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ABSTRACT Nanosecond absorption dynamics at ;685 nm after excitation of photosystem I (PS I) from Synechocystis sp.
PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary
electron acceptor A1. Based on experimental optical data and structure-based simulations, the effective local dielectric constant
has been estimated to be between 3 and 20, which suggests that electron transfer in PS I is accompanied by considerable
protein relaxation. Similar effective dielectric constant values have been previously observed for the bacterial photosynthetic
reaction center and indicate that protein reorganization leading to effective charge screening may be a necessary structural
property of proteins that facilitate the charge transfer function. The data presented here also argue against attributing redmost
absorption in PS I to closely spaced antenna chlorophylls (Chls) A38 and A39, and suggest that optical transitions of these Chls,
along with that of connecting chlorophyll (A40) lie in the range 680–695 nm.

INTRODUCTION

Electrostatic forces play a crucial role in the conformation

and function of biomolecules, especially in the protein

complexes that carry out charge transfer functions. Due to

the presence of a mixture of neutral, polar, and charged

chains in proteins, the charge transfer processes involve

complex reorganization of the local protein environment,

leading to effective charge screening (Treutlein et al., 1992;

Steffen et al., 1994; Simonson and Brooks, 1996). This local

reorganization, along with the redox potential difference

between electron donor and acceptor, is a key factor in

defining the efficiency of electron transfer (Moser et al.,

1992). The fundamental constant defining the strength of

electrostatic screening is the relative static dielectric per-

mittivity (dielectric constant) er. Numerous model calcula-

tions predict that a typical average dielectric permittivity for

protein in water ranges from 10 to 80 (King et al., 1991;

Smith et al., 1993; Simonson and Brooks, 1996; Löffler et al.,

1997; Simonson, 1998; Pitera et al., 2001). Major contribu-

tors to this value are relatively flexible polar side chains on

the outer surface of the protein. The dielectric constant deep

within the protein is expected to drop to 2–4, which agrees

with the known low polarizability of dry powders where the

absence of water restricts the mobility of the peripheral side

chains (Rosen, 1963; Bone and Pething, 1982, 1985).

Despite considerable interest, the number of direct measure-

ments of protein dielectric constant and charge screening is

relatively small, as such measurements present an experi-

mental challenge. Standard experimental approaches to the

problem include measurements of pKa and redox potential

shifts due to point mutations (Russell and Fersht, 1987;

Varadarajan et al., 1989), and measurements of gas-phase

basicities of protein ions (Schnier et al., 1995). Protein

function relies on its rich microscopic structure, which

implies that the effective (local) dielectric constant varies

within the bulk of a protein. These variations in the local

dielectric environment may play a decisive role in electron

transfer systems, and can be observed by measuring

electrochromic shifts of spectroscopic probes embedded into

the protein structure (Lockhart and Kim, 1992; Pierce and

Boxer, 1992; Steffen et al., 1994). In this article, we report on

measurements of the effective (local) dielectric constant in

photosystem I in the vicinity of the secondary electron

acceptor A1, by observing the electrochromic shift of the

nearest chlorophyll absorption bands in response to electron

transfer from the secondary electron acceptor A1.

Photosystem I (PS I) is a chlorophyll-protein complex that

uses light energy to reduce ferredoxin in cyanobacteria

and higher green plants (Brettel, 1997). The discovery

and subsequent refinements of the x-ray crystal structure of

the PS I core antenna-reaction center complex from the

cyanobacterium Synechococcus elongatus (Krauss et al.,

1993, 1996; Klukas et al., 1999; Jordan et al., 2001) have

stimulated great interest in its structure-function relation-

ships. The PS I reaction center contains six chlorophyll (Chl)

a cofactors: the P700 special pair Chls (analogous to the

special pair bacteriochlorophylls in purple bacterial reaction

centers), two accessory Chls (analogous to the accessory

bacteriochlorophylls), and two chlorophylloid primary

electron acceptors A0. In the PS I reaction center, primary

charge separation leads to the reduction of A0, creating the

radical ion pair P7001A0
2. The unpaired electron migrates

first to the phylloquinone secondary acceptor A1, then to the

4Fe-4S center FX, and finally to the terminal iron-sulfur
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electron acceptors FA and FB before being harvested by

ferredoxin (Brettel, 1997).

