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A study of donor electron spin relaxation which can occur due to the presence of spin-orbit coupling is
carried out. It is found that at helium temperatures both the direct and Raman processes are too weak to be
observed, but that at 14°K the Raman process yields a relaxation time of 1 sec.

Several mechanisms of relaxation due to the interaction with conduction electrons are also discussed.
It is found that none of them can compete with the exchange-scattering process considered by Pines,

Bardeen, and Slichter.

I. INTRODUCTION

HE recent work of Feher, Fletcher, and co-
workers!? on the electron spin resonance of donor
states in silicon has led to extensive discussion of the
properties of these states. Kohn and Luttinger have
developed the effective-mass formalism? for impurity
states in semiconductors® and have been able to give
approximate wave functions which account for the
experimentally observed hyperfine splitting of the donor
electron resonance.*

The relaxation time of the donor electron spin turns
out to be quite long at low concentrations, of the order
of minutes and longer. At concentrations greater than
4108 per cc, the relaxation times shorten to seconds
and are highly concentration-dependent.® Furthermore,
a marked decrease of the relaxation time has been
observed when light is incident upon the sample.® Pines,
Bardeen, and Slichter” have proposed several methods
for producing nuclear polarization in the case where the
electron spin relaxation time is very long. In the course
of this work, they investigated some of the mechanisms
of relaxation of the donor electron spins.

In relatively pure samples there are two important
types of relaxation processes. In one, the electron spin
and the donor-nucleus spin flip simultaneously by way
of the hyperfine interaction. The relaxation time T, for
this process has been calculated in PBS and gives good
agreement with experiment. The second type of relaxa-
tion involves the electron spin only. There are several
interactions which lead to a process of this sort and two
of these have been discussed by PBS: the vibrational
modulation of the electron spin-orbit coupling and the
vibrational modulation of the hyperfine interaction of
the electron spin with Si*® nuclei. The relaxation time T
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for electron-spin-only processes as calculated by PBS is
much longer than that which is observed and they con-
clude that the observed 7', must be due to a concentra-
tion-dependent mechanism as yet unknown.

In the case that there are electrons present in the
conduction band of the semiconductor, one is led to
consider the interaction between the conduction elec-
trons and the bound donor electron. An exchange-
scattering process which flips the spins of both electrons
has been considered by PBS and they find that if there
are as many as 10% conduction electrons per cc, the
relaxation time will be in the neighborhood of the
experimental values of reference 6. One would, of course,
expect a much smaller concentration of thermally
ionized electrons in the conduction band at the tem-
peratures at which the experiments are carried out,
4°K and below, so that this process is only of interest
in relation to those experiments in which light is
incident upon the sample.

In this report, we propose to discuss two topics:
first, how the effects of spin-orbit coupling lead to a
relaxation time 7, and second, several conduction-
electron mechanisms not considered by PBS.

II. SPIN-ORBIT COUPLING

As a result of the work of Kohn and Luttinger®* we
now have a good picture of the nature of the wave
function of the bound donor electron. In a region out-
side the atomic cell in which the impurity is located,
the effective-mass approximation is valid and the wave
function for the ground state may be written

¥(x) =\—jg g Puo)vs(a), )

where 7 labels the six equivalent conduction-band
energy minima at k; in (100) directions in the wave
vector space of the silicon crystal. The Bloch function
in the perfect crystal associated with the sth minimum
is ¥; and F; is a slowly varying function which is a
solution of a Schrédinger equation for the potential due
to the impurity but with the ordinary mass replaced
by the anisotropic effective mass appropriate to the sth
minimum. There are two ways in which this wave
function must be modified if we take account of the
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spin-orbit coupling. As is well known,® the Bloch func-
tion in the presence of spin-orbit coupling must be
modified. For the nondegenerate conduction band, this
modification is quite simple. The effect of spin-orbit
coupling is to mix into ¥; a small admixture of opposite
spin. One must also consider modifications of the F; due
to the fact that there will be a spin-orbit interaction
associated with the impurity atom. Actually, because
of the short range of the spin-orbit interaction, the
effect takes place quite close to the impurity, in a region
where the effective-mass approximation breaks down.
However, one can estimate the importance of the spin-
orbit coupling associated with the impurity. Experi-
ments® have been carried out using impurities (Li, P,
As, Sb) which in the free atom have spin-orbit coupling
constants covering a range characterized by a factor
of almost 100. In each case, the observed shift, Ag, of
the electron spin resonance g factor from the free-
electron value has been the same and about equal to
the Ag observed for the conduction electron resonance
in silicon.? We may therefore expect the contribution to
Ag from the impurity spin-orbit coupling to be not
greater than 0.01 of that due to the spin-orbit coupling
associated with the silicon atoms. If one were to set out
to calculate the spin-orbit coupling due to the impurity
one would abandon the effective-mass approximation in
favor of an atomic approximation in the central atomic
cell. Because the wave function is primarily of s-char-
acter,® one would find the effect to be small, as the
experimental results indicate. Let us for the moment
assume, then, that in the relaxation effects also, the
effects of impurity spin-orbit coupling are small com-
pared to the spin-orbit interaction with the atoms of
the host silicon crystal.

