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We show that a set of gates that consists of all one-bit quantum gates [U(2)] and the two-bit exclusive-OR
gate [that maps Boolean values (x,y) to (x,x®y)] is universal in the sense that all unitary operations on
arbitrarily many bits n [U(2")] can be expressed as compositions of these gates. We investigate the number of
the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a
specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is
satisfied. These gates play a central role in many proposed constructions of quantum computational networks.
We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of
two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make
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some observations about the number required for arbitrary n-bit unitary operations.

PACS number(s): 03.65.Ca, 07.05.Bx, 02.70.Rw, 89.80.+h

I. BACKGROUND

It has recently been recognized, after 50 years of using the
paradigms of classical physics (as embodied in the Turing
machine) to build a theory of computation, that quantum
physics provides another paradigm with clearly different and
possibly much more powerful features than established com-
putation theory. In quantum computation, the state of the
computer is described by a state vector ¥, which is a com-
plex linear superposition of all binary states of the bits x,,
€{0,1}:

v(n= 2

xe{0,1}"

alx;, ...

s 2 laf?=1.
X

The state’s evolution in the course of time ¢ is described by a
unitary operator U on this vector space, i.e., a linear trans-
formation that is bijective and length preserving. This unitary
evolution on a normalized state vector is known to be the
correct physical description of an isolated system evolving in
time according to the laws of quantum mechanics [1].
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Historically, the idea that the quantum mechanics of iso-
lated systems should be studied as a new formal system for
computation arose from the recognition 20 years ago that
computation could be made reversible within the paradigm
of classical physics. It is possible to perform any computa-
tion in a way that is reversible both logically, i.e., the com-
putation is a sequence of bijective transformations, and ther-
modynamically, i.e., the computation could in principle be
performed by a physical apparatus dissipating arbitrarily
little energy [2]. A formalism for constructing reversible Tur-
ing machines and reversible gate arrays (i.e., reversible com-
binational logic) was developed. Fredkin and Toffoli [3]
showed that there exists a three-bit “universal gate” for re-
versible computation, that is, a gate that, when applied in
succession to different triplets of bits in a gate array, could be
used to simulate any arbitrary reversible computation. (Two-
bit gates such as NAND that are universal for ordinary com-
putation are not reversible.) Toffoli’s version [4] of the uni-
versal reversible gate will figure prominently in the body of
this paper.

Quantum physics is also reversible because the reverse-
time evolution specified by the unitary operator U™ '=UT
always exists; as a consequence, several workers recognized
that reversible computation could be executed within a
quantum-mechanical system. Quantum-mechanical Turing
machines [5,6], gate arrays [7], and cellular automata [8]
have been discussed and physical realizations of Toffoli’s
[9-11] and Fredkin’s [12-14] universal three-bit gates
within various quantum-mechanical physical systems have
been proposed.
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While reversible computation is contained within quan-
tum mechanics, it is a small subset: the time evolution of a
classical reversible computer is described by unitary opera-
tors whose matrix elements are only zero or one, arbitrary
complex numbers are not allowed. Unitary time evolution
can of course be simulated by a classical computer (e.g., an
analog optical computer governed by Maxwell’s equations
[15]), but the dimension of the unitary operator thus attain-
able is bounded by the number of classical degrees of free-
dom, i.e., roughly proportional to the size of the apparatus. In
contrast, a quantum computer with m physical bits (see the
definition of the state above) can perform unitary operations
in a space of 2™ dimensions, exponentially larger than its
physical size.

Deutsch [16] introduced a quantum Turing machine in-
tended to generate and operate on arbitrary superpositions of
states and proposed that, aside from simulating the evolution
of quantum systems more economically than known classical
methods, it might also be able to solve certain classical
problems, i.e., problems with a classical input and output,
faster than on any classical Turing machine. In a series of
artificial settings, with appropriately chosen oracles, quan-
tum computers were shown to be qualitatively stronger than
classical ones [17-20], culminating in Shor’s [21,22] discov-
ery of quantum polynomial-time algorithms for two impor-
tant natural problems, viz., factoring and discrete logarithm,
for which no polynomial-time classical algorithm was
known. The search for other such problems and the physical
question of the feasibility of building a quantum computer
are major topics of investigation today [23].

The formalism we use for quantum computation, which
we call a quantum ‘“‘gate array,” was introduced by Deutsch
[24], who showed that a simple generalization of the Toffoli
gate [the three-bit gate /\,(R,), in the language introduced
later in this paper] suffices as a universal gate for quantum
computing. The quantum gate array is the natural quantum
generalization of acyclic combinational logic circuits”
studied in conventional computational complexity theory. It
consists of quantum ‘‘gates,” interconnected without fanout
or feedback by quantum ‘“‘wires.”” The gates have the same
number of inputs as outputs and a gate of n inputs carries a
unitary operation of the group U(2"), i.e., a generalized ro-
tation in a Hilbert space of dimension 2”. Each wire repre-
sents a quantum bit, or qubir [25,26], i.e., a quantum system
with a two-dimensional Hilbert space, capable of existing in
a superposition of Boolean states and of being entangled
with the states of other qubits. Where there is no danger of
confusion, we will use the term “bit” in either the classical
or quantum sense. Just as classical bit strings can represent
the discrete states of arbitrary finite dimensionality, so a
string of n qubits can be used to represent quantum states in
any Hilbert space of dimensionality up to 2”. The analysis of
quantum Turing machines [20] is complicated by the fact
that not only the data but also the control variables, e.g., head
position, can exist in a superposition of classical states. For-
tunately, Yao has shown [27] that acyclic quantum gate ar-
rays can simulate quantum Turing machines. Gate arrays are
easier to think about since the control variables, i.e., the wir-
ing diagram itself and the number of steps of computation
executed so far, can be thought of as classical with only the
data in the wires being quantum.

