligible, the decoherence rate

being determined entirely by �d. However, it turns out that, at first-order perturbation

theory in the SO interaction, no dephasing takes place [57]. Owing to the transverse nature

of the fluctuations in the magnetic field in the effective Hamiltonian, the tensor �d is

identically zero, �d
¼ 0 (Figure 7 illustrates an intuitive picture of the effect of the

longitudinal and the transverse fluctuations). As a result

1

T1
¼

2

T2
¼ JþXXð!Þ þ JþYYð!Þ: ð109Þ

Contributions to the decoherence time T2 due to pure dephasing arise when two-phonon

processes are taken into account in the next order in the electron–phonon interaction [58].

Therefore, if only SO decay mechanisms are taken into account, the decoherence time T2

for the decay of the transverse component of an electron spin in GaAs quantum dots

is T2¼ 2T1.

2.9. SO interaction for heavy holes

The electron spin in GaAs quantum dots has been shown to have a long relaxation time,

due to inefficient phonon-induced relaxation mechanisms. On the other hand, the

decoherence time is mainly dominated by hyperfine-induced decay, owing to the fact that

the decay of the longitudinal electron spin component can be strongly suppressed by the

application of an external magnetic field. In order to circumvent this problem, the use of

hole spins as carriers has been recently proposed. The valence band in III–V

semiconductors has a p symmetry, for which the electron has zero probability of being

found on the position of the nucleus. According to (65), it follows that the hyperfine

interaction between holes and nuclei is strongly suppressed with respect to that of nuclei

and conduction band electrons. However, the hole spin relaxation time turns out to be

much smaller than that of the electrons by several order of magnitude. The reason for this

is due to the fact that, in addition to the SO coupling due to bulk inversion asymmetry and

B

δB  (t)
S

S

B

δB  (t)

Figure 7. Schematic representation of the relaxation process (left-hand side), due to magnetic field
fluctuations �B?(t) orthogonal to the applied B field, and of the dephasing process (right-hand side),
due to magnetic field fluctuations �Bk(t) parallel to the applied B field.
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the structural inversion asymmetry, there is a strong SO coupling between the heavy-hole
(HH) and the light-hole (LH) subbands [59].

On the other hand, investigations of hole spin relaxation in quantum dots, exclusively
due to SO coupling of LH and HH subbands, have shown that SO coupling between HH

and LH is negligible for two-dimensional quantum dots, if the energy splitting between the
HH and LH subbands is much larger than the level spacing in these subbands [60,61].
Therefore, other SO mechanisms start to play a significant role in those cases.

In [62], HH spin relaxation was analysed in the presence of Rashba and Dresselhaus
SO coupling, as well as SO between HH and LH. From the two-band Kane model, the
Hamiltonian for the valence band of III–V semiconductors is given by

Hbulk ¼ HLK þ �J �:þHZ, ð110Þ

where HLK is the Luttinger–Kohn Hamiltonian [63], �/ (Egþ�so)/�so, �so is the split-off

gap energy, and Eg is the band gap energy. Here, J¼ (Jx, Jy, Jz) are the 4� 4 matrices
corresponding to spin 3/2, �z ¼ PzðP

2
x � P2

yÞ, and �x, �y are obtained by cyclic
permutations. The last term in (110) HZ¼�2�	B B � J� 2q	B B � J is the Zeeman term
for the valence band [64], with � and q Luttinger parameters [64], and J ¼ ðJ3X, J

3
y, J

3
zÞ.

In the case of structure inversion asymmetry along the growth direction, due to an
asymmetric confinement, there is an additional contribution to the SO interaction, the
Bychkov–Rashba term. For the two-band Kane model it is given by [65,66] �R(P�E) �J,

where E is the effective electric field along the growth direction, and �R is the Bychkov–
Rashba SO coupling constant. We consider a two-dimensional system grown along the
[001]-direction. Owing to confinement, the valence band splits into a HH subband, with
Jz¼�3/2, and a LH subband, with Jz¼�1/2 (see [59,62]), where z is the growth direction.
In the case of large splitting � between HH and LH, the properties of the two subbands
can be described separately, the Jz¼�3/2 subspace for HHs and the Jz¼�1/2 subspace

for LHs, using only the 2� 2 submatrices. The HHs submatrices have the properties
~Jx ¼ ~Jy ¼ 0, and ~Jz � ð3=2Þ�z (see [67]). For low temperatures only the HH subband is
significantly occupied. Considering only HHs, starting from the bulk Hamiltonian (110)
with the addition of the Bychkov–Rashba term, at the lowest order in perturbation theory
[68], it is possible to derive an effective Hamiltonian for a quantum dot with lateral

confinement potential U(x, y)

H ¼
1

2
P2
x þ P2

y

� �
þUðx, yÞ þ HHH

SO �
1

2
gzz	BBz�z, ð111Þ

where m is the effective HH mass, gzz is the component of the g factor tensor along the
growth direction, and the effect of an in-plane component of the magnetic field can be
neglected due to strong anisotropy in the HH g factor, gk� gzz (see [67]), as well as the
orbital effect of the in-plane magnetic field, as long as Bk� c�h/eh2, h being the height of

the quantum dot. Here P¼ pþ (jej/c)A(r), with A(r)¼ (�yBz/2, xBz/2, yBx�xBy), and

HHH
SO ¼ i��þP

3
� þ �P�PþP��þ þ �B�P

2
��þ þ h:c: ð112Þ

The first two terms in the SO interaction for HHs consist in the Rashba and Dresselhaus
contribution, respectively, while the last term (�) describes the combination of two effects:
the orbital coupling via non-diagonal elements in the Luttinger–Kohn Hamiltonian
ð/ P2

�Þ, taken into account perturbatively, and magnetic coupling via non-diagonal
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elements in the Zeeman term, (/B�) (see [64]). This new SO term is unique for HHs [69]. In

(112) �� 3�0�RhEzi/2m0�, � ¼ �3�0�hP
2
zi=2m0�, �¼ 3�0�	B/m0�, ��¼ (�x� �y)/2,

P�¼Px�Py, and B�¼Bx�By, m0 is the free electron mass, �0 is the Luttinger parameter

[64], hEzi is the average electric field, and � is the splitting between HH and LH subbands,

�/ h�2, where h is the quantum-dot height. For a quantum dot with characteristic lateral

size l, the ratio hHel
SOi=hH

HH
SO i / ðl=hÞ

2. Therefore, for flat quantum dots, l/h	 1, the SO

coupling for HHs can be weaker than that for conduction electrons [54,57]. This

observation has also been confirmed experimentally [70], where the spin relaxation rate for

heavy holes was shown to be comparable to that of electrons.
For vanishing SO interaction, the spectrum of the Hamiltonian (111) for a parabolic

lateral confinement can be found through a canonical transformation [71], and it is the

Fock–Darwin spectrum split by the Zeeman term [72,73]. For Uðx, yÞ ¼ m!2
0ðx

2 þ y2Þ=2,
defining � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 þ !