A. Direct Relaxation Process

We now turn to a consideration of the spin-lattice
relaxation associated with the spin-orbit coupling due
to the silicon atoms. This coupling will occur at some
distance from the impurity and we expect that the
effective-mass wave function of Eq. (1) will be quite
good. Of course, we modify the Bloch functions to
account for the spin-orbit coupling in the perfect lattice.

As shown by PBS, the matrix element for donor
electron spin flip induced by variations in the electro-
static potential can be written, in the deformation-
potential approximation,°

(‘I/0+,5 V‘I’g‘") = (‘I’o+,E1A‘I/o—) . (2)

Here 6V and E; are the change in potential and total
energy associated with a dilation A(r), and ¥¢t for
example, is the ground state wave function [ Eq. (1)] for
spin up. The matrix element on the right does not
vanish since there is a small admixture of opposite spin
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in each wave function due to the spin-orbit coupling.
We have ignored another term on the right which arises
because the dilation produces a modulation of the
amount of admixture of spin down in ¥¢*. This term
has been discussed by PBS and they show that it must
be small due to the adiabatic response of the bound-
electron wave function to variations of the electrostatic
potential. When their result is corrected for “Van Vleck
cancellation” (see below), the relaxation time arising
from this term is of order 108 sec.
For longitudinal waves, we have

A=V -5R(r)=1i(%/20Vs) g} beid T— b e 107],

where p is the density of the silicon crystal whose
volume is V, s is the velocity of sound, and bg, b,* are
destruction and creation operators for phonons of wave
vector q. The interaction, Eq. (2), represents the ab-
sorption or emission of a phonon with the simultaneous
flip of the bound-electron spin and is called a “direct
process.”

The matrix element for the direct process has been
estimated very roughly by PBS to lead to a relaxation
time of the order of 100 minutes. We shall now show
that this is a serious underestimate of the relaxation
time.

We wish to calculate a matrix element (H')
= (W¢+,H'¥y) where the initial state has 7,41 phonons
of wave vector q and the final state has one less. H’ is
the matrix element for absorption of a phonon:

H'=1iE(h/20Vs)ig} (n+1)keie . 3)

The ground state wave functions, including the spin-
orbit coupling in the Bloch functions, may be written

Vot=A|L£)+M=B=|F),

1 s
A=— Z Fﬂh‘,
V6 i @)

1 s
BE=—73%" Fipi*,

6 i=1

where ¥, in the Bloch function for the sth minimum in
the absence of spin-orbit coupling and M*e*, for
example, is the amount of admixture of down spin into
the Bloch function of #p spin due to the spin-orbit
coupling. If one calculates this admixture by perturba-
tion theory,® M* is a matrix element of the order of
N (—A=tgBH), where \ is a spin-orbit coupling con-
stant and A is the energy separation to the next excited
conduction-band state which is mixed in by the spin-
orbit interaction. The Bloch function for the excited
state mixed into an unperturbed Bloch function with
spin up from the ith minimum is ¢;*. The spin-orbit
perturbation is periodic in the crystal and therefore ¢
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has the same wave vector as y;. The wave functions
involved here have a symmetry such that the matrix
element M#* is real and independent of the minimum
for which we are calculating the wave function.