Here we derive a series of results that provide tools for
the building up of unitary transformations from simple gates.
We build on other recent results that simplify and extend
Deutsch’s original discovery [24] of a three-bit universal
quantum logic gate. As a consequence of the greater power
of quantum computing as a formal system, there are many
more choices for the universal gate than in classical revers-
ible computing. In particular, DiVincenzo [28] showed that
two-bit universal quantum gates are also possible; Barenco
[29] extended this to show than almost any two-bit gate
(within a certain restricted class) is universal and Lloyd [30]
and Deutsch [31] have shown that in fact almost any two-bit
or n-bit (n=2) gate is also universal. A closely related con-
struction for the Fredkin gate has been given [32]. In the
present paper we take a somewhat different tack, showing
that a nonuniversal, classical two-bit gate, in conjunction
with quantum one-bit gates, is also universal; we believe that
the present work, along with the preceding ones, covers the
full range of possible repertoires for quantum gate array con-
struction.

With our universal-gate repertoire, we also exhibit a num-
ber of efficient schemes for building up certain classes of
n-bit operations with these gates. A variety of strategies for
constructing gate arrays efficiently will surely be very impor-
tant for understanding the full power of quantum mechanics
for computation; the construction of such efficient schemes
has already proved very useful for understanding the scaling
of Shor’s prime factorization [33]. In the present work we in
part build upon the strategy introduced by Sleator and Wein-
furter [9], who exhibited a scheme for obtaining the Toffoli
gate with a sequence of exactly five two-bit gates. We find
that their approach can be generalized and extended in a
number of ways to obtain more general, efficient gate con-
structions. Some of the results presented here have no obvi-
ous connection with previous gate-assembly schemes.

We will not touch at all on the great difficulties attendant
on the actual physical realization of a quantum computer; the
problems of error correction [34] and quantum coherence
[35,36] are very serious ones. We refer the reader to [37] for
a comprehensive discussion of these difficulties.

II. INTRODUCTION

We begin by introducing some basic ideas and notation.
For any unitary matrix

Ugo Uo1
U=
Uip Un

and me{0,1,2, ...}, define the (m+1)-bit
(2¢"*D_dimensional) operator /\,,(U) as
/\m(U)(le’---’xm’y>)

it AL x=1

{uy0|x1,...xm,0)+uy1|x1,...,xn,1)

X1 0xmyy  if Ao x=0

for all x,...,x,,ye{0,1}. (In more ordinary language,
NAj=1x; denotes the AND of the Boolean variables {x;}.)
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Note that /\y(U) is equated with U. The 2"+ Dx2(m+D
matrix corresponding to /\,,(U)is

1

Uoo Uo1

Uipo U

(where the basis states are lexicographically ordered, i.e.,
|000), |001), ...,[111)).

‘When
0 1
U=l1 o)

N\, (U) is the so-called Toffoli gate [4] with m+ 1 input bits,
which maps |x1, . ..,X,,y) 0 |x1, ... . %m,(A\{L1x0)DY).
For a general U, /\,,(U) can be regarded as a generalization
of the Toffoli gate, which, on input X1, .. X ,y), applies
U to y if and only if A\J_ x,=1.

As shown by one of us [31,29], “almost any” single
A\ (U) gate is universal in the sense that by successive ap-
plication of this gate to pairs of bits in an n-bit network, any
unitary transformation may be approximated with arbitrary
accuracy. (It suffices for U to be specified by Euler angles
that are not a rational multiple of 7.)

We show that in some sense this result can be made even
simpler in that any unitary transformation in a network can
always be constructed out of only the ‘“classical” two-bit
gate /\;(} ) along with a set of one-bit operations [of the
form /\y(U)]. This is a remarkable result from the perspec-
tive of classical reversible computation because it is well
known that the classical analog of this assertion, which is
that all invertible Boolean functions can be implemented
with /\1(? o) and /\0((1’ (1)) gates [38], is false. In fact, it is
well known that only a tiny fraction of Boolean functions
(those that are linear with respect to mod2 arithmetic) can be
generated with these gates [39].