2
c=4

q
, with !c¼ jejBz/cm being the cyclotron frequency, the spectrum of

the Hamiltonian (111) is given by

Ek,l,s ¼ �h� 2kþ 1ð Þ þ �h ��
!c

2

� �
‘� �h!Zs=3, ð113Þ

where s¼�3/2, k is a level quantum number (in the case !0! 0 it becomes the Landau-

level quantum number), and ‘ is the z-component of the orbital angular momentum, with

�‘
 k and k� 0. Defining n1¼ kþ l, n2¼ k, and !1,2¼��!c/2, the spectrum can be

brought in the form En1,n2 ¼ �h!1ðn1 þ 1=2Þ þ �h!2ðn2 þ 1=2Þ � �h!Zsz, and the orbital part

of the wavefunction is therefore given by the product of two independent harmonic

oscillator wavefunctions. In the literature an other representation is often used, in which

the principal-level quantum number is introduced, n¼ 2kþ l, and the quantum number

labelling the levels are n, ‘, s, with the spectrum given by E¼ �h�(nþ 1)� �h!c‘/2� �h!Zs/3,

with the restriction j‘j 
 n.
In the framework of perturbation theory [54], it can be seen that the corrections to the

spectrum due to HHH
SO arise only at second order, and the SO interaction influences the

wavefunctions more strongly than the energy levels. Here, HHH
SO couples the two lowest

states j0,�3/2i to the states with opposite spin orientations and different orbital momenta

jl,�3/2i. The different SO interactions appearing in (112) differ by symmetry in the

momentum space [54,74], and thus produce a mixing of spin-up and spin-down states, with

resulting avoided crossings between energy levels. We mention here that the levels cross

only if gzz4 0, therefore in the case of GaAs (gzz4 0) quantum dots an anticrossing

appears, with consequent peak of the relaxation rate as a function of the magnetic field, at

the point where the crossing takes place, while for InAs (gzz5 0) quantum dot no crossing

and no cusp-like behaviour of the relaxation rate appear. The SO mixing of the HH states

provides a mechanism of transitions between the states j0,�3/2i through emission or

absorption of an acoustic phonon, that ultimately represents the main source of relaxation

and decoherence for HHs [62].
Taking into account piezoelectric and deformation potential phonons, the potential of

a phonon with mode q� is given by [22,68]

Uph
q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2�s�qV

r
FðqzÞe

iqk�r � wAq� þ i aþ
b

2

� �
q � dq� �

3

2
bqzd

q�
z

� �� �
, ð114Þ
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where qk¼ (qx, qy), a and b are constants of the deformation potential, V the quantum dot
volume, s� the sound velocity, � the crystal mass, Aq� the effective piezoelectric modulus,
dq� the phonon polarization vector, F(qz) the form factor, which is determined by the
spread of the electron wavefunction in the z direction.

2.9.1. Spin decoherence and relaxation for HHs

For a single-particle quantum dot, in which a HH can occupy one of the low-lying levels,
some energy levels with same spin orientation cross, with increasing B, the upper Zeeman-
split ground-state level. Therefore, we consider an n-level system, in which the first n� 1
levels have same spin orientation, while the n-level has opposite spin. In the context of
Bloch–Redfield theory, the Bloch equations for the spin motion of a heavy hole in such
a system are given, in the interaction picture, by

h _Szi ¼ ðST � hSziÞ=T1 � RðtÞ, ð115Þ

h _Sxi ¼ �hSxi=T2, h _Syi ¼ �hSyi=T2, ð116Þ

where RðtÞ ¼Wn1�nnðtÞ þ
Pn�1

i¼1 Wni�iiðtÞ, �(t) is the density matrix, Wij is the transition
rate from state j to state i, ST is a constant that takes the value hSzi in the thermodynamic
equilibrium R(t)¼ 0. The spin motion involves n� 1 states and therefore there are n� 1
transition rates. It can be shown, by solving the master equation, that for low temperature
�hq�	 kBT, R(t)
 0 and phonon absorption is strongly suppressed. In this case only one
relaxation rate contributes to the relaxation time T1, and the relaxation time T1 and
decoherence time T2 are given by

1

T1
¼Wn1,

1

T2
¼

1

2T1
: ð117Þ

The relaxation rates for the different SO interactions are [62]

1

TBR
1

/ �2!7
z

!3
þ

3!þ þ !Z
�

!3
�

3!� � !Z

� �2

, ð118Þ

1

TD
1

/ �2!3
z

!þ
!þ þ !Z

�
!�

!� � !Z

� �2

, ð119Þ

1

T k1
/ �2B2

k!
5
z

!2
þ

2!þ þ !Z
þ

!2
�

2!� � !Z

� �2

, ð120Þ

where !�¼��!c/2, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 þ !

2
c=4

q
!c¼ jejB/mc is the cyclotron frequency, !Z�

gzz	BBz, and Bk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
. In contrast to the case of conduction electrons [57], no

interference takes place for HHs, and the rates originating from different SO terms sum
up, giving the total spin relaxation rate 1=T1 ¼ 1=TBR

1 þ 1=TD
1 þ 1=T k1 . For the case of

GaAs quantum dots the crossing between levels takes place at !Z¼!�, 2!�, and 3!�, and
the strong spin mixing arising causes cusp-like peaks in the relaxation rate as a function of
the external field B.
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2.9.2. Electric dipole spin resonance for HHs

The possibility of coherent manipulating the spins is of great importance for spintronics
and quantum computation. In case of conduction electron spin-based electronics, such
control is obtained by the ESR. Through the application of short resonant microwave
pulses, arbitrary superpositions of spin-up and spin-down states can be created. Therefore,
ESR provides a necessary tool for single-qubit operations, an essential requirement for
quantum computation. In Rabi oscillations and spin echo experiments [75], that are based
on this technique, the ESR signal can be detected by measuring the absorption of
radiofrequency (rf) power [76]. ESR methods involve magnetic-dipole transitions induced
by oscillating magnetic fields. In addition, an alternative is provided by alternating electric
fields, which give rise to electric-dipole spin resonance (EDSR).

Considering the SO coupling as a perturbation, at first order the two states
corresponding to the Zeeman-split ground state j�i are given as a superposition of few
unperturbed Fock–Darwin states and spin states, jn, ‘ijsi, with n2N the principal
quantum number, j‘j 
 n the azimuthal quantum number, and s¼�3/2 as introduced in
Section 2.9 (for details see [69]). In the case of HHs it can be shown [69] that magnetic-dipole
transition (�n¼ 0,�‘¼ 0, and �s¼�1) are forbidden, while, because of SO coupling
between states with different orbital momenta and opposite spin orientations, j0, 0,�3/2i
and j1,�1,�3/2i, electric-dipole transitions (�n¼�1,�‘¼�1, and �s¼ 0) are most likely
to occur. HHs are thus affected by the oscillating electric field component, but not by the
magnetic field component. EDSR for HHs appears to be an essential tool for the control of
spin dynamics and for the determination of important parameters, as the effective g
factor, effective mass m, SO coupling constants, and spin relaxation and decoherence time.

The Hamiltonian for the interaction of HHs with a circularly polarized electric field,
that rotates with frequency ! in the XY plane, E(t)¼E(sin!t,�cos!t, 0), is given by
H

E
¼ (jejE/m!)(Pxcos!tþPysin!t). The coupling between the states j�i is given by

hþjH
E
j�i¼ dSOEe

�i!t, where

dSO ¼ ðjejl=2!Þ �
þ
1 !þ þ �

�
1 !�

	 

, ð121Þ

is an effective dipole moment of a HH and it depends on Dresselhaus SO coupling
constant, perpendicular magnetic field B?, lateral quantum dot size, and frequency ! of
the rf electric field. For details on ��1 and l see [69].

The effective master equation for the density matrix �nm, in the context of Bloch–
Redfield theory, takes the form of Bloch equations, with a rf field detuned from !Z,
�rf¼!Z�!, Larmor frequency 2dSOE/�h, spin relaxation time T1¼ 1/(Wþ�þW�þ), Wnm

being the transition rate from state m to state n, decoherence time T2¼ 2T1, and
equilibrium value of �z without rf field given by �Tz ¼ ðWþ� �W�þT1Þ.