The kinetics of the primary events are well known for the

purple bacterial reaction center (Zinth and Kaiser, 1993;

Woodbury and Allen, 1995). The primary charge separation

PH / P1H2 requires 2–3 ps at room temperature, and the

subsequent electron transfer to the primary quinone QA

(which is analogous to A1 in PS I) exhibits multiphasic

kinetics (80–300 ps). The scenario is less clear for PS I. It

is widely believed (Brettel, 1997) that the creation of the

radical pair P7001A0
2 occurs within 1–3 ps after the

creation of the electronically excited special pair P700*.
Most estimates of the timescale for the A0

2 / A1 electron

transfer in wild-type PS I range from 10 to 50 ps (Hastings

et al., 1994; Brettel and Vos, 1999; Iwaki et al., 1995;

Kumazaki et al., 1994; White et al., 1996; Savikhin et al.,

2001), whereas the A1
2 / FX electron transfer occurs with

dual;10 ns and 200–280 ns kinetics (Bock et al., 1989; van

der Est et al., 1994; Brettel, 1988, 1998; Setif and Brettel,

1993; Sakuragi et al., 2002). Hence, there is general

agreement that in PS I the reduction of A1 is complete

within a few tens of picoseconds at most and the Chl Qy

spectral evolution that stems from the preceding primary

processes are essentially complete within this time. Although

the consequent electron transfer from A1
2 to the iron sulfur

complexes do not affect the Chl population directly, the

presence of a strong local electric field around these electron

transfer cofactors must affect the optical properties of the

nearby pigments (Steffen et al., 1994). Recently, Savikhin

et al. (2001) reported that noticeable optical absorp-

tion evolution in the Chl Qy spectral region spans well into

the nanosecond range, and suggested protein relaxation as

a possible cause of the observed signal. In this article, we

have performed detailed analysis of this effect and propose

that the shape and magnitude of these changes are more

consistent with an electrochromic shift of the Chl absorption

bands that accompanies electron transfer from A1 to FX.

Based on the measured data, we are able to estimate the

effective dielectric constant deep within PS I. Considerable

local reorganization of the interior of the protein must also

occur, leading to effective charge screening. These results

are consistent with similar measurements of the effective

dielectric constant within the bacterial reaction center

(Steffen et al., 1994).

EXPERIMENTAL METHOD

Excitation pulses (660 nm, ;100 fs full width at half-maximum) were

generated using a self-mode-locked Ti:sapphire laser, regenerative amplifier,

optical parametric amplifier, and frequency doubler as described earlier

(Savikhin et al., 2000). Probe pulses (675–702 nm, 10–15 ns full width at

half-maximum) originated in a cavity-dumped dye laser (DCM laser dye)

tuned with an intracavity birefringent filter. The cavity dumper timing was

derived from sync output pulses of the Pockels cell driver in the pump laser’s

regenerative amplifier. Variable delays were generated in a modified EG&G

(Gaithersburg, MD) GD150 delay line, with its external delay input

connected to a PC digital-to-analog converter output. After conversion to 10-

ns-long TTL pulses using a Tektronix PG501 pulse generator (Beaverton,

OR), the GD150 output pulses were directed to the dye laser cavity dumper.

The resulting delay precision was observed to be better than 1 ns. Sample

transmission of the probe pulses was determined using home-built

photodiode detectors combined with a boxcar integrator (Savikhin et al.,

2000). The transient spectrum at 200 ps after excitation was probed using

femtosecond continuum pulses (Savikhin et al., 2000). P7001-P700 spectral

differences 3 s after excitation were measured by a modified Perkin-Elmer

(Wellesley, MA) absorption spectrometer (Savikhin et al., 2000).

Trimeric PS I complexes were purified from the wild-type strain of the

cyanobacterium Synechocystis sp. PCC 6803 using the method of Sun et al.

(1998). Optical clarity of the PS I preparations was improved by

centrifugation through Spin-X centrifuge filter units (0.2 mm cellulose

acetate membrane; Corning Costar, Cambridge, MA). Purity of the PS I

preparations was verified by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis analysis of the protein subunits. All samples contained 20

mM sodium ascorbate. PS I samples in the dark contain predominantly open

reaction centers with unoxidized P700 special pairs (Savikhin et al., 2000).

PS I samples exhibited;0.3 optical density at the excitation wavelength

(660 nm), and were housed in a spinning cell with 0.7-mm pathlength; the

excitation density was;1.5 mJ/cm2 (1.5 nJ/pulse,;300-mm spot size). This

yielded excitation of one out of every ;1000 Chls. The pump and probe

polarizations were separated by 54.7�, to exclude anisotropy effects in the

measured kinetics.