We will also exhibit a number of explicit constructions of
N\, (U) using /\(U), which can all be made polynomial in
m. It is well known [4] that the analogous family of con-
structions in classical reversible logic that involve building
NAm(} 8) from the three-bit Toffoli gate /\,(3 §) is also
polynomial in m. We will exhibit one important difference
between the classical and the quantum constructions, how-
ever; Toffoli showed [4] that the classical /\,,’s could not be
built without the presence of “work bits” to store intermedi-
ate results of the calculation. By contrast, we show that the
quantum logic gates can always be constructed with the use
of no workspace whatsoever. Similar computations in the
classical setting (that use very few or no work bits) appeared
in the work of Cleve [40] and Ben-Or and Cleve [41]. Still,
the presence of a workspace plays an important role in the
quantum gate constructions: we find that to implement a
family of /\,, gates exactly, the time required for our imple-
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mentation can be reduced from O (m?) to ®(m) merely by
the introduction of one bit for workspace.

III. NOTATION

We adopt a version of Feynman’s [7] notation to denote
N\, (U) gates and Toffoli gates in quantum networks as fol-
lows:

L
——— —— _ ——
T e

The first network contains a /\,(U) gate and the second one
contains a three-bit Toffoli gate [42]. The third and fourth
networks contain a /\¢(U) and a two-bit reversible
exclusive-or (simply called XOR henceforth) gate, respec-
tively. The XOR gate is introduced as the ‘‘measurement
gate” in [24] and will play a very prominent role in many of
the constructions we describe below. Throughout this paper,
when we refer to a basic operation, we mean either a
No(U) gate or this two-bit XOR gate.

In all the gate-array diagrams shown in this paper, we use
the usual convention that time advances from left to right, so
that the leftmost gate operates first, etc.

IV. MATRIX PROPERTIES

Lemma 4.1. Every unitary 2 X2 matrix can be expressed

as
e® 0\ /[e? 0 cosf/2  sin6/2
(0 ef5)( 0 e—f“”)(—sino/z cos /2
eiBI2 0
X 0 e—iﬁ/Z) ’

where 8, a, 0, and B are real valued. Moreover, any special
unitary 2 X2 matrix (i.e., with unity determinant) can be ex-
pressed as

(e""’2 0 )( cos6/2

0 —iel2 [\ —5ing/2

sin@/2 \ [ P2 0
e

cosf/2 0 e A2

Proof. Since a matrix is unitary if and only if its row
vectors and column vectors are orthonormal, every 2 X2 uni-
tary matrix is of the form

_ ei(5—a/2+ﬁ/2)sin0/2

ei(‘5+“/2+3/2)cos9/2
( e/ (0727 P cos6/2

ei(§+ n/Z—B/Z)Sin0/2 )

where &, «, 0, and B are real valued. The first factorization
above now follows immediately. In the case of special uni-
tary matrices, the determinant of the first matrix must be 1,
which implies e’®= = 1, so the first matrix in the product can
be absorbed into the second one. |

Definition. In view of the above lemma, we define the
following:
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9) —siné/2

cos6/2
R
Y cosf/2

siné/2 )

(a rotation by € around y [43]),

eia/Z 0
0 —ial2

Rz(a)=<

(a rotation by a around Z7) ,

e 0
@(6)=( 0 e,»a)

(a phase shift with respect to 6) ,

0 1
Ux:(l 0) (a “negation,” one of the Pauli matrices) ,

1 0
1 =( 0 1) (the identity matrix) .

Lemma 4.2. The following properties hold:
Ry( 91)Ry( 02)=Ry( 0,+6,) .,
R(a))R(ay)=R (a;+a,) ,

D(5)P(8)=P(6,+6,) ,
o,0,=1,
oR ()0, =R,(-0),
o R (a)o, =R (—a) .

Lemma 4.3. For any special unitary matrix W [W
e SU(2)], there exist matrices A, B, and C e SU(2) such
that ABC=1 and Ao, Bo,C=W.

Proof. By Lemma 4.1, there exist «, 6, and S
such that W=R (a)R,(OR(B). Set A=R (a)(0/2),
B=R,(—0/2)R,[—(a+B)/2], and C=R,J[(B—a)/2].
Then

6 1%
ABC=RZ(a)Ry('2—>Ry( - 5) Rz( - —2— R
=R (a)R(—a)=1I

and

0

0
AO’XBO'XCZRZ(Q)R},(E) (TXRy( - 5)

XRZ( - __a-;—ﬂ)o_sz(B;a)
6 6
=Rz(a)Ry(§:) O'XRy< - 5)

X O'XO'XRZ( - M) O'XRZ(B—_—a)

2 2
-oom 5] 5] “5) o 75
=R(@R,(OR(B)=W . =

V. TWO-BIT NETWORKS
A. Simulation of general /\;(U) gates

Lemma 5.1. For a unitary 2 X2 matrix W, a /\ (W) gate
can be simulated by a network of the form

where A, B, and C € SU(2) if and only if We SU(2).

Proof. For the “if” part, let A, B, and C be as in
Lemma 4.3. If the value of the first (top) bit is 0, then
ABC=] is applied to the second bit. If the value of the first
bit is 1, then Ao,Bo,C=W is applied to the second bit.