The coupling energy between a HH and an oscillating field is given by

HEðtÞ
� �

¼ �dSO � EðtÞ, ð122Þ

where dSO¼ dSO(i��þ� i�þ�þ ��þ, 0) is the dipole moment of a HH. The rf power
P¼�dhHE(t)i/dt¼�!dSOE�� absorbed by a HH spin system in a stationary state is given
by [77]

P ¼
2!ðdSOEÞ

2T2�
T
z =�h

1þ �2rfT
2
2 þ ð2dSOE=�hÞ

2T1T2

: ð123Þ
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The dependence of P on perpendicular magnetic field B? and frequency of the

oscillating field ! shows three resonances and one resonant dip. The first resonance

corresponds to the Zeeman energy of the HH B? ¼ �h!=g?	B
, the second to the first

anticrossing between the unperturbed E0,�3/2 and E1,3/2 energy levels, !Z�!�, the third

resonance reflects the peak in the decoherence rate T�12 due to an applied in-plane

magnetic field at the second anticrossing !Z¼ 2!�. The resonant dip takes place at

zero dipole moment.
The study of the position of these resonances allows us to determine g?, m, and !0,

while the shape and height provide information about the SO interaction constants �, �,
and SO interaction strength due to in-plane magnetic field. In addition, it is possible to

extract information about the dependence of spin relaxation and decoherence times on B?.

3. Superconducting qubits

In addition to spin qubits in semiconductor quantum dots, superconducting qubits

represent a category of promising candidates for the implementation of artificial two-level

systems as qubits. The key ingredient in building superconducting qubits is the strong

nonlinearity of the current–voltage relation of a Josephson junction. The ability to isolate

few charge states on a superconducting island, together with the possibility to let them

interact through the coherent tunnelling of Cooper pairs through the junction, represent

a promising way to control and operate a purely quantum system (charge qubits). The flux

quantization together with the strong non-linear potential, arising from the current–

voltage relation, provide a way to isolate few current states and coherently superimpose

them (flux qubit).
Superconducting qubits can be included in a more general framework of quantum

circuits, that are electrical circuits showing, in the low-temperature regime, quantum

behaviour, including quantum fluctuations [78]. In this context, as LC-circuits provide

electrical realizations of quantum harmonic oscillators, showing a linear current–voltage

relation, Josephson junctions provide a full anharmonic counterpart, showing a more rich

spectrum, with groups of few energy levels well separated from higher bands of the

spectrum.
Several types of superconducting qubits based on Josephson junctions have been so far

theoretically proposed and experimentally realized (for comprehensive reviews see [79,80]).

Apart from the particular design of each device, superconducting qubits can be classified

according to the working regime of the Josephson elements that constitute the circuit.

Every Josephson junction is characterized by two features: (i) a critical current Ic, that is

the maximal supercurrent that can flow through the junction; and (ii) an effective

capacitance that the two superconducting faces have to accumulate charge. Together the

energy associated with the critical current EJ¼ Ic�0/2� and the charging energy of the

associated capacitance EC¼ e2/2C are the two most important parameters that determine

the qubit working regime. For EC	EJ the charge degrees of freedom are well defined and

the number of Cooper pairs in a superconducting island is a well-defined quantum

number. Qubits that work in this regime are called charge qubits [81–90]. In contrast, for

EC�EJ flux degrees of freedom have well-defined values, and current states are well

defined. Qubits that operate in this regime are called flux qubits [91–94]. Other realizations

of superconducting qubits, for different values of the ratio EJ/EC, and many kinds of
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possible accessible parameter regimes have been explored. The so-called phase qubit

[95,96] operates in the flux regime, but is completely represented by the superconducting

phase, and it has no magnetic flux or circulating current associated. The quantronium [97],

consists of a split Cooper pair box arranged in a loop containing an extra large junction

for the read-out.
Experimental observations of Rabi oscillations in driven quantum circuits have shown

several periods of coherent oscillations, confirming, to some extent, the validity of the two-

level approximation and possibility to coherently superimpose the computational two

states of the system. Nevertheless, the unavoidable coupling to a dissipative environment

surrounding the circuit represents a source of relaxation and decoherence that limit the

performance of the qubit for quantum computation tasks. Therefore, for the

implementation of superconducting circuits as quantum bits, it is necessary to understand

the way the system interacts with the environmental degrees of freedom, and to reduce

their effect, if possible.

3.1. The quantronium

A very successful realization of a superconducting qubit is the so-called quantronium [11].

Its circuit consists in a split Cooper pair box (CPB), constituting the qubit, and a hysteretic

current-biased Josephson junction that is used for the readout. The main superconducting

loop is interrupted by two adjacent tunnel junctions, having Josephson energies

EJ/2(1� d), where d, that parametrizes the asymmetry of the two junctions, is made as

small as possible, and by a much bigger readout junction. The superconducting island of

the CPB is located between the two small junctions an its charge energy is EC¼ (2e)2/2C,

with C the total capacitance to the ground. The island is voltage bias and a magnetic flux

�ext is applied through the loop. The working regime of the qubit is determined by the

parameters Ng¼CgV, with Cg the gate capacitor, by �¼ 2��ext/�0, with the super-

conducting flux quantum �0¼ h/2e, and by the bias current IB. The quantum Hamiltonian

of the total system is

H ¼ HCPB þHreadout, ð124Þ

HCPB ¼ ECðN̂�NgÞ
2
� EJ cosð�̂=2Þ cos �̂ þ dEJ sinð�̂=2Þ sin �̂, ð125Þ

Hreadout ¼ ECq̂
2 � EJ cos �̂ ��0IB�̂=2�, ð126Þ

where N̂ is the number operator of the excess Cooper pair on the island, �̂ is the

superconducting phase operator across the readout junction, �̂ and q̂ their respective

conjugate variables, �̂ ¼ �̂ þ �, and EC and EJ are the charging and Josephson energies of

the readout junction. The quantronium works in a regime in which EC
EJ, therefore

neither the excess Cooper pair N̂ nor the superconducting phase �̂ are well-defined

quantum numbers. Nevertheless, for a large range of bias conditions, determined by Ng

and �
�þ arcsin(IB/I0), the energy spectrum of the CPB is anharmonic, and the low-

temperature dynamics of the system is well described in the two-level approximation, with

j0i and j1i the two eigenstates of the Hamiltonian, with energy splitting �h!01(Ng, �), in an
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eigenbasis that depends on (Ng, �). In particular, there exists an optimal point

(�¼ 0,Ng¼ 1/2) for which @!01/@Ng¼ @!01/@�¼ 0, and the qubit results immune at first

order to fluctuations of the bias parameters.

3.1.1. Noise affecting the control parameters

Many sources of noise in the environment surrounding the qubit affect its dynamics,

inducing decoherence, that can manifest themselves as energy exchange between the

qubit and the noise source, and as random dephasing between the two states of the

system. Contributions of charge noise due to finite impedance Zg of the voltage source

�gVg coupled to N̂, in the weak-coupling limit �g� 1, is quantified by the spectral

density [11]

SNg
ð!Þ 
 �2g

�h2!

E2
C

Re½Zgð!Þ�

Rk
1þ coth

�h!

2kBT

� �� �
, ð127Þ

with Rk¼ h/e2, and the background charge noise dominates at low frequency. An

analogous analysis shows that noise in the superconductive phase due to the admittance in

parallel with the Josephson readout junction is characterized by a similar spectral density.
Fluctuations of the Josephson energies of the two small junctions are empirically

described by a noise source with a 1/f spectral density. Critical current fluctuations are

thought to be due to atomic defects in the oxide barrier of the tunnel junctions. These

defects are usually well described as two-level fluctuators (TLFs), that switch between two

states, and have a spectral density that follows approximately a 1/f law. The fact that the

distribution in energy splitting of these fluctuators can extend above the qubit transition

frequency, supported by the observation of avoided level crossing in the spectroscopic

qubit line, suggests that TLFs located in the tunnel junctions can lead to dephasing due to

low-frequency EJ noise, and can play a significant role in the relaxation of the

quantronium. Collections of microscopically charged TLFs, partially located in the

substrate, partially in the oxide layer covering the electrodes, and partially in the oxide

barriers of the Josephson junctions, can also produce background charge noise, whose

spectral density follows a 1/f law.