RESULTS

Fig. 1 A shows the (P7001-P700) difference spectra mea-

sured 200 ps (solid line) and 3 s (dashed line) after exciting
the PS I antenna pigments (Savikhin et al., 2001). Both

spectra were mutually normalized to the same intensities at

wavelengths above 700 nm, where we have observed no time

evolution in DA after 200 ps. This normalization also leads to

the same integrated intensities in both spectra, which is

consistent with the fact that excitation and reduction states of

Chl a molecules that absorb in this spectral region do not

change after 200 ps. The difference between 200 ps and 3 s

(Fig. 1 C, solid line) has a characteristic bimodal shape with

a negative band at ;691 and a positive band at ;682 nm.

Fig. 2 shows time-resolved absorption difference profiles in

a 5-ms time window for wild-type PS I. The four probe

wavelengths, which span from 680 to 702 nm, bracket the

long-time changes in the (P7001-P700) absorption differ-

ence spectrum (Fig. 1). At times.1 ms, the signals approach

the steady-state (P7001-P700) spectrum. A 300-ns absorp-

tion decay component is built upon the asymptotic signal at

690 nm; this is mirrored by a 300-ns absorption rise

components at 680 and 685 nm (but not at 702 nm, where the

amplitude of the long-time changes in the (P7001-P700)

spectrum is very small (Fig. 1 A), indicating that the two

observed bands in the (3 s 2 200 ps) difference spectrum

(Fig. 1 C) originate from the same process.

At 200 ps, energy transfer as well as charge separation

processes in PS I are complete (Hastings et al., 1994;

Holzwarth et al., 1993; Brettel and Vos, 1999; Iwaki et al.,

1995; Kumazaki et al., 1994; White et al., 1996; Melko-

zernov, 2001; Savikhin et al., 2001) and the electron is

3122 Dashdorj et al.

Biophysical Journal 86(5) 3121–3130



localized on the secondary acceptor A1. The consequent

electron transfer occurs from A1 (phylloquinone) to iron

sulfur complexes FX and FA/B. None of these cofactors

contribute distinctive absorptive bands in the spectral region

studied here, and thus cannot be directly responsible for the

observed spectral changes. Nevertheless, the measured 300

6 50 ns kinetics of the change matches the known ;280-ns

electron transfer rate from A1 to FX (Bock et al., 1989; van

der Est et al., 1994; Brettel, 1988, 1998; Setif and Brettel,

1993; Sakuragi et al., 2002). The second, shorter A1 / FX
electron transfer component has been reported to be t1/2 5

6.6 ns (9.5 ns 1/e lifetime) in Synechocystis sp. (Brettel, 1998)

and was not observed in our experiment due to the limited

time resolution (10–15 ns) and considerable noise level.

The spectral position, amplitude, and bipolar character

of the long-time spectral change are consistent with the

dynamic shift of a single chlorophyll absorption band

(carotenoids do not absorb in the studied spectral region).

Such a shift may in principle be introduced by a local protein

reorganization that might accompany the electron transfer

process, as suggested in Savikhin et al. (2001). Oxidation-

induced structural changes were reported, for example, in

Kim et al. (2001). Such perturbations in protein structure,

however, would not necessarily result in detectable shifts of

the Chl absorption band. On the other hand, the transfer of an

electron from A1 to FX will cause drastic changes in the local

electric field that will necessarily lead to an electrochromic

shift of the optical transitions of the surrounding Chl a
pigments. In the following, we will assume that all of the

observed nanosecond optical kinetics is caused by an

electrochromic shift, and demonstrate that it is consistent

with similar effects previously observed in the bacterial re-

action center (RC) (Steffen et al., 1994).

The magnitude of the electrochromic shift Dn of chromo-

phore absorption band depends on the changes in permanent

dipole moment D~mm and polarizability Da that accompany the

optical transition, and the local electric field (Liptay, 1969;

Kakitani et al., 1982):

Dn52
1

hc
jD~mmjjE~netj cos u1

1

2
DaE

2

net

� �
; (1)

where E
*

net is a net electric field at the location of a chromo-

phore due to the presence of an external electric field E
*
, and

u is the angle between D~mm and E
*

net; Da is an average

scalar polarizability.

FIGURE 1 (A) (P7001-P700) absorption difference spectra measured for

wild-type PS I complexes from the cyanobacterium Synechocystis sp. PCC
6803 at 200 ps (solid line) and 3 s (dashed line). (B) The single-site A0 and

connecting Chl a absorption spectrum in the case when A1 is reduced (solid

line) and neutral (dashed line) found by fitting DA absorption difference

spectra shown in Fig. 1 C in assumption that only these two Chls experience

electrochromic shift. (C) The difference between the absorption difference

spectra measured at 200 ps and at 3 s (solid line), and the difference between

two single-site Chl a absorption spectra (dashed line) shown in plane (B).