For the “only if” part, note that ABC =1 must hold if the
simulation is correct when the first bit is 0. Also, if the net-
work simulates a /\;(W) gate, then Ao, Bo,C=W. There-
fore, since det(Ao,Bo,C)=1, W must also be special uni-
tary. ]

Lemma 5.2. For any 8 and S=®(5), a /\;(S) gate can be
simulated by a network of the form

where E is unitary.
1 0
0 ei 5|

Proof. Let
Then the observation is that the 4 X4 unitary matrix corre-
sponding to each of the above networks is

_ (5)_
E=R(-8)®|5|=

1 0 0 O
01 0 0
0 0 €9 0 n
0 0 0 €7

Clearly, /\;(S) composed with /\;(W) yields /\(SW).
Thus, by noting that any unitary matrix U is of the form
U=SW, where S=®(5) (for some ) and We SU(2), we
obtain the following.
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Corollary 5.3. For any unitary 2 X2 matrix U, a /\(U)
gate can be simulated by at most six basic gates: four one-bit
gates /\( and two XOR gates /\ (o).

B. Special cases

In Sec. V A we have established a general simulation of a
/A\1(U) gate for an arbitrary unitary U. For special cases of
U that may be of interest, a more efficient construction than
that of Corollary 5.3 is possible. Clearly, Lemma 5.1 imme-
diately yields a more efficient simulation for all special uni-
tary matrices. For example, the “x-axis rotation matrix” [to
use the language suggested by the mapping between SU(2)
and SO(3), the group of rigid-body rotations [43]]

i sinf/2 T T
=R,| = |R,(OR,| — =

cosf/2 02 ()R, 2

is special unitary. [R, is of special interest because

/N\,(iR,) is the “Deutsch gate” [24], which was shown to be

universal for quantum logic.] For other specific SU(2) matri-

ces an even more efficient simulation is possible.

Lemma 5.4. A /\{(W) gate can be simulated by a network
of the form

cosf/2

R =
«(6) i sin6/2

IR D

where A and B € SU(2) if and only if W is of the form

e'%cos /2

—siné/2

sinf/2

W'—Rx(a)Ry( 0)Rz(a) ( e*iacos0/2 s
where a and 6 are real valued.

Proof. For the ‘“if” part, consider the simulation of
N (W) that  arises in Lemma 5.1 when
W=R,(a)R,(0)R,(a). In this case, A=R,(a@)R,(6/2),
B=R,(—60/2)R,(— @), and C=1. Thus B=A" and C can
be omitted.

For the “only if” part, note that B=A" must hold for the
simulation to be valid when the first bit is 0. Therefore, if the
first bit is 1, then Ao, A" o, is applied to the second bit. Now,
the matrix Ao,A" has determinant — 1 and is traceless (since
its trace is the same as that of o,). By specializing the char-
acterization of unitary matrices in Lemma 4.1 to traceless
matrices with determinant — 1, we conclude that Ao A"
must be of the form

: sin@/2 e'*cosf/2
Ag A= e '%cosf/2 —sin6/2 |
Therefore,
: e'“cosf/2 sinf/2
ACAI O Gner2 e icostr2)
as required. |

Examples of matrices of the form of Lemma 5.4 are
R,(6) itself, as well as R, (a)=R,(a/2)R,(0)R,(a/2).
However, R,(6) is not of this form.

Finally, for certain U, we obtain an even greater simpli-
fication of the simulation of /\(U) gates.

Lemma 5.5. A /\{(V) gate can be simulated by a con-
struction of the form

where A and B are unitary if and only if V is of the form

sin@/2 e'%cos6/2

V=R(R(OR (@)= ( e "“cosf/2 —sin6/2 |’

where a and 6 are real valued.

Proof. If an additional /\(o,) is appended to the end of
the network in Lemma 5.4, then the network is equivalent to
that above [since /\,(o,) is an involution] and also simu-
lates a /\{(Wao,) gate [since /\;(W) composed with
/\I(Ux) is /\](WUX)] u

Examples of matrices of the form of Lemma 5.5 are the
Pauli matrices

0 —i T T
o=, o =R, 5 R,(2m)R, PIRE

1
7=\

(as well as o, itself).

Lemma 5.5 permits an immediate generalization of Cor-
ollary 5.3.

Corollary 5.6. For any unitary 2 X2 matrix U, a /\;(U)
gate can be simulated by at most six basic gates: four one-bit
gates /\, and two gates /\,(V), where V is of the form
V=R ()R, (DR (a)0,.

A particular feature of the /\(o,) gates is that they are
symmetric with respect to their input bits. In view of this, as
well as for future reference, we introduce the following spe-
cial notation for /\|(o,) gates:

I i

VI. THREE-BIT NETWORKS

and

0
- 1) :RZ(O)Ry(W)RZ(O)(Tx

A. Simulation of general /\,(U) gates

Lemma 6.1. For any unitary 2X2 matrix U, a /\,(U)
gate can be simulated by a network of the form

—

— = - 2 Py \’\ ,
-
where V is unitary.