3.1.2. Decoherence due to 1/f noise in the quantronium

In [11] an extensive treatment of the theory of 1/f noise-induced decoherence for qubits is

carried on. A spectral density with a low-frequency !ir and high-frequency !c cutoff is

chosen, SX(!)¼A/j!j, with !ir5 j!j5!c, and several scenarios are analysed. For 1/f

noise at times t� 1/!ir the Ramsey decay is dominated by the quasistatic contribution,

!5 1/t. The pure dephasing of the quantronium is dominated by low frequencies !� 1/t,

characteristic of a noise spectral density that is strongly peaked at low frequencies. In the

static approximation [98,99], for !� 1/t, sinc(!t/2)
 1 (sinc x¼ sin x/x), and the decay

law (44) reduces to a Gaussian

fz,RðtÞ ¼ exp �
t2

2
D2

X,z�
2
X

� �
, ð128Þ
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with �2X ¼
R1
�1

d!SXð!Þ, that for the case of interest of 1/f noise reduces to

�2X ¼ 2A lnð!c=!irÞ, valid if D2
X,z�

2
XA lnð!c=!irÞ 	 !c, whereas for t4 1/!c it reduces to

�2X ¼ A lnð1=!irtÞ, the so-called quasistatic contribution

fz,RðtÞ ¼ exp �t2D2
X,zA ln

1

!irt
þOð1Þ

� �� �
: ð129Þ

In general, in the static approximation, valid for static and quasistatic noise with

distribution function P(�X), the Ramsey decay is given by the Fourier transform of P(�X),

f stat
z,R ðtÞ ¼

Z
dð�XÞPð�XÞeiDX,z�Xt: ð130Þ

Concerning the echo decay given by (46), the quasistatic contribution of 1/f noise, valid

for t� 1/!ir yields

fz,EðtÞ ¼ expð�t2D2
X,zA ln 2Þ: ð131Þ

Whereas for low !c it yields

fz,EðtÞ ¼ exp �
A

32
D2

X,z!
2
ct

4

� �
: ð132Þ

3.1.3. Decoherence at optimal point

As already defined, the optimal point is defined as the point in the space of external

parameters that enter �h!01 for which DX,y¼ @!01/@X¼ 0. This way, the coherence time

T2 reaches its upper bound given by the relaxation time T1, T2¼ 2T1 to first order in

perturbation theory. It can happen, though, that, due to a singularity at low

frequencies, the second-order contribution of the longitudinal noise has to be taken

into account [11,98,99]. The decay of the Ramsey and the echo signals are therefore

given by

fzðtÞ ¼ exp i
1

2

@2!01

@X2

Z t

0

d
�ð
Þ�x2ð
Þ

� �� �
, ð133Þ

with �(
)¼ 1 for the Ramsey signal, and �(
5 t/2)¼�1 and �(
4 t/2)¼ 1 for the echo

signal.
The Ramsey decay for 1/f noise with !ct	 1 can be approximated by the product of

a quasistatic low-frequency (!5 1/t) and a high-frequency (!4 1/t) contributions,

fz,RðtÞ ¼ f lf
z,RðtÞf

hf
z,RðtÞ, given by [11,98,99]

f lf
z,RðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ið@2!01=@X2Þ�2Xt

p , ð134Þ

ln f hf
z,RðtÞ 
 �t

Z 1
�1=t

d!

2�
ln 1� 2�i

@2!01

@x2
SXð!Þ

� �
: ð135Þ
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In the quasistatic approximation, !c5 1/t, for quasistatic noise with distribution P(�X),
the Ramsey decay is given by the Fresnel-type transform

f st
z,RðtÞ ¼

Z
dð�XÞPð�XÞei @

2!01=@2X
2ð Þ�X2t: ð136Þ

For a Gaussian distribution Pð�XÞ ¼ expð��X2=2�2XÞ and 1/f noise, the Ramsey decay
reduces to the low-frequency contribution (134), with �2X ¼ 2A lnð1=!irtÞ, whereas the echo

decay follows

fz,EðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð@2!01=@X2Þ
2�2XA!

2
c t

4=16
q :

ð137Þ

3.2. The superconducting flux qubit: the Delft design

In the working regime EJ	EC, three types of circuit designs have been proposed, the

Delft flux qubit [91,94], the IBM flux qubit [100], and its gradiometer variety [101].
The phase qubit operates in the same regime, see Section 3.3.

The flux qubit realized at Delft [94] consists of a superconducting loop interrupted by
three Josephson junctions (see Figure 8). The strong flux regime EJ	EC allows flux

quantization of the flux through the loop, ’1þ ’2þ ’3¼ 2�n. Therefore, only two of the
three phases of the junctions play the role of dynamical variables. For sufficiently low

temperatures, in the small loop inductance limit, the inductive degree of freedom
associated with the loop is frozen, and the effective potential U(’) is periodic and shows

a double well shape. The charging energy of the system here plays the role of the kinetic
energy, and the Hamiltonian is written as

H ¼ �2e2rT
uC
�1
ru þ

�0

2�

� �2

UðuÞ: ð138Þ

The lowest energy states are two flux states localized in the two well minima ’L and ’R,
and they correspond to clockwise and counter-clockwise circulating currents in the loop,

jLi and jRi, encoding the logical j0i and j1i states of the qubit. Tunnelling through the

Figure 8. Scanning electron micrograph of the Delft flux qubit (small loop with three Josephson
junctions) and attached SQUID (large loop). From [94]. � 2000 Reprinted with permission from
AAAS.
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potential barrier between the wells lifts the degeneracy between the two current states,

giving rise to a splitting �¼hLjHjRi between the lowest states of the system, which
become the symmetric and antisymmetric superpositions of the current states. An external

bias flux can create asymmetry in the double well, �¼hLjHjLi� hRjHjRi. The qubit
Hamiltonian written in the {jLi, jRi} basis takes the form

H ¼
�

2
�x þ

�

2
�z: ð139Þ

3.2.1. Markovian dynamics due to dissipative circuitry

The regime of working of flux qubits, in which the charging energy is much smaller

than the Josephson energy, EC�EJ, makes the flux qubits substantially insensitive to
background charge fluctuations. Still, however, other mechanisms can affect their phase

coherence and in order to implement them as building blocks for quantum
computation schemes, it is necessary to understand which sources of decoherence

affect the short-time dynamics of flux qubits and reduce their effect as much as

possible.
Several sources of dissipation for flux qubits have been discussed throughout the

literature [102], background charge fluctuations (
’
 0.1s), as well as quasiparticle

tunnelling in the superconductor with a non-vanishing subgap conductance (
’
 1ms).
Nuclear spins in the substrate have also been considered as a possible source of

dissipation. The static random magnetic field produced by the nuclear spins may induce
shifts in qubit frequencies, but no dephasing is expected until a typical nuclear

relaxation time, which can be very long, up to minutes, due to the slow dynamics of

nuclear spins.
However, the most efficient source of dissipation for flux qubits is represented by

fluctuations in the external circuit that produce fluctuating magnetic fluxes through the

loop. The coupling of flux degrees of freedom of the qubit to the dissipative environmental
elements is well described in the graph formalism described in [100]. In the Born–Markov

approximation, it can be shown that the Redfield tensor, written in the eigenbasis {jni}
of HS, is entirely determined by

Re�
ðþÞ

lmnk ¼ ðm � uÞlmðm � uÞnkJðj!nkjÞ
e��!nk=2

sinh �j!nkj=2
, ð140Þ

Im�
ðþÞ

lmnk ¼ �ðm � uÞlmðm � uÞnkJðj!nkjÞ
2

�
P

Z 1
0

d!
Jð!Þ

!2 � !2
nk

ð141Þ

� !� !nk coth
�!

