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Abstract

The ratio of shear viscosity to volume density of entropy can be used to characterize

how close a given fluid is to being perfect. Using string theory methods, we show that

this ratio is equal to a universal value of ~/4πkB for a large class of strongly interacting

quantum field theories whose dual description involves black holes in anti–de Sitter

space. We provide evidence that this value may serve as a lower bound for a wide class

of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
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Introduction.—It has been known since the discovery of Hawking radiation [1] that black

holes are endowed with thermodynamic properties such as entropy and temperature, as first

suggested by Bekenstein [2] based on the analogy between black hole physics and equilib-

rium thermodynamics. In higher-dimensional gravity theories there exist solutions called

black branes, which are black holes with translationally invariant horizons [3]. For these

solutions, thermodynamics can be extended to hydrodynamics—the theory that describes

long-wavelength deviations from thermal equilibrium [4]. In addition to thermodynamic

properties such as temperature and entropy, black branes possess hydrodynamic character-

istics of continuous fluids: viscosity, diffusion constants, etc. From the perspective of the

holographic principle [5, 6], a black brane corresponds to a certain finite-temperature quan-

tum field theory in fewer number of spacetime dimensions, and the hydrodynamic behavior

of a black-brane horizon is identified with the hydrodynamic behavior of the dual theory.

For these field theories, in this Letter we show that the ratio of the shear viscosity to the

volume density of entropy has a universal value

η

s
=

~

4πkB
≈ 6.08 × 10−13 K s . (1)

Furthermore, we shall argue that this is the lowest bound on the ratio η/s for a wide class

of thermal quantum field theories.

Viscosity and graviton absorption.—Consider a thermal field theory whose dual holo-

graphic description involves a D-dimensional black-brane metric of the form

ds2 = g
(0)
MNdxMdxN = f(ξ) (dx2 + dy2) + gµν(ξ) dξµdξν . (2)

[The O(2) symmetry of the background is required for the existence of the shear hydrody-

namic mode in the dual theory, thus making the notion of shear viscosity meaningful.] One

can have in mind, as an example, the near-extremal D3-brane in type IIB supergravity, dual

to finite-temperature N = 4 supersymmetric SU(Nc) Yang–Mills theory in the limit of large

Nc and large ’t Hooft coupling [7, 8, 9, 10],

ds2 =
r2

R2

[

−
(

1 − r4
0

r4

)

dt2 + dx2 + dy2 + dz2

]

+
R2

r2(1 − r4
0/r

4)
dr2 , (3)

but our discussion will be quite general. All black branes have an event horizon [r = r0 for

the metric (3)], which is extended along several spatial dimensions [x, y, z in the case of (3)].

The dual field theory is at a finite temperature, equal to the Hawking temperature of the

black brane.

The entropy of the dual field theory is equal to the entropy of the black brane, which is

proportional to the area of its event horizon,

S =
A

4G
, (4)
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where G is Newton’s constant (we set ~ = c = kB = 1). For black branes A contains a trivial

infinite factor V equal to the spatial volume along directions parallel to the horizon. The

entropy density s is equal to a/(4G), where a = A/V .

The shear viscosity of the dual theory can be computed from gravity in a number of

equivalent approaches [11, 12, 13]. Here we use Kubo’s formula, which relates viscosity to

equilibrium correlation functions. In a rotationally invariant field theory,

η = lim
ω→0

1

2ω

∫

dt dx eiωt 〈[Txy(t,x), Txy(0, 0)]〉 . (5)

Here Txy is the xy component of the stress-energy tensor (one can replace Txy by any com-

ponent of the traceless part of the stress tensor). We shall now relate the right-hand side

of (5) to the absorption cross section of low-energy gravitons.