Proof. Let V be such that V2= U. If the first bit or the
second bit is 0, then the transformation applied to the third
bit is either I or VVT=1. If the first two bits are both 1, then
the transformation applied to the third is VV=U. |

Some of the intuition behind the construction in Lemma
6.1 is that, using x; and x, to denote the first two input bits,
the operation V is first applied to the third bit iff x,=1, then
VT is applied if x;®x,=1, then V is applied iff x,=1 (iff
denotes if and only if). Since
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x1+x2—(x1€Bx2)=2X(x1/\x2)

(where “+,” “—.” and “X” are the ordinary arithmetic op-
erations), the above sequence of operations is equivalent to
performing V? on the third bit iff x;/\x,=1, which is the
/\,(V?) gate. [This approach generalizes to produce a simu-
lation of A,,(V2"™"), for m>2, which is considered in Sec.
VIL]

We can now combine Lemma 6.1 with Corollary 5.3 to
obtain a simulation of /\,(U) using only basic gates
[ANi(o,) and /\y]. The number of these gates is reduced
when it is recognized that a number of the one-bit gates can
be merged and eliminated. In particular, the /\y(C) from
the end of the simulation of the first /\;(V) gate and the
No(CT) from the /\ (V') gate combine to form the identity
and are eliminated entirely. This same sort of merging occurs
to eliminate a /\o(A) gate and a /\y(AT) gate. We arrive at
the following count [44].

Corollary 6.2. For any unitary 2 X2 matrix U, a /\,(U)
gate can be simulated by at most fourteen basic gates: eight
one-bit gates /\; and six XOR gates /\ (7).

A noteworthy case is when U=o0,, where we obtain a
simulation of the three-bit Toffoli gate /\,(o,), which is the
primitive gate for classical reversible logic [4]. Later we will
use the fact that because /\,(o,) is its own inverse, either
the simulation of Lemma 6.1 or the time-reversed simulation
(in which the order of the gates is reversed and each unitary
operator is replaced by its Hermitian conjugate) may be
used.

B. Three-bit gates congruent to /\,(U)

We now show that more efficient simulations of three-bit
gates are possible if phase shifts of the quantum states other
than zero are permitted. If we define the matrix W as

W:(—Ol (1))243(%7-)0”),,

then the gates /\,(W) and /\,(o,) can be regarded as being
“congruent modulo phase shifts” because the latter gate dif-
fers only in that it maps |111) to —|110) (instead of
|110)). This is perfectly acceptable if the gate is part of an
operation that merely mimics classical reversible computa-
tion or if the gate is paired with another similar one to cancel
out the extra phase, as is sometimes the case in reversible
gate arrangements (see Corollary 7.4); however, this phase
difference is dangerous in general if nonclassical unitary op-
erations appear in the computation. Gates congruent to
/N\,(0,) modulo phase shifts have been previously investi-
gated in [45].

The following is a more efficient simulation of a gate
congruent to /\,(o,) modulo phase shifts:

e
——— > ’
e e fape s

where A=R (7/4). In the above, the ‘="’ indicates that the
networks are not identical, but differ at most in the phases of
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their amplitudes, which are all =1 (the phase of the |100)
state is reversed in this case).

An alternative simulation of a gate congruent to /\,(o,)
modulo phase shifts (whose phase shifts are identical to the
previous one) is given by

———— ol

O o

[} {4 {z}+{z]

VIL n-BIT NETWORKS

—_———

_69__

R

where B=R (3 7/4).

The technique for simulating /\,(U) gates in Lemma 6.1
generalizes to /\,,(U) gates for m>2. For example, to simu-
late a /\;(U) gate for any unitary U, set V so that V*=U
and then construct a network as follows:

- D

A%

U} Vv
The intuition behind this construction is similar to that be-
hind the construction of Lemma 6.1. If the first three input
bits are x;, x,, and x3, then the sequence of operations
performed on the fourth bit is

vV iff x,=1 (100),

vl ff x;®x,=1 (110),

vV iff x,=1 (010),

Vi iff x,@x;=1 (011),

V iff x1®x,®x3=1 (111),

vl iff x,@x;=1 (101),

vV iff x3=1 (001) .

The strings on the right encode the condition for the opera-
tion V or V' at each step: the 1’s indicate which input bits are
involved in the condition. For an efficient implementation of
A\3(U), these strings form a gray code sequence. Note also
that the parity of each bit string determines whether to apply
V or V'. By comparing this sequence of operations with the
terms in the equation

Xitx+x3—(x;8x,) = (Xx1®x3) — (x,Bx3) + (xDx, D x3)
=4X (xl/\xz/\x3) N

it can be verified that the above sequence of operations is
equivalent to performing V* on the fourth bit if and only if
x1/\x,/\x3=1, which is the /\;(V*) gate.

The foregoing can be generalized to simulate /\,,(U) for
larger values of m.

Lemma 7.1. For any n=3 and any unitary 2 X2 matrix U,
a /\,,_1(U) gate can be simulated by an n-bit network con-
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sisting of 2”7 !'—1 /A (V) and /\{(V') gates and 2"~ ' -2
N (o,) gates, where V is unitary.

‘We omit the proof of Lemma 7.1, but point out that it is a
generalization of the n =4 case above and based on setting V

-2 . . . .
so that V" "=U and “implementing” the identity

> X, ~ > (xg, ®x,) + >
o ki <k, k

(xk @xk @xk )_ e
| <ky<ky ! 2 3

+(— l)m_l(xl@xz@ < @BX,,)
=21 (x ;N\ - - Nx,)

with a gray code sequence of operations.