2

� �
, ð142Þ

where �¼ kBT and the m �u appears in the Hamiltonian for the system–bath coupling,

m being related to the topology of the dissipative circuitry.
In the two-level approximation, the rates for transitions from the two-level subspace to

higher states can be neglected, and (140) and (142) simplify and the dynamics of the 2� 2

density matrix of the system can be cast in the form of Bloch equations for the dynamics of
a pseudo-spin 1/2. In this framework the relaxation matrix contains just two rates, T�11 and
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T�12 for the decay of the longitudinal and transverse pseudo-spin component, respectively.

The latter, in turn, is limited by relaxation time T1 and pure dephasing time T�,

1/T2¼ 1/2T1þ 1/T�, and the two rates are given by [100]

1

T1
¼ 4jh0jm � uj1ij2Jð!01Þ coth

!01

2kBT
, ð143Þ

1

T�
¼ jh0jm � uj0i � h1jm � uj1ij2

Jð!Þ

!

����
!!0

2kBT: ð144Þ

Typically, T� can be made to diverge for an appropriate choice of external fluxes such that

h0jm �uj0i¼ h1jm �uj1i. However, this divergence is not expected to show up experimen-

tally, since it will be cutoff by other mechanisms.
The two lowest energy states, eigenstates of the Hamiltonian (139), are given by

j0i ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�

!01

r
jLi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�

!01

r
jRi

� �
, ð145Þ

j1i ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�

!01

r
jLi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�

!01

r
jRi

� �
, ð146Þ

where !01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2
p

. Approximating the localized flux states jLi and jRi as Gaussians

centred in the minima of the double well, the relaxation rate T�11 and the pure dephasing

rate T�1� are given by

1

T1



�

!01

� �2

jm ��uj2 1þ
S2

2

� �2

Jð!01Þ coth
!01

2kBT
, ð147Þ

1

T�



�

!01

� �2

jm ��uj2 1þ
S2

2

� �2
Jð!Þ

!

����
!!0

2kBT, ð148Þ

where S¼hLjRi is the overlap between the two Gaussians. The vector �’ connects the two
minima of the double well. These relation are valid in the Markov limit and in the Born

approximation, where the system–bath interaction is considered only at first order. By

inspection of the previous formula it is clear that a symmetric double well potential, for

which �¼ 0, let the dephasing time to diverge. This is realized for a value of the external

applied magnetic flux �ext¼�0/2, being �/ (�ext/�0� 1/2). Moreover, for m ��u¼ 0 the

environment is decoupled from the system, and both the relaxation and dephasing time

diverge.
In [100] an estimate of the leakage rate due to transition from the qubit states k¼ 0, 1

to higher energy levels n¼ 2, 3, . . . outside the qubit subspace can be quantified from (140)

and (142),

1

TL,k
¼ 4

X
n

jhnjm � ujkij2Jð!knÞ coth
!kn

2kBT
: ð149Þ
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In the regime �	�, �, �, where � is the energy splitting between the lowest two states jLi
and jRi and the third energy level, and � is the coupling between the qubit subspace and
the next higher level, the dominant leakage occurs with rate

1

TL

 4

�

�

� �2

jm ��uj2Jð�Þ coth
�

2kBT
, ð150Þ

and in the regime in which the two-level approximation is well defined, �	 kBT,
thermally activated leakage is strongly suppressed.

3.2.2. Asymmetry in the double-layer structure

In the design of the Delft flux qubit [94] particular attention has been spent in order to
render the qubit immune to current fluctuations from the current bias line. In case of zero
dc bias current (IB¼ 0), a small fluctuating current �IB(t), generated by the finite
impedance of the current source, would equally divide into the two arms of the
superconducting quantum interference device (SQUID) loop, such that no net current
would cross the three-junction qubit line. Small geometrical asymmetry in the SQUID
loop has been shown to be insufficient to cause decoherence at zero bias current [100], and
the effects of a small asymmetry in the SQUID junctions are effectively negligible.

An artifact of the fabrication technique for producing superconducting Josephson
junction circuits gives rise to another important asymmetry in the circuit, that affects the
coherent dynamics of the qubit. The double-layer structure, resulting from the shadow
evaporation technique, in which a Josephson junction is obtained introducing an insulating
layer between a top and a bottom superconducting layers, always produces circuit loops
with an even number of junctions. Therefore, a further unintentional asymmetry
characterizes the Delft three-junction qubit. As proposed in [103], using a fourth much
larger Josephson junction, for which the Josephson energy can be usually neglected,
symmetry in the double-layer structure is restored and effects of fluctuations in the bias
current are suppressed. Experimental data show [104] the behaviour of the decoherence
time for two samples having the first three and the second four Josephson junctions. Both
samples are studied at the optimal point, for which �¼ 0 so that @E/@�¼ 0, and at the
decoupling bias current I�B, such that @E/@IB¼ 0, that ensure decoupling of the qubit from
the fluctuating bias current. For the first (three junction) qubit the dephasing time is
T2¼ 120 ns, obtained by fitting the exponentially decaying Ramsey fringes. In this case
thermal fluctuation are shown to be negligible, and flux noise is believed to be responsible of
strong decreasing of the dephasing time for � 6¼ 0. For the second (four junction) qubit the
decoherence time is measured by means of a spin–echo technique, and it provides
Techo¼ 3.9 ms at the decoupled optimal point. In this case dephasing at the optimal point is
produced by thermal fluctuations of the photon number in the plasma mode of the SQUID
detector. As theoretically shown in [103], the restored symmetry of the four junction design
leads to a shift of the maxima of T1 and T2 towards IB¼ 0 and to an increase of their
maximal values, which means a strong improvement due to the four junction design.

3.2.3. Thermal photon noise-induced dephasing

In addition to magnetic flux fluctuations, an important source of dephasing is represented
by thermal photon noise in the read-out part of the circuit. To measure the state of the
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qubit a SQUID is coupled to the qubit via mutual inductance. When the SQUID is biased

by a current that has a value smaller than the critical current, the SQUID acts just as an

effective inductor, whose linear inductance depends on the qubit current state. The critical

current at which the SQUID switches to a normal state can have two values Ij0ic and Ij1ic ,

according to the two qubit possible current states. A bias current pulse of amplitude IB,

Ij0ic 5 IB 5 Ij1ic , allows us to discriminate between the two qubit states. The read-out

apparatus consisting of a dc-SQUID and a shunt capacitor Cs forms a weakly damped

harmonic oscillator of frequency !ho, that is detuned from the qubit frequency !q.

The presence of n photons in the harmonic oscillator induces a shift in the qubit frequency,

!q,n�!q,0¼ n�!0, where the shift per photon depends on the effective qubit–oscillator

coupling. Assuming that the pure dephasing time 
� is much larger than the inverse of the

damping rate �, 
�	 1/�, thermally excited photons in the oscillator produce a dephasing

[88,105,106]


� ¼
�

�nð �nþ 1Þ�!2
0

, ð151Þ

where �n ¼ ðexpð�h!ho=kBT Þ � 1Þ�1 is the thermal average number of photon in the

oscillator. A similar effect has been observed in an experimental work [89] in which

a charge qubit is coupled to a superconducting waveguide resonator, slightly detuned from

the qubit frequency. There, opposite to the case described here, the oscillator is driven and

a shift and a broadening in the qubit resonance frequency appear, as a consequence of an

ac-Stark shift and of photon shot noise.
The flux qubit of [106] has been engineered with four Josephson junctions to ensure

a symmetric qubit–SQUID coupling [103]. The qubit energy bias can be written as the sum

of two contributions, �¼ �þ �, where �¼ 2Ip(�ext��0/2) (Ip is the qubit persistent

current) is controlled by the external flux �ext and �¼ 2IpMJ(IB)/h which depends on IB
via the SQUID circulating current. This dependence has two crucial consequences: first the

qubit bias point ��ext for which @!q/@�ext¼ 0 results shifted by the measurement pulse.