The matrix element for the direct process takes the
form

(=G +1)'g L (A, 059B)+ M (B s,

where G represents the numerical factors in Eq. (3). As
Van Vleck has previously pointed out,!! a matrix ele-
ment of this sort vanishes if M—= M due to the fact
that (B—)*=—B*. This ‘“Van Vleck cancellation,”
which is a consequence of Kramers’ theorem, leads to
a reduction of the matrix element by a factor 2g8H/A.
We then have

(H')=G(2g8H/A) (ng+1)1g*M (B¥,e'e74),  (5)

where M is of order N\/A;\/A maybe estimated as just
the g-shift Ag for the electron spin resonance.

We now estimate the matrix element appearing in
Eq. (5). Our first approximation is to neglect the
anisotropy in the effective mass. In this case,?® the F, are
the same for each minimum and have the form of a
hydrogenic 1s function with an effective Bohr radius
a="n%/m*e*~20 A, where « is the dielectric constant
and m™* is an average effective mass ~0.3m. Our matrix
element becomes

(Breitrd) =g 2 | F*(r)eiteiv 7y dr. (6)
i

We now expand F?(r) in a Fourier series; its Fourier
coefficients are f(2). We introduce ¢;t=1v;t exp(ik; 1),
¥;=wu; exp(ik;- r). With this notation, (6) becomes

.‘}. Z f()‘) (.Di+’uje‘i(ki——kj+)\-— Q) ~t)_ (7)

iIN

Now v;*u; is periodic so that k;—k;+2— q=K, where
K is a reciprocal lattice vector or zero. We next observe
that F*(r) varies slowly with respect to the lattice
parameter so that

FQ)=(1/V)(A+1a’N)~* ®

is small for N’s of the order of a reciprocal lattice vector
since Ka~15. Furthermore, the magnitude of the
resonant phonon wave vector ¢=gBH /%s is only of the
order of 10° cm™!, so that the leading term in the
matrix element comes from ¢=j, K=0 and is

s f(@) (vitus).

This is zero because of the orthogonality of Bloch
functions of the same wave vector from different bands.
This result already reduces the matrix element as

1 J, H. Van Vleck, Phys. Rev. 57, 426 (1940).
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compared with that calculated by PBS. The next term
comes from 77 j, K=0 and is

20 f(ki—k— q) (vityu).

An investigation of the symmetry properties!? of the ¥;
and ;£ reveals that (v;t,u;)=S;,=—S_.;=—3S;_;
=—3S;.:=S5_;,_; and S;_;=0. This, together with the
fact that ¢<&|k;—k;|, which allows a convergent
Taylor-series expansion of f(k;,—k;—q), yields zero for
this term also. This means that the first nonzero terms
involve N’s of the order of a reciprocal lattice vector,
leading to a further reduction in the matrix element by
a factor ~(2/Ka)*~4X107*. The origin of this reduc-
tion is in the nature of the wave function for the bound
donor states which are linear combinations of rapidly
oscillating Bloch functions with slowly varying enve-
lopes F;. It is just the fact that the F¥; are slowly varying
which makes the term in the matrix element which
connects the same minima essentially zero. The Bloch
functions entering the ground state wave function have
phase factors exp(ik;-r) whose wave vectors k; are
symmetrically disposed in the six equivalent (100)
directions and we find that the terms in the matrix
element which connect unlike minima vanish due to a
destructive interference between the Bloch functions.
This result holds even if we do not neglect the aniso-
tropy in the effective mass.

We conclude then that the Van Vleck cancellation
and the phase cancellation increase the relaxation time
estimated by PBS (75 min) to such an extent that it
never can be observed. The estimate of PBS for the
relaxation time due to impurity spin-orbit coupling,
when corrected for Van Vleck cancellation and with
the assumption that the fraction of Ag due to the im-
purity is about 0.01, gives 7\~10° sec which is also out
of reach.

B. Raman Processes

If we treat the interaction between the phonons and
the donor electron in second order, we obtain Raman-
type processes in which a phonon is scattered from a
state ¢ to a state p while the electron spin flips. The
effective matrix element contains transitions to an
excited orbital state with the emission or absorption
of a phonon and then transitions back to the ground
state with the absorption or emission of a phonon. The
spin may flip either in the first transition or the second.