For some specific small values of n (for n=3-8), this is
the most efficient technique that we are aware of for simu-
lating arbitrary /\,_;(U) gates as well as /\,_(o,) gates;
taking account of merges (see Corollary 6.2), the simulation
requires 2X2" " 1—2/\,(c,)’s and 2X2""1/\y’s. However,
since this number is @ (2"), the simulation is very inefficient
for large values of n. For the remainder of this section, we
focus on the asymptotic growth rate of the simulations with
respect to n and show that this can be quadratic in the gen-
eral case and linear in many cases of interest.

A. Linear simulation of /\,_,(0o,) gates on n-bit networks

Lemma 7.2. If n=5 and me{3,...,[n/2]}, then a
N,(0,) gate can be simulated by a network consisting of
4(m—2)/\,(o,) gates that is of the form

W N O Gt A W N e
]

9

(illustrated for n=9 and m=35).

Proof. Consider the group of the first seven gates in the
above network. The sixth bit (from the top) is negated if and
only if the first two bits are 1, the seventh bit is negated if
and only if the first three bits are 1, the eighth bit is negated
if and only if the first four bits are 1, and the ninth bit is
negated if and only if the first five bits are 1. Thus the last bit
is correctly set, but the three preceding bits are altered. The
last five gates in the network reset the values of these three
preceding bits. |

Note that in this construction and in the ones following,
although many of the bits not involved in the gate are oper-
ated upon, the gate operation is performed correctly indepen-
dently of the initial state of the bits (i.e., they do not have to
be “cleared” to O first) and they are reset to their initial
values after the operations of the gate (as in the computations
that occur in [41] and [40]). This fact makes constructions
like the following possible.

Lemma 7.3. For any n=5 and me{2,...,n—3}, a
N,—»(0,) gate can be simulated by a network consisting of
two N\,,(o,) gates and two /\,_,,_(0o,)gates, which is of
the form
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Ly
I

(illustrated for n=9 and m=35).

Proof. By inspection. |

Corollary 7.4. On an n-bit network (where n=7), a
N, -2(0a,) gate can be simulated by 8(n—5)/\,(o,) gates
(three-bit Toffoli gates), as well as by 48n — 212 basic opera-
tions.

Proof. First apply Lemma 7.2 with m;=[n/2] and
my=n—m;—1 to simulate /\ml(O'x) and /\mz(ox) gates.
Then combine these by Lemma 7.3 to simulate the
N, -2(0,) gate. Then each /\,(o,) gate in the above simu-
lation may be simulated by a set of basic operations (as in
Corollary 6.2). We find that almost all of these Toffoli gates
need only to be simulated modulo phase factors as in Sec.
VI B; in particular, only four of the Toffoli gates, the ones
that involve the last bit in the diagram above, need to be
simulated exactly according to the construction of Corollary
6.2. Thus these four gates are simulated by fourteen basic
operations, while the other 8#—36 Toffoli gates are simu-
lated in just seven basic operations. A careful accounting of
the mergers of /\; and /\, [44] gates that are then possible
leads to the total count of basic operations given above. W

The above constructions, though asymptotically efficient,
require at least one ‘“‘extra’ bit, in that an n-bit network is
required to simulate the (n—1)-bit gate /\,,_,(o,). In the
next subsection, we shall show how to construct /\,_;(U)
for an arbitrary unitary U using a quadratic number of basic
operations on an r-bit network, which includes the n-bit Tof-
foli gate /\,_,(0,) as a special case.

B. Quadratic simulation of general /\,_,(U) gates
on n-bit networks

Lemma 7.5. For any unitary 2X2 matrix U, a /\,_;(U)
gate can be simulated by a network of the form

(illustrated for n=9), where V is unitary.
Proof. The proof is very similar to that of Lemma 6.1,
setting V so that V2=U. |
Corollary 7.6. For any unitary U, a /\,_(U) gate can be
simulated in terms of ®(n?) basic operations.
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Proof. This is a recursive application of Lemma 7.5. Let
C, _, denote the cost of simulating a /\,,_(U) gate (for an
arbitrary U). Consider the simulation in Lemma 7.5. The
cost of simulating the /\;(V) and /\ (V") gates is ®(1) (by
Corollary 5.3). The cost of simulating the two /\,_,(o,)
gates is ®(n) (by Corollary 7.4). The cost of simulating the
N, -2(V) gate (by a recursive application of Lemma 7.5) is
C,—_,. Therefore, C,_ satisfies a recurrence of the form

Cn—lzcn—-2+®(n) s

which implies that C,,_; € ® (n?). |

In fact, we find that using the gate-counting mentioned in
Corollary 7.4, the number of basic operations is
48n%+ @ (n). Although Corollary 7.6 is significant in that it
permits any /\,_(U) to be simulated with “polynomial
complexity,”” the question remains as to whether a subqua-
dratic simulation is possible. The following is an {)(n) lower
bound on this complexity.

Lemma 7.7. Any simulation of a nonscalar /\,,_{(U) gate
[i.e., where U# ®(5)I] requires at least n—1 basic opera-
tions.