Therefore, it is possible to operate the qubit at the flux-insensitive point, while keeping

a difference in the expectation value of the current in the two qubit states, which is

a crucial requirement for measuring the qubit state. Second a coupling between the qubit

and the external harmonic oscillator, the so-called plasmon mode, arise, with an

interaction Hamiltonian

Hq�ho / g1ðIBÞðaþ ayÞ þ g2ðIBÞðaþ ayÞ2
� �

�z, ð152Þ

where g1(IB)/ (d�/dIB) and g2ðIBÞ / ðd
2�=dI2BÞ) (see [105]). For a particular I

�
B that realizes

d�/dIB¼ 0, it is possible to switch g1(IB) off [103,106].
Working at these optimal point, the qubit is immune from external flux and bias

current fluctuations at first order, @!q=@�extð�
�
ext, I

�
BÞ ¼ @!q=@IBð�

�
ext, I

�
BÞ ¼ 0. The shift

per photon of �!0 is given, at second-order perturbation theory inHq�ho (see [105,106]), by

�!0 ¼ 4 g1ðIBÞ sin �ð Þ
2 !q

!2
ho � !

2
q

� g2ðIBÞ cos �

" #
, ð153Þ

where cos �¼ �/!q. For some value �*(IB)5 0 one obtains �!0¼ 0. In [106], via

spectroscopy the authors demonstrated the existence of a line �*(IB), that includes
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IB ¼ I�B and �¼ 0, providing an optimal point with respect to bias current noise, flux

noise, and photon noise. Measurements of the qubit spectral line shape at the optimal

point showed, for the particular sample [106], a twin peak structure, which could arise

from strong coupling to one microscopic fluctuator. An effective dephasing time

t2¼ 2/�(w1þw2) is obtained by fitting the peaks with two Lorentzians of width w1

and w2. Measurements of the spin–echo decay time Techo, particularly indicated in

case of relatively high-frequency noise, as photon noise in the plasma mode that

occurs at �
 130MHz, gives at the optimal point Techo¼ 3.9 ms. By studying the

variation of Techo and t2 as a function of �, a sharp peak is found at �¼ 0 for

IB ¼ I�B, while for IB¼ 0 the peak shifts towards �5 0. The variation of the maximum

in t2 as a function of IB shows that the maximal coherence time is not obtained at

�¼ 0, as it would be expected for flux or bias current noise. On the other hand, it fits

with the line �*(IB) for which �!0¼ 0, suggesting that thermally induced photon noise,

rather than flux noise or bias current noise, is responsible for the qubit dephasing.

For a temperature T¼ 70mK and quality factor Q¼ 150, which yields a mean photon

number �n¼ 0.15, the dephasing time 
� (151) closely matches the spin–echo

measurements.

3.2.4. Decoherence due to 1/f flux noise in flux qubits

Recent remarkable experimental results have shown that low-frequency flux noise

constitutes one of the main mechanisms of decoherence for flux qubits [107,108].

Experimentally, identification of the dominant sources of noise and the way they couple to

the qubit degrees of freedom is achieved by changing the bias parameters and observing

how the qubit dynamics results affected.
In [107] a Delft-like flux qubit is studied, in which the qubit shares a four junction line

with a current biased SQUID shunted by an on-chip capacitance. The measurements of

energy relaxation, free induction decay, and echo decay reveal that, at the optimal external

flux �ext ¼ ��ext, and current IB ¼ I�B bias conditions, where both @E01/@�ext and @�ext/@IB
were set to zero in order to minimize dephasing due to fluctuations of �ext and IB, the

energy-relaxation and echo signals decay exponentially with rates �1 and �2E. Moreover,

since �2E
�1/2, the coherence in echo measurement is mainly limited by energy

relaxation. Moving away from I�B, but remaining on the line ��extðIBÞ, it is found that,

although the rates �1 and �2E strongly depend on IB, the decay curves are always

exponential. This suggests that the fluctuations introduced by IB have a relatively uniform

spectrum, and that the IB-dependent contributions are uniquely due to bias current

fluctuations, which well decouple at IB ¼ I�B.
On the other hand, measurement at �ext 6¼ ��ext, with the bias current kept at the

optimal point IB ¼ I�B, show a qualitatively different behaviour. The energy relaxation rate

�1 is almost independent on �ext, while the dephasing is strongly enhanced when slightly

departing from j�ext ���extj. Moreover, remarkably, the decay curves are no more

exponential, but rather fitted with a Gaussian, exp½�ð�g
’EtÞ

2
�, with a decay rate �g

’E that

increases almost linearly with j�ext ���extj. Assuming Gaussian fluctuations of �ext with

spectrum density S�ext
ð!Þ ¼ A�ext

=j!j, the average echo decay is

ei’ðtÞ
� �

E
¼ e�ð�

g
’E
tÞ2 , ð154Þ
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with the decay rate given by �g
’E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�ext

ln 2
p

j@E01=@�extj=�h. The linear dependence

of �g
’E on �ext follows from j@E01=@�extj ¼ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2
p

, that for �ext ���ext 
 0 is

basically linear.
Similar results in [108] confirm the linear dependence of the �echo

2 ¼ 1=Techo
2 rate on the

applied magnetic flux, and a very weak dependence of the relaxation rate �1¼ 1/T1 on the

external magnetic flux. Here, the qubit and the SQUID do not share a current line and

the coupling between the qubit and the SQUID is purely inductive. The maximal Techo
2 is

obtained, as expected, at the optimal point ��ext ¼ �0=2, where @E01/@�ext¼ 0. From the

Korringa relations (32), energy relaxation is related to the dephasing process via

�echo
2 ¼ �1=2þ �’, where �’ represents the pure dephasing rate due to fluctuations in the

energy splitting of the qubit. Splitting the pure dephasing rate �’ in a non-magnetic

contribution �0
’ and a first-order contribution due to magnetic fluctuations ��

’ ,

�’ ¼ �0
’ þ ��

’ , at the optimal point, where ��
’ ¼ 0, the dephasing time Techo

2 of the

qubit is found to be almost completely determined by the energy relaxation process, that

is, Techo
2 ¼ 250 ns, and T1¼ 140 ns, with Techo

2 
 2T1, meaning that the dephasing of the

flux qubit at the optimal point is mostly determined by the high-frequency noise

S�(!
�/h). On the other hand, in the proximity of the optimal point, the linearity of the

dephasing rate �echo
2 , as a function of the applied magnetic field, suggests a departure

from a Markovian dynamics, typical of noise with a short correlation time, and that

the magnetic fluctuations have a 1/f-type spectrum in a frequency range of the order

of 1=Techo
2 .

3.3. The superconducting phase qubit

The phase qubit works in a regime in which EJ	EC and the circuit consists of a loop with

a single large Josephson junction, as shown in Figure 9(a). The circuit is biased with

a current I typically driven close to the critical current I0 of the junction. The Hamiltonian

of the system is

H ¼
Q̂2

2C
�
I0�0

2�
cos �̂�

I�0

2�
�̂, ð155Þ

IJ
IB

∆U

ωp

1

0
E01

U(δ)

(a)

C

δ 

(b)

Figure 9. (a) Schematic representation of the phase qubit circuit, constituted by a current-biased
Josephson junction. (b) Anharmonic potential U(�) showing the two lowest-energy states j0i and j1i,
separated by an energy splitting E01. The plasma frequency !p is given by the local quadratic
curvature of the potential at the bottom of the well, and �U is the potential barrier that separates the
two energy levels in the well from a continuum of levels on the right-hand side of the barrier.
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where �0/2�¼ �h/2e is the superconducting flux quantum. Charge and phase operators, Q̂
and �̂, that correspond to the charge on the Josephson junction capacitance and the
superconducting phase across the Josephson junction, respectively, are conjugate variables
that satisfy the canonical commutation rule ½�̂, Q̂� ¼ 2ei. For a large area junction
I0�0/2�¼EJ	EC¼ e2/2C the superconducting phase has a well-defined value and
quantum mechanical behaviour can be observed. The Josephson inductance and the
junction capacitance form an anharmonic ‘LC’ resonator. The anharmonic potential as
a function of the superconducting phase across the junction can be approximated by
a cubic potential parametrized by the potential barrier �UðIÞ ¼ ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0�0=3�
p

Þ½1� I=I0�
3=2

and a classical plasma oscillation frequency at the bottom of the potential well
!p(I)¼ 21/4(2� I0/�0C)

1/2[1� I/I0]
1/4. The two qubit states j0i and j1i are encoded in the

two lowest quantum states in the potential well, and have energy splitting
E01¼ �h!p(1� 5�h!p/36�U ). Unlike in a flux or charge qubit, in a phase qubit the state
(j0i or j1i) is exclusively distinguished by the phase wavefunction, and not by any
macroscopic quantity, such as current or charge. Transitions are driven by applying
microwaves at frequency !01¼E01/�h. For more details on the phase qubit we refer to [96].