FIGURE 2 Absorption difference profiles in 5-ms window for PS I core

antenna/reaction center complexes excited at 660 nm and probed at the

indicated wavelengths. Noisy curves are experimental difference profiles;

smooth profiles are best fits from global analysis of the four profiles using

single-exponential kinetics resulting in optimized lifetime of 300 ns.
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The magnitude and direction of the electric field E~e at a

given atom created by a single electron in vacuum separated

by a distance r is given by Coulomb’s law:

E~e 5
1

4pe0

e

r
2 r̂; (2)

where e0 is the permittivity of vacuum, e is the charge of an
electron, and r̂ is the unit vector from this atom to the charge.

Within the protein, the electric field of an electron polarizes

the nearby amino acids (and other molecules) and the net

electric field may be muted (charge screening). The

magnitude of this screening depends on the local environ-

ment and is defined as the effective static dielectric

permittivity (effective dielectric constant) eeff (Lockhart

and Kim, 1992; Steffen et al., 1994):

eeff 5
Ee

Enet

: (3)

Because the electric field of an electron is well localized

in space (Eq. 2), only the chlorophylls nearest to A1 will

experience significant electrochromic shifts and need to be

considered in the first approximation. Although the x-ray

structure of PS I from Synechocystis sp. has not been

determined, its amino acid sequence is highly homologous

(especially in the vicinity of the electron transfer chain) to PS

I from Synechococcus elongatus, whose x-ray structure is

known. The main optical differences between the two

species relate to the number and energies of the redmost

pigments (i.e., pigments absorbing at .705 nm), which do

not contribute to the observed signal. According to the x-ray

structure of PS I from Synechococcus elongatus (Jordan

et al., 2001), there are two chlorophylls in the immediate

vicinity of A1: primary electron acceptor A0 and the ‘‘con-

necting’’ chlorophyll that is believed to facilitate electronic

excitation energy transfer from the PS I antenna to the RC

(Fig. 3 and Table 1). In the following, we have assumed that

electron transfer follows the A-side of the RC. The selection

of the active electron transfer branch, however, is not critical

for our calculations. Due to the high structural symmetry of

the RC, similar estimates of effective dielectric constant

(within 10%) can be obtained by assuming that electron

transfer occurs along the B-side, or along both sides

concurrently.

The direction and magnitude of the electric field E~e at the

centers of A0 and the connecting chlorophylls (positions of

Mg atoms) was calculated using Eq. 2 assuming that the

extra charge on A1
2 is localized in the geometric center of

the atoms contributing to the conjugated p system (Table 1).

The magnitude and the absolute direction of the per-

manent dipole moment change D~mm as well as the value of

Da of a chromophore molecule can be found by measur-

ing the classical Stark effect—a shift of the absorption band

in homogeneous static electric field. Because the effect of the

environment on the electric field at the position of the chro-

mophore is not well known, the magnitude of the jD~mmj is
conventionally measured in units of D/f, where f is the local
field correction factor that relates to the magnitude of the

local field Enet 5 fEr (Boxer, 1993; Böttcher, 1973), and Er is

the average macroscopic electric field in the medium. For

monomeric Chl a in PS I it has been found that jD~mmj 5
0.5.0.8 (D/f ) (Rätsep et al., 2000; Zazubovich et al., 2002;

Reinot et al., 2001; Frese et al., 2002). A somewhat larger

FIGURE 3 The A-branch of the reaction center showing connecting

chlorophyll, secondary electron acceptor A1, and iron-sulfur complex FX.

The positions of NB and ND nitrogens are also shown for connecting Chl a.

TABLE 1 The parameters used to calculate eeff based on

electrochromic shift of two Chl a molecules that are

closest to the secondary electron acceptor A1

A0 Connecting

r (Å) 9.0 11.2

Ee (V/m) 1.76 3 109 1.15 3 109

cos(u) 0.32.0.34 0.47.0.83

Dne (cm
21) 274.2165 291.2190

Dn (cm21) 213 215

eeff 6.13

r, distance from A1.

Ee, electric field at each of the Chl a due to an electron on A1.

u , angle between dipole transition moment and electric field vectors.

Dne, electrochromic shift expected in absence of screening effect (eeff 5 1).