Proof. Consider any n-bit network with arbitrarily many
one-bit gates and fewer than n—1 /\;(o,) gates. Call two
bits adjacent if there is a /\(o,) gate between them and
connected if there is a sequence of consecutively adjacent
bits between them. Since there are fewer than n—1
A (o,) gates, it must be possible to partition the bits into
two nonempty sets ..Z and .% such that no bit in .% is con-
nected to any bit in .%. This implies that the unitary trans-
formation associated with the network is of the form A® B,
where A is 2I7 dimensional and B is 2!! dimensional.
Since the transformation /\,_;(U) is not of this form, the
network cannot compute /\, _(U). |

It is conceivable that a linear size simulation of
N\,—1(U) gates is possible. Although we cannot show this
presently, in the remaining subsections we show that some-
thing “‘similar” (in a number of different senses) to a linear
size simulation of /\,_;(U) gates is possible.

C. Linear approximate simulation of general /\,_;(U) gates
on n-bit networks

Definition. We say that one network approximates an-
other one within ¢ if the distance (induced by the Euclidean
vector norm) between the unitary transformations associated
with the two networks is at most €.

This notion of approximation in the context of reducing
the complexity of quantum computations was introduced by
Coppersmith [33] and is useful for the following reason.
Suppose that two networks that are approximately the same
(in the above sense) are executed with identical inputs and
their outputs are observed. Then the probability distributions
of the two outcomes will be approximately the same in the
sense that, for any event, its probability will differ by at most
2¢& between the two networks.

Lemma 7.8. For any unitary 2 X2 matrix U and £>0, a
N,—1(U) gate can be approximated within & by
O (n log,(1/¢)) basic operations.

Proof. The idea is to apply Lemma 7.5 recursively as in
Corollary 7.6, but to observe that, with suitable choices for
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V, the recurrence can be terminated after ® (log,(1/¢)) lev-
els.

Since U is unitary, there exist unitary matrices P and D
such that U=PTDP and

eidl 0
D:( 0 eidz) s

where d, and d, are real. ¢’ and e’ are the eigenvalues of
U. If V, is the matrix used in the kth recursive application of
Lemma 7.3 (ke{0,1,2,...}), then it is sufficient that
Vi, =V, for each ke{0,1,2,...}. Thus it suffices to set
Vi=P'D,P, where

: k
oid1 12 0
D,=
k 0 pid2 12k

for each k{0,1,2, ...}. Note that then

V= 1ll,=11P"DP—1|l,=||PT(D— D P, <I|P||,]| D,
=1Ll|Pl=]IDi—1|[;=m/2% .
Therefore, if the recursion is terminated after
k=[log,(7/€)] steps, then the discrepancy between what
the resulting network computes and /\,_;(U) is an
(n—k)-bit transformation of the form /\,_,_;(V,). Since
N1 (V=i DI = [ Vi 1], < ary2lloea(me]
<eg, the network approximates /\,,_;(U) within . n

D. Linear simulation in special cases

Lemma 7.9. For any SU(2) matrix W, a /\,_ (W) gate
can be simulated by a network of the form

——

—

—

b

————

e

where A, B, and C e SU(2).

Proof. The proof is very similar to that of Lemma 5.1,
referring to Lemma 4.3. |

Combining Lemma 7.9 with Corollary 7.4, we obtain the
following.

Corollary 7.10. For any W e SU(2), a /\,,_,(W) gate can
be simulated by ®(n) basic operations.

As in Sec. V, a noteworthy example is when

In this case, we obtain a linear simulation of a transformation
congruent modulo phase shifts to the n-bit Toffoli gate
/\ n—1 ( O-x) .
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E. Linear simulation of general /\,_,(U) gates
on n-bit networks with one bit fixed

Lemma 7.11. For any unitary U, a /\,,_,(U) gate can be
simulated by an n-bit network of the form

&

(illustrated for n=9), where the initial value of one bit (the
second to last) is fixed at O (and it incurs no net change).

Proof. By inspection. ]
Combining Lemma 7.11 with Corollary 7.4, we obtain the
following.

Corollary 7.12. For any unitary U, a /\,_,(U) gate can
be simulated by ®(n) basic operations in the n-bit network,
where the initial value of one bit is fixed and incurs no net
change. Note that the “‘extra” bit above may be reused in the
course of several simulations of /\,,(U) gates.

VIII. EFFICIENT GENERAL GATE CONSTRUCTIONS

In this final discussion we will change the ground rules
slightly by considering the “‘basic operation’ to be any two-
bit operation. This may or may not be a physically reason-
able choice in various particular implementations of quantum
computing, but for the moment this should be considered as
just a mathematical convenience that will permit us to ad-
dress somewhat more general questions than the ones con-
sidered above. When the arbitrary two-bit gate is taken as the
basic operation, then as we have seen, five operations suffice
to produce the Toffoli gate (recall Lemma 6.1), three produce
the Toffoli gate modulo phases (we permit a merging of the
operations in the construction of Sec. VI B), and thirteen can
be used to produce the four-bit Toffoli gate (see Lemma 7.1).
In no case do we have a proof that this is the most economi-
cal method for producing each of these functions; however,
for most of these examples we have compelling evidence
from numerical study that these are in fact minimal [45].