According to the gauge–gravity duality [10], the stress-energy tensor Tµν couples to metric

perturbations at the boundary. Following Klebanov [14, 15], let us consider a graviton of

frequency ω, polarized in the xy direction, and propagating perpendicularly to the brane. In

the field theory picture, the absorption cross section of the graviton by the brane measures

the imaginary part of the retarded Greens function of the operator coupled to hxy, i.e., Txy,

σabs(ω) = −2κ2

ω
Im GR(ω) =

κ2

ω

∫

dt dx eiωt 〈[Txy(t,x), Txy(0, 0)]〉 , (6)

where κ =
√

8πG appears due to the normalization of the graviton’s action. Comparing (5)

and (6), we find

η =
σabs(0)

2κ2
=

σabs(0)

16πG
. (7)

Graviton absoprtion cross section at low energy.—The absorption cross section σabs is

calculable classically by solving the linearised wave equation for hx
y . We now show that hx

y =

hxy/f obeys the equation for a minimally coupled massless scalar in the background (2). This

is similar to cosmological tensor perturbations on a Friedmann–Robertson–Walker spacetime,

which obey the equation for a massless scalar field [16].

Consider small perturbations around the metric, gMN = g
(0)
MN + hMN . We assume that

the only non-vanishing component of hMN is hxy, and that it does not depend on x and

y: hxy = hxy(ξ). This field has spin 2 under the O(2) rotational symmetry in the xy

plane, which implies that all other components of hMN can be consistently set to zero [12].

Einstein’s equations can be written in the form

RMN = TMN − T

D − 2
gMN , (8)

where the stress-energy tensor TMN and its trace T depend on other fields such as the

dilaton and various forms supporting the background (2), for example, the fields appearing
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in the low-energy type II string theory. Again, O(2) xy rotational symmetry implies that all

perturbations of matter fields can be set to zero consistently. Thus when M and N are x or

y, the right-hand side of Einstein’s equations reads (α, β = x, y)

Tαβ − T

D − 2
gαβ = −

(

L +
T (0)

D − 2

)

(δαβf + hαβ) , (9)

where L is the Lagrange density of matter fields and T (0) is the trace of the unperturbed

stress-energy tensor.

TMN = −gMN L + · · · , (10)

where L represents the Lagrangian density of the fields, and dots denote terms of second

and higher orders in the perturbation hxy. Substituting the unperturbed metric (2) into

Einstein’s equations, one finds

1

2

[

�f

f
− (∂f)2

f 2

]

= L +
T (0)

D − 2
. (11)

Expanding Einstein’s equations to linear order in hxy, one has

Rxy = −1

2
�hxy +

1

f
∂µf ∂µhxy −

(∂f)2

2f 2
hxy = −

(

L +
T (0)

D − 2

)

hxy . (12)

Combining Eqs. (11) and (12), we obtain an equation for hxy:

�hxy − 2
∂µf

f
∂µhxy + 2

(∂f)2

f 2
hxy −

�f

f
hxy = 0 . (13)

Changing the variable from hxy to hx
y = hxy/f , one can see that hx

y indeed satisfies the

equation for a minimally coupled massless scalar: �hx
y = 0. The absorption cross section of

a graviton is therefore the same as that of the scalar.

The absorption cross section for the scalar is constrained by a theorem [17, 18], which

states that in the low-frequency limit ω → 0 this cross section is equal to the area of the

horizon, σabs = a. Since s = a/4G, one immediately finds that

η

s
=

~

4πkB
, (14)

where ~ and kB are now restored. This shows that the ratio η/s does not depend on the

concrete form of the metric within the assumptions of Refs. [17, 18]. Indeed, this ratio is the

same for Dp- ([11, 13]), M2- and M5- ([19]) branes and for deformations of the D3 metric

[13, 20]. This fact is very surprising, given that the corresponding dual field theories are very

different. We do not have an explanation for the constancy of η/s in these theories based on

field-theoretical arguments alone.
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A viscosity bound conjecture.—Most quantum field theories do not have simple gravity

duals. Is our result relevant in a broader setting? We speculate that the ratio η/s has a

lower bound
η

s
>

~

4πkB
(15)

for all relativistic quantum field theories at finite temperature and zero chemical potential.

The inequality is saturated by theories with gravity duals.