2 The group of the wave vector for one of the minima in (100)
directions is the group A [see C. Herring, J. Franklin Inst. 233,
525 (1942) . ¢ transforms according to the identity representation
A; of this group and ¢;* transforms according to one of the rows
of the two-dimensional representation As. We select ¢;* to be that
function belonging to A; which is connected to ¥; by the spin-orbit
perturbation (¢ V Xp)*. For example, for the (100) minimum, in
an LCAO (localized combination of atomic orbitals) representa-
tion of the Bloch functions, the atomic orbitals entering y; would
be s and p, functions and the atomic orbital in ¢;* would be a p.
function.
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The matrix element is

(H)=G(pg)"[ng(n,+ D X [m

X [HP»'“Q++HP:—Q_]

1
+_[H—.q, p++H—q, p_] } ) (9)
—AF-Rsp

Hy t= (‘I’0+>eip'r‘1’ai) (‘I’ai,eiq'r‘l’o_),

where A, is the energy separation to the excited state
whose wave function for spin up, say, is ¥,*. We have
neglected the Zeeman energy in the denominators since
it is small and a Van Vleck cancellation does not
occur here.

The lowest-lying excited state which enters the
matrix element is the “ls state’® which transforms
according to the polar vector representation T of the
symmetry group of the donor state, i.e., the tetrahedral
group. However, the matrix elements for these states
will be small due to the fact that only different minima
will be connected even in those parts of the matrix
element where the spin does not flip (see H,,* above)
and therefore a phase cancellation of the type discussed
previously will reduce the matrix element. It is for this
reason that there are no appreciable optical transitions
to these states.’® The states which make the largest
contribute to our matrix element, as in the optical case,
are the 2p, m=0, =1 states. These states must be
considered together since there is some interference in
their contributions to the total matrix element. The 2p
states are specified more precisely in the Appendix.
The wave function for the ground state is the same
as (4), where we may neglect the difference between M+
and M—. The excited state wave functions may be
written

V= E,| )+ MF*|F),

where E, and F,* are defined in the Appendix. The
details of the calculation of the matrix element appear
there also. We find

(H')=2G*M (p)*[no(n,+1) Ts(p+q)
XZ}I (hp,—-qa— h—q, pa);
by, o= (A6 *E,) (B¢ 11 *E,), (10)

where the sum is over the three m=0 states and three

of the m=+1 states. A typical result for one of these

states is
hp,—t= —i(ZAg/a2k4M)quz: (11)

where % is the magnitude of the electron wave vector at
a minimum. If %, is the wave vector at the edge of
the first zone, then A~ (3km.x/4)."* The terms for the
other excited states have a similar structure. We com-

13 W. Kohn, Phys. Rev. 98, 1856 (1955).
4 W, Kohn (private communication). This is a very tentative
estimate.
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bine our results and find

(H')=16G*(Ag/a*k*)[ s (p+9)8/ A% (pg)*
X [”q(”p+ 1)]*[(‘])( p)z"" i(qX p)u])

where A is the mean energy separation to the 2p states
and 6 is the splitting between the 2p, m=0 and 2p,
m==1 states.!?

The relaxation time due to Raman processes is
obtained from the usual expression

1/To= (2r/1) X, o | (H')| %P5 (p—q) — gBH ]
= (8/x)*[(12) 1/9](E+*6*/A°)
X[(ag)/ntp*s e k] (RT)™.  (12)

In performing theintegral over p, we have neglected g8 H
in comparison to %sp and have used a low-temperature
approximation such that #,(n,+1)~~exp(—#sp/kT).
An evaluation of T’ gives

T~108T-1,

The Raman process is clearly ineffective at helium
temperatures, but because of its very rapid temperature
dependence it will be of the order of 1 sec at 14°K and
will begin to wash out the resonance at temperatures
well below that of liquid air. A very rapid variation of
relaxation time with temperature should be observed in
the liquid hydrogen region.

III. INTERACTION WITH CONDUCTION ELECTRONS

In this section we treat the case where there may be
electrons present in the conduction band of the semi-
conductor, either because of excitation by light or
because of a very high concentration of impurities.
Interactions between these electrons and the bound
donor electrons can produce a spin flip of the donor
electron and lead to a relaxation effect. In what follows
we treat the electrons as free particles.