In the course of doing these numerical investigations we
discovered a number of interesting additional facts about
two-bit gate constructions. It is natural to ask, how many
two-bit gates are required to perform any arbitrary three-bit
unitary operation, if the two-bit gates were permitted to
implement any member of U(4)? The answer is six, as in the
gate arrangement shown here:

We find an interesting regularity in how the U(8) opera-
tion is built up by this sequence of gates, which is summa-
rized by the ‘‘dimensionalities” shown in the diagram. The
first U(4) operation has 4= 16 free angle parameters; this is
the dimensionality of the space accessible with a single gate,

as indicated. With the second gate, this dimensionality in-
creases only by 12, to 28. It does not double to 32, for two
reasons. First, there is a single global phase shared by the
two gates. Second, there is a set of operations acting only on
the bit shared by the two gates, which accounts for the addi-
tional reduction of 3. Formally, this is summarized by noting
that 12 is the dimension of the coset space SU(4)/SU(2).
The action of the third gate increases the dimensionality by
another 9=16—1—3—3. The dimension of the coset space
SU(4)/SU(2)X SU(2) is 9. The further subtraction by 3 re-
sults from the duplication of one-bit operations on both bits
of the added gate. At this point the dimensionality increases
by 9 for each succeeding gate, until the dimensionality
reaches exactly 64, the dimension of U(8), at the sixth gate.
In preliminary tests on four-bit operations, we found that the
same rules for the increase of dimensionality applied. This
permits us to make a conjecture, based just on dimension
counting, of a lower bound §4"—in—$=0(4") on the
number of two-bit gates required to produce an arbitrary
n-bit unitary transformation. It is clear that ‘“almost all”’ uni-
tary transformations will be computationally uninteresting
since they will require exponentially many operations to
implement.

Finally, we mention that by combining the quantum gate
constructions introduced here with the decomposition formu-
las for unitary matrices as used by Reck er al. [15], an
explicit, exact simulation of any unitary operator on n bits
can be constructed using a finite number [ ® (n34™)] of two-
bit gates and using no work bits. In outline, the procedure is
as follows. Reck et al. [15] note that a formula exists for the
decomposition of any unitary matrix into matrices only in-
volving a U(2) operation acting in the space of pairs of
states (not bits):

U= >

x1,x2€{0,1}",x;>x,

T(.Xl ,)Cz) D .

T(x,,x,) performs a U(2) rotation involving the two basis
states x; and x, and leaves all other states unchanged; D is a
diagonal matrix involving only phase factors and thus can
also be thought of as a product of 2"~ ! matrices that perform
rotations in two-dimensional subspaces. Using the methods
introduced above, each T(x;,x,) can be simulated in poly-
nomial time as follows. Write a gray code connecting x; and

Xx,; for example, if n=8, x;=00111010 and
x,=00100111, we have

1 00111010 X

2 00111011

3 00111111

4 00110111

5 00100111 Xy

Operations involving adjacent steps in this gray code require
a simple modification of the /\, _, gates introduced earlier.
The (n—1) control bits that remain unchanged are not all 1
as in our earlier constructions, but they can be made so tem-
porarily by the appropriate use of “NOT” gates [/\¢(o,)]
before and after the application of the /\, _; operation. Now,
the desired 7(x;,x,) operation is constructed as follows.
First, permute states down through the gray code, performing
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the permutations (1,2), (2.3), (34),...,(m—2,m—1).
These numbers refer to the gray code elements as in the table
above, where m, the number of elements in the gray code, is
5 in the example. Each of these permutations is accom-
plished by a modified /\,_;(o,). Second, the desired U(2)
rotation is performed by applying a modified /\,_;(U) in-
volving the states (m—1) and (m). Third, the permutations
are undone in  reverse order: (m—2m—1),
(m—3,m—2),...,(2,3), (1,2).

The number of basic operations to perform all these steps
may be easily estimated. Each T(x;,x,) involves 2m—3
(modified) /\,_, gates, each of which can be done in
On?) operations. Since m, the number of elements in the
gray code sequence, cannot exceed n + 1, the number of op-
erations to simulate T(x ,x,) is @ (n3). There are ®(4") T’s
in the product above, so the total number of basic operations
to simulate any U(2") matrix exactly is @ (n34"). (The num-
ber of steps to simulate the D matrix is smaller and does not
affect the count.) So we see that this strict upper bound dif-
fers only by a polynomial factor (which likely can be made
better than n3) from the expected lower bound quoted ear-
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lier, so this Reck procedure is relatively ““efficient” (if some-
thing that scales exponentially may be termed so). A serious
problem with this procedure is that it is extremely unlikely,
as far as we can tell, to provide a polynomial-time simulation
of those special U(2") that permit it, which of course are
exactly the ones that are of most interest in quantum compu-
tation. It still remains to find a truly efficient and useful
design methodology for quantum gate construction.

Note added in proof: E. Knill (unpublished) has recently
improved the upper bound of Sec. VIII from ®(n34") to
®(n4"), and confirmed the lower bound that we give.
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