One argument supporting the bound (15) comes from the Heisenberg uncertainty prin-

ciple. The viscosity of a plasma is proportional to ǫτmft, where ǫ is the energy density and

τmft is the typical mean free time of a quasiparticle. The entropy density, on the other hand,

is proportional to the density of quasiparticles, s ∼ kBn. Therefore η/s ∼ k−1
B τmftǫ/n. Now

ǫ/n is the average energy per particle. According to the uncertainty principle, the product

of the energy of a quasiparticle ǫ/n and its mean free time τmft cannot be smaller than ~,

otherwise the quasiparticle concept does not make sense. Therefore we obtain, from the

uncertainty principle alone, that η/s & ~/kB, which is (15) without the numerical coefficient

of 1/(4π). We also conclude that η/s is much larger than ~/kB in weakly coupled theories

(where the mean free time is large).

Another piece of evidence supporting the bound (15) comes from a recent calculation [21]

of η/s in the N = 4 supersymmetric SU(Nc) Yang–Mills theories in the regime of infinite

Nc and large, but finite, ’t Hooft coupling g2Nc. The first correction in inverse powers of

g2Nc corresponds to the first string theory correction to Einstein’s gravity. The result reads

η

s
=

~

4πkB

(

1 +
135ζ(3)

8(2g2Nc)3/2
+ · · ·

)

(16)

where ζ(3) ≈ 1.2020569... is Apéry’s constant. The correction is positive, in accordance with

(15). It is natural to assume that η/s is larger than the bound for all values of the ’t Hooft

coupling (Fig. 1).

The bound (15), in contrast to the entropy bound [22] and Bekenstein’s bound [23],

does not involve the speed of light c and hence is nontrivial when applied to nonrelativistic

systems. However, the range of applicability of (15) to nonrelativistic systems is less certain.

On the one hand, by subdividing the molecules of a gas to an ever-increasing number of non-

identical species one can increase the entropy density (by adding the Gibbs mixing entropy)

without substantially affecting the viscosity. On the other hand, the conjectured bound is far

below the ratio of η/s in any laboratory liquid. For water under normal conditions η/s is 380

times larger than ~/(4πkB). Using standard tables [24, 25] one can find η/s for many liquids

and gases at different temperatures and pressures. Figure 2 shows temperature dependence

of η/s, normalized by ~/(4πkB), for a few substances at different pressures. It is clear that

the viscosity bound is well satisfied for these substances. Liquid helium reaches the smallest
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0

h̄

4πkB

η

s

g2Nc

Figure 1: The dependence of the ratio η/s on the ’t Hooft coupling g2Nc in N = 4 su-

persymmetric Yang–Mills theory. The ratio diverges in the limit g2Nc → 0 and approaches

~/4πkB from above as g2Nc → ∞. The ratio is unknown in the regime of intermediate

’t Hooft coupling.

value of η/s, but this value still exceeds the bound by a factor of about 9. We speculate that

the bound (15) is valid at least for a single-component non-relativisitic gas of particles with

spin 0 or 1/2.

Discussion.—It is important to avoid some common misconceptions which at first sight

seem to invalidate the viscosity bound. Somewhat counterintuitively, a near-ideal gas has a

very large viscosity due to the large mean free path. Likewise, superfluids have finite and

measurable shear viscosity associated with the normal component, according to Landau’s

two-component theory.

The bound (15) is most useful for strongly interacting systems where reliable theoretical

estimates of the viscosity are not available. One of such systems is the quark-gluon plasma

(QGP) created in heavy ion collisions which behaves in many respects as a droplet of a

liquid. There are experimental hints that the viscosity of the QGP at temperatures achieved

by the Relativistic Heavy Ion Collider is surprisingly small, possibly close to saturating the

viscosity bound [26]. Another possible application of the viscosity bound is trapped atomic

gases. By using the Feshbach resonance, strongly interacting Fermi gases of atoms have

been created recently. These gases have been observed to behave hydrodynamically [27] and

should have finite shear viscosity at nonzero temperature. It would be very interesting to test
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Figure 2: The viscosity-entropy ratio for some common substances: helium, nitrogen and

water. The ratio is always substantially larger than its value in theories with gravity duals,

represented by the horizontal line marked “viscosity bound.”

experimentally whether the shear viscosity of these gases satisfies the conjectured bound.

This work was supported by DOE grant DE-FG02-00ER41132, the National Science

Foundation and the Alfred P. Sloan Foundation.
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