Dn, an actual shift observed in experiment.

Angle g was varied between 220� and 120� (see text), jD~mmj between 0.5

and 1.0 D/f, and Da between 1.5 and 4 Å3/f.
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value jD~mmj 5 1.02 6 0.09 D/f was reported for Chl a in

a glassy solution (Krawczyk, 1991). In the latter article the

value of Da for Chl awas also found to vary between 1.5 and
4 Å3f22, depending on the number of axial ligands. These

values of jD~mmj and Da suggest that the observed spectral

shift of the absorption band is primarily due to jD~mmj (linear
term in Eq. 1): even at the highest observed electric fields

(Ee 5 1.76 3 109 V/m, Table 1) and the assumption that

eeff5 1, the quadratic term in Eq. 1, which depends on Da, is

less than half the size of the linear term.

The local correction factor for chromophores in a protein

is typically small: f 5 1.0.1.5 (Boxer, 1993; Rätsep et al.,

2000; Steffen et al., 1994). We will therefore follow Steffen

et al. (1994) and use jD~mmjf and Daf2 in place of jD~mmj and Da
when calculating eeff.
The absolute direction of D~mm for Chl a (and the similar

bacteriochlorophyll a molecule) has been determined in

Stark effect experiments to be almost colinear with the

optical transition moment p~ (Rätsep et al., 1998, Lockhart

and Boxer, 1988, Krawczyk, 1991). The largest reported

angle g between these vectors was 20� (Krawczyk, 1991).

The transition dipole moment p~ for the Qy state has

been determined to be along the vector connecting NB and

ND nitrogen atoms (Weiss, 1972; van Zanvoort et al., 1995;

Sener et al., 2002). Nitrogens are labeled after Sener et al.

(2002) in accordance with the PS I crystallographic data file

(Jordan et al., 2001) and are shown in Fig. 3. To obtain

negative electrochromic shifts as observed in our experi-

ment, the vector D~mm must point in a general direction from

NB to ND; the opposite direction of D~mm (indistinguishable in

a conventional Stark effect experiment) would lead to

a positive electrochromic shift. This direction of D~mm is in

agreement with earlier calculations (Eccles and Honig, 1983;

Fajer et al., 1992) that predict negative electrochromic shifts

when an extra electron is positioned near the ND side of Chl

a or similar BChl molecules. To account for possible

uncertainty in the angle g, we varied it within 620� with

respect to the vector connecting NB and ND. The angle u

between the electric field E~e and D~mm was then computed

using the known x-ray structure (Jordan et al., 2001). Based

on these data, the electrochromic shift Dne for both

chlorophylls was calculated under the assumption that there

is no electrostatic screening effect from the surrounding

molecules (Table 1).

The observed electrochromic shift Dn is considerably

smaller than Dne and indicates significant electrostatic

screening of the electron’s field. To estimate the magnitude

of this screening, we modeled the measured electrochromic

difference spectrum (Fig. 1 C) using Eqs. 1 and 3 with two

electrochromically shifted Chl a bands representing A0 and

the connecting pigments, under the assumption that eeff is the
same for both molecules. The Chl a single-site absorption

spectrum was calculated using the 43 known vibrational

frequencies (Gillie et al., 1989; Peterman et al., 1997) with

Huang-Rhys factors adjusted to fit the experimental single-

site profile at 4 K (Savikhin et al., 2001) (see Fig. 1 B). An
inhomogeneous Gaussian broadening was applied to this

spectrum to yield a bandwidth of 10 nm, a typical bandwidth

for Chl a in a protein (see, for example, the measured A0

spectra in Savikhin et al., 2001; Hastings et al., 1994). The

amplitude of a Chl a absorption band was estimated in the

following way: the 3-s (P7001-P700) difference spectrum

was modeled as a superposition of four Gaussian com-

ponents as described in Savikhin et al. (2001). The major

30-nm component centered at 700 nm is conventionally

attributed to the bleaching of the low-energy excitonic

absorption band of the special pair P700. Because the upper

excitonic band of the special pair is not pronounced in the

absorption difference spectrum, the oscillator strength of this

lower excitonic transition was assumed to be twice that of

a single chlorophyll. The intensity of a single Chl a band was
then adjusted to result in an integrated intensity exactly half

of the integrated intensity of the P700 excitonic band. The

resulting shape and intensity of the Chl a band are in good

agreement (within 10%) with the previous direct measure-

ments of the A0 absorption band (Savikhin et al., 2001;

Hastings