Coherent control of the qubit is obtained through the bias current

IðtÞ ¼ Idc þ I1=fðtÞ þ I	wcðtÞ cosð!01tÞ þ I	wsðtÞ sinð!01tÞ, ð156Þ

where I1/f, I	wc, and I	ws are varied in time slowly compared with 2�/!01. In the frame
rotating with frequency !01, the qubit Hamiltonian is given by

H ¼ �
�0

2�
I	wcðtÞ�x þ �

�0

2�
I	wsðtÞ�y þ

1

2

@E01

@Idc
I1=fðtÞ�z, ð157Þ

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=E01

p
, and �x,y,z are the Pauli operators.

3.3.1. Decoherence of a phase qubit due to an arbitrary noise source

Since the qubit is controlled by the bias current, noise in the bias current can represent
a source of decoherence for the qubit. In [109] a physical picture of decoherence is
presented for a phase qubit.

In a Bloch picture, the state of the qubit is represented by j i¼ cos(�/2)j0iþ
ei�sin(�/2)j1i. Low-frequency noise induces fluctuations is the longitudinal z component of
the pseudo-spin representing the qubit that lead to dephasing of the qubit. The phase noise
after time t is

�nðtÞ ¼
@!01

@Idc

Z t

0

dt0 Inðt
0Þ, ð158Þ

and it arises from current noise In(t). The magnitude of the phase noise is described by
h�2nðtÞi, and it can be obtained through the noise spectral density SI( f ),

�2nðtÞ
� �

¼
@!01

@Idc

� �2Z !01=2�

0

dfSIð f ÞW0ð f Þ, ð159Þ

where SI( f ) is given by the Fourier transform of the noise correlator
hInðtÞInð0Þi ¼

R1
0 df SIð f Þ cosð2�ftÞ, the spectral weight W0( f )¼ sin2(�ft)/(�f )2, and the

integral on the frequency has been cutoff for frequencies greater than !01/2�. This last
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assumption is justified since for those frequencies the noise current flows mainly through

the junction capacitance, rather than the junction itself, thus not substantially affecting

!01. The magnitude of noise is defined as the mean-square amplitude of the current noise

at frequency f per 1Hz bandwidth. For low frequencies f
 1/t, W0( f ) is rather constant,

whereas it decreases as 1/f 2 at higher frequencies. As a consequence, phase noise affects the

qubit dynamics only at low frequencies for most noise sources. For constant (white) noise

S0
I , one has

�2nðtÞ
� �

¼
@!01

@Idc

� �2
S0
I t

2
: ð160Þ

At higher frequencies close to !01, noise induces transitions between the two qubit

states j0i and j1i. The current that controls these transitions is given by I	wc(t)

cos(!01t)þ I	ws(t) sin(!01t), and mixing from noise around frequency !01 can be

understood as low-frequency noise in I	wc(t) and I	ws(t). Random fluctuations along the

transverse x and y components of the qubit induce transitions between the qubit states.

For constant spectral density around !01 given by 2SI(!01/2�), an application of the

previous results gives

�2xðtÞ
� �

¼ �2yðtÞ
D E

¼
EC

E01

�0

2�

� �2

SIð!01=2�Þt: ð161Þ

The random angles �¼�, �x and �y are assumed to be Gaussian distributed, with zero

mean and mean squared noise h�2i calculated previously, dpð�Þ=d� ¼ expð��2=2h�2iÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�2i

p
.

If the qubit is initially in the ground state, that is when it is parallel to the z direction in

the Bloch sphere, when the noise is small, it is immune to phase noise at low frequencies.

However, transverse noise around a frequency !01 can induce transitions in between the

qubit states. The probability p0 to be in the state j0i is given in the Bloch picture by

cos2ð�=2Þ ’ cos2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x þ �

2
y

q
=2�. With the values previously obtained for the mean-square

noise, averaging over the Gaussian distribution gives

p0 ¼
1

2
1þ e�t=T1
	 


,
1

T1
¼

EC

E01

�0

2�

� �2

SIð!01=2�Þ: ð162Þ

The rate 1/T1 describes the absorption and emission rate for the stimulated transitions

0! 1 and 1! 0. Since low-frequency noise cannot add energy �h!01, there is no

contribution from phase noise.
The effects of noise on a superposition state can be understood within a ‘Ramsey

fringe’ picture. Through a �/2 pulse the qubit is rotated from the ground state j0i to the

state ðj0i þ j1iÞ=
ffiffiffi
2
p

, that points in the x direction in the Bloch sphere, and left evolving for

a time t, after which a subsequent �/2 pulse is performed and the qubit state is finally

measured. During the evolution between the two �/2 pulses, the state of the qubit can

change due to noise in � and �y, therefore, both phase and stimulated transitions noise

affect the qubit dynamics. In this case, the total decoherence rate is given by the Korringa

relation [10] 1/T2¼ 1/T�þ 1/2T1, where 1/T� is directly extracted from (160)

1=T� ¼ ð@!01=@IcÞ
2S0

I=4.
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3.3.2. 1/f noise in superconducting phase qubit

In this section we review recent results on the decoherence of superconducting phase qubits
[95,96]. Recent experiments [110,111] have pointed out that a dominant source of
decoherence for the phase qubit is represented by low-frequency 1/f noise, that is believed
to arise from two level systems in the insulating barrier of the tunnel junction as well as in
the dielectric material surrounding the circuit. In Figure 10 a measurement of the
transition frequency !01 between the two qubit state, as a function of the bias current I and
the microwave excitation frequency !/2�, shows a qubit line in which a number of
spurious resonators appear, characteristic of the energy-level repulsion predicted for
coupled two-state systems. Near the resonators, the Rabi oscillations show beating, loss,
and recovery of the oscillations with time, and a rapid decrease in coherence amplitude.
The beating behaviour is consistent with the interaction of a qubit with another two-level
system, but not with harmonic oscillator modes in the read-out SQUID. Moreover, each
different sample has its own set of resonator frequencies and strengths, indicating that the
two-level systems have a microscopic origin.

A new method to measure 1/f noise in Josephson junction qubits was presented
recently in [112]. It uses the resonant response of the qubit to directly measure the
spectrum of the low-frequency noise, and allows us to distinguish between flux and
critical-current fluctuations by comparison of the noise taken at positive and negative bias.
Remarkably it can yield low-frequency spectra below 1Hz. Dephasing is produced by

Figure 10. Measured probability of state ‘1’ versus microwave excitation frequency !/2� and bias
current I for a fixed microwave power for a phase qubit. The dotted vertical lines indicate spurious
resonators. Reprinted with permission from [110]. � 2005 by the American Physical Society.
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low-frequency fluctuations in the qubit energy, which in this study are believed to
arise from magnetic flux noise in the qubit loop, with a spectral density that scales
inversely with frequency, 1/f. It turns out that the flux-like noise predominates over
critical-current noise.