A. Coulomb Scattering

The Coulomb scattering of conduction electrons and
bound electrons can produce a flip of the bound electron
spin only, if we account for the spin-orbit admixture in
the donor state. This process may be disposed of
immediately since the matrix element involved is of
the same sort as that considered in Sec. II-A for direct
phonon absorption. We find an interaction operator
similar to (3):

H'= (4re?/V)q %ie T,

where (4we?/Vq?®) is the Fourier transform of the
Coulomb interaction and q is the momentum transfer
to the conduction electron. The calculation becomes
identical to that for direct phonon processes and suffers
from both Van Vleck and phase cancellations.

B. Spin-Current Interaction

In this process, the bound electron spin experiences
the magnetic field of a passing conduction electron and
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flips its spin. The spin-orbit coupling is not involved.
The calculation is straightforward, although some-
what lengthy. The matrix element involved describes a
transition from a state (1/V)"gt(ry)e?® ™ to a state
(1/V)"r(ry)e*e 2 through an interaction

Hiny= (Be/mc)a-rXp/r,

where ¢ is the spin operator for the bound electron,
p is the momentum operator for the conduction electron
whose wave function is (1/V)%?'* and r=r,—r3 is the
relative coordinate. The matrix element is easily evalu-
ated in the effective-mass approximation and the result
inserted into the expression for the relaxation time (12).
The integrals are quite tedious and the result is equiva-
lent to one which may be obtained by a simple argu-
ment!® which uses the technique discussed by Slichter
and Pines.!® The interaction energy is of order

AE~ (Be/mc) (mv/7?),

where v is the velocity of the conduction electron. We
have
dw=AE/f~(310) (v/1%),

where 7, is the classical electron radius=e?/mc? The
correlation time is just the separation of the two
electrons divided by the velocity v, so that

(0w)*re= (370)*(/7%).

To get the relaxation time, we must sum this expression
over 7. If there are #, conduction electrons per cc with
velocity v, we have

b 4oy

1/T=(3r0) 2n7,'uf —3—dr=7rr02n,,v In(d/a).

a 7

Here b is the maximum value of  and may be deter-
mined roughly by the requirement that energy be
conserved in the scattering process:

b~1/Aknin;  (B2k/m)Akmin=gBH.

The minimum value of 7 is just a~1/k=%/mv so that
b/a~E/BH, where E is the conduction electron energy
and we have taken g=2. The relaxation time is then

1/T=nre*nw In(E/BH).

At 3000 gauss, for electrons of thermal energies at 4°K,
we have T~10'/5 sec and for electrons of 1-ev energy,
we have T~10'%/n sec. This mechanism is clearly
ineffective compared to the exchange-scattering mecha-
nism discussed by PBS since we can never expect % to
be as large as 102 per cc.

C. Spin-Spin Interaction

We treat now the dipole-dipole interaction between
the conduction electron and the bound donor electron.

16 The author is indebted to C. P. Slichter for pointing this out.
18 D. Pines and C. P. Slichter, Phys. Rev. 100, 1014 (1955).
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In this process both spins flip and one must concern
oneself with the relaxation rate of the conduction
electrons as well. This has already been discussed by
PBS and it is sufficient to compare the value for the
transition probability U for the dipole-dipole flip with
their U for the exchange scattering. We have

S~ (1/%) (8%/7°)(01-@2)
= (2/7)B*/7.

As before, we have 7,=7/v and #min~%/mv. This gives
n,U =1, f (bw)?7odr = (3mro2)n,0.

Our result is U~10"%p as compared with U~6X10~'%
for the exchange process. The dipole-dipole mechanism
is also ineffective.

IV. CONCLUSION

We have discussed the effects of spin-orbit coupling
on the relaxation time for donor electron spins in silicon.
We find that at helium temperatures and below, the
relaxation time 7, is much longer than that experi-
mentally observed and that it is only at liquid hydrogen
temperatures that the Raman process can be important.
This result, when compared the considerations of PBS
reinforces their conclusion that the observed T's must
be due to a concentration-dependent process of un-
known origin. Feher’s work!” so far gives no evidence
that the observed T at concentrations of 106 donors/cc
is concentration-independent; T is definitely concen-
tration-dependent above 4101,

We have considered also several mechanisms which
can cause relaxation because of interactions between
donor electrons and conduction electrons. In each case,
the relaxation effects are much smaller than the ex-
change scattering discussed by Pines, Bardeen, and
Slichter.
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APPENDIX

We consider here some of the details of the Raman
calculation of Sec. IT B of the text. First, we specify the
2p donor states. The wave functions for these states
may be written® 3 ; a,?F4;. If we number the minima
in the (100), (100), (010), - - - directions 1=1,2, ---, 6,

17 G. Feher (private communication).
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respectively, then the a,® are

= (%)%(x; %, 0, O; 07 0)
D= (%)%(07 0; Y, 0; O)}Z?} m=0y
a3(i)= (%)%(0: O; 0) O) 2, Z)

(A-1)
0—'4(“:%\/3(0; 0: X, X, X, x)
a5<i)=%ﬁ(y; Y, 07 0; Y, 3’)
as("')"-—"%\/g(z, %, %, 3, 0) O)
a7(i)=%\/§(0’ 07 3, =%, —3’)
as(i)z%\/g(z, -2, 07 0} X, _x)
ds(i)=%\/§(y, -y % —%, O) 0)

We haveincluded here only excited statesa=1,2, - - -, 9,
which transform according to T;. The reason is that in
a matrix element of the form (¥,t, eid'™W¥st) [see
Eq. (9)] no other states will contribute in a dipole
approximation exp(iq-r)~1-41(q-r) since r transforms
according to 7, and ¥, transforms according to the
identity representation 4,. Higher terms in the expan-
sion of exp(iq-r) will be small because of the slow
variation of the F;.

With the a, denoted above, the excited state wave
functions may be written

V= E,| 4 )+ MF | F),
Eo=30.F
For=3a,F;pi*,
where M is the matrix element defined in connection

with Eq. (4). With this notation, a typical term of the
matrix element (9) is

Hy _t=M(4,6* *Eo)[ (Eqe 4 *B7)+ (Foheitt4)].

The term [4, exp(¢p-1)E] may be evaluated approxi-
mately by a procedure similar to that used for the
direct process. We expand «,?F?(r) in a Fourier series,
with Fourier coefficients f,?(d)=3iaf(M)A,? where
f(3) is defined in (8) and A, is the component of A
defined by a,?. For example, \s®@=2v3\, [see (A-1)].
With the same approximation used to treat Eq. (9), we

2p, m==+1.
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find the leading term, for i=7,

(4,6 *Ea)= (V//6)2: fo* (p). (A-2)

The phonon wave vectors p which are of importance at
helium temperatures have magnitude 10 cm™! so that
pa<<1 and an approximate expression for f,(p) is
(1a/2V)po. In this approximation, the states a=7, 8, 9
give no contribution since for these p,?= — p,?. Our
result is then, for example,

(4,6 TEy) = —}iap.. (A-3)

Using the fact that the states 7, 8, 9 do not contribute,
we can combine the terms in (9) with the use of relations
which can be established by investigating the sym-
metry properties of the Bloch functions y; and ¢;*:
A*=A, (Bf)*= — B* E*=E, (F*)*= — F* We obtain
Eq. (10) of the text, and we must evaluate

hp 2= (4,6 E,) (Bt e 4 TE,).

The first factor in %, _, has already been evaluated in
Egs. (A-2) and (A-3). The second factor may be
estimated in a similar manner. The result is

(B ) = — B) T £a (a+ ki— k)i

We now expand f,?(q+k,—k;) in powers of
(¢/| ki—k;|) and keep only the first term. The zeroth-
order term makes no contribution by the orthogonality
condition and we have, for (A-4),

(8/Va*n/6)2 i [9a"—4q- (ki—k))

X (ki—k)a®/ | ki—k;|*]S s,
where we have taken |k;—k;|a>>1 (k;7k; since S;;=0)
and the meaning of ¢, is the same as that for A,®.
Recognition is again made of the symmetry properties
of S;; whose absolute magnitude we estimate by
(VAg/M). The result, for example, is

(Bt e i TE,) = (4Ag/a*k*M)q.,
where & is defined in the text following Eq. (11).

(A-4)