The possibility that the flux noise is due to two-level system defects in the native oxides
of the superconductive film, as proposed in [113], is examined in [112]. Following [114] for
a standard two-level system model [115] a theoretical estimation of the flux noise spectral
density, for a realistic geometry of the circuit loop, gives S�ð1HzÞ 
 10�3ð	�0Þ

2=Hz,
about four orders of magnitude smaller than the measured flux noise. This estimate is
based on the assumption that the two-level system fluctuations randomize the defect
magnetic moment; this assumption is highly questionable because two-level system defects
in typical oxides are not considered to be magnetic.

4. Conclusion

Decoherence in solid-state devices is a fascinating and currently very relevant topic. From
the point of view of fundamental research, it is interesting to study the quantum-classical
boundary and the mechanisms that play a dominant role in the disappearance of
coherence in the time-evolution of quantum systems. Solid-state devices are particularly
interesting since they are typically complex and consist of many particles. From the point
of view of possible applications, the relevant coherence and relaxation times of the
quantum hardware (for example, T1 and T2 for Markovian systems) is what ultimately
limits the performance for quantum computing. In order to be able to perform long
quantum computations, a thorough understanding and optimization of decoherence plays
a key role, together with quantum error correction and fault-tolerant quantum
computation schemes. Owing to their potential for scaling, solid-state systems are
among the most promising candidates for the implementation of quantum information
processing. Therefore, the decoherence mechanisms that affect those devices needs to be
fully understood and suppressed where this is possible.

We have reviewed the current state of knowledge regarding decoherence in solid-state
qubits, mainly from a theoretical point of view, but also reporting on some particularly
significant experimental results and achievements. After having introduced the main
concepts of quantum coherence, quantum open systems, and system–environment
interactions, and the mathematical framework needed to study the physics of open
quantum systems, we have reviewed the current status of our understanding of
decoherence both in spin qubits and superconducting qubits.

Many coherent oscillations have been experimentally observed for spin qubits and
superconducting qubits, showing coherence times much longer than the time needed to
perform a single quantum operation. Therefore, it can be expected that these two leading
solid-state embodiments of quantum hardware will also play an important role in the years
to come. While the latest experimental and theoretical achievements are promising
indications that further progress in this direction is possible, the up-scaling to more qubits,
fault-tolerant quantum computing under physically realistic conditions, control and
preparation of the environment (for example, nuclear spins), and others, represent the
challenges that lie ahead.
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Appendix A: Circuit theory and system Hamiltonian

A systematic approach to obtain the Lagrangian and the Hamiltonian of a generic circuit
containing many different lumped elements, as well as Josephson junctions, has been proposed in
[100,116]. In this way, it is possible to construct the full classical Hamiltonian of the system, quantize
it and study its quantized spectrum, in the two-level approximation.

A.1. Network graph theory and the equations of motion

By means of classical network theory, an electric circuit is represented by an oriented graph,
consisting of nodes and branches. Each branch corresponds to a single two-terminal element, such as
a resistor, capacitor, inductor, current source, voltage source, etc. The branches are then divided into
two groups, the tree, representing a set of branches of the graph connecting all nodes without
containing any loop, and the chords, represented by all of the rest of the branches. In this way every
time a chord branch is added to the tree a loop is obtained. The grouping in chords and tree depends
on the formalism adopted, that in turn is functional to the kind of circuit described, either a flux
qubit or a charge qubit. All of the topological information of the circuit is contained
in the fundamental loop matrix F, which connects tree branches and loops (that is, chords), such
that the matrix elements FXY can be 1, �1, 0, depending whether the tree branch X and the
chord branch Y have the same orientation, different orientation in the loop, or do not belong to the
same loop.

The equations of motion are represented by Kirchhoff’s laws, and can be at once written as

FIch ¼ �Itr, FTVtr ¼ Vch � _(ext: ðA1Þ

Here (ext takes into account the possibility of having time-dependent applied external fluxes.
The fluxes and charges of the circuit represent the canonical variables of system, and they can be
formally defined for the generic element X as

IXðtÞ ¼ _QXðtÞ, VXðtÞ ¼ _(XðtÞ: ðA2Þ
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From the last equation and from the second Josephson relation, it is possible to identify the formal
flux associated to the Josephson junction as the superconducting phase difference ’ across the
junction,

(J

�0
¼

u

2�
, IJ ¼ Icsinu, ðA3Þ

where sinu¼ {sin ’1, sin’2, . . .}, and the second formula represents the first Josephson relation.
With current–voltage relations for the various types of other branches, it is possible to obtain the
classical equations of motion for the superconducting phases

C €u ¼ �L�1J sinu�M0u�Md � u�
2�

�0
ðN(ext þ SIBÞ, ðA4Þ

where L�1J ¼ 2�Ic=�0 is a diagonal matrix for the Josephson inductances of the junctions, M0 is the
matrix of linear inductance, describing their energy and mutual interaction, N and S describing the
inductive coupling of the phases ’ with external fluxes and currents, respectively. Here Md(t) is
a symmetric matrix containing all of the dissipative dynamics of ’ (see [100]).

A.2. Two-level approximation

Dissipative elements present in the circuit are incompatible with a Hamiltonian description of
the system, therefore for the moment we omit them. In order to derive the Lagrangian for
the electric circuit, a complete set of unconstrained flux and charge degrees of freedom has to
be isolated, such that every assignment of values to those charges and fluxes represents
a possible dynamical state of the system. The Hamiltonian of the circuit follows
straightforwardly from the Lagrangian by means of a Legendre transformation, and can be
formally written as

H ¼
1

2
ðQ� CVVÞ

TC�1ðQ� CVVÞ þ
�0

2�

� �2

UðuÞ, ðA5Þ

UðuÞ ¼ �
X
i

2�Ic;i
�0

cos’i þ
1

2
uTM0uþ

2�

�0
uTðN(ext þ SIBÞ, ðA6Þ

where C is the capacitance matrix, collecting all of the capacitive elements of the circuit, and
describing the effective charge energy of the system, CV describes the coupling of the charges
Q to externally applied voltages V. The number of Cooper pairs, that accumulate on
a junction capacitance, and the phase of the superconducting order parameter through the
junction, for sufficiently low temperatures, become quantized and satisfy canonical commu-
tation rules,

�̂i, Q̂j

h i
¼

�0

2�
’̂i, 2eN̂j

� �
¼ i�h�ij, ðA7Þ

where 2e is the charge of a Cooper pair, and �0/2� is flux quantum. Therefore, once a Hamiltonian
is obtained from circuit theory, its quantization follows straightforwardly. The energy of an isolated
system is a conserved quantity, therefore strictly speaking the Hamiltonian should be time
independent. However time-dependent circuit elements, such as alternating currents and voltages,
can be included in the Hamiltonian description as time-dependent parameters.

Care should be taken when dissipative elements such as resistors are present in the circuit. In this
case a more general approach must be adopted, in which the system considered is coupled to
a environmental bath, and the dynamics of the circuit under analysis is obtain as the dynamics of
part of a larger isolated system, as discussed in Section 1.6.1.

Once the Hamiltonian has been obtained and quantized it is possible to study the
temperature regime, in which few low-energy states are taken into consideration. A two-level
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approximation can be carried out by considering only the ground state and first excited state, and
neglecting higher levels of the spectrum. The goodness of the two-level approximation is controlled
by the ratio of the temperature and the energy gap between the first and second excited state,
kBT/�12� 1. The Hamiltonian of the two-level system can therefore be expressed in the form of
a pseudo-spin 1/2

H ¼
�

2
�x þ

�

2
�z, ðA8Þ

where � denotes the tunnel coupling between the two qubit states j0i and j1i, eigenstates of �z, and
� the bias, owing to asymmetry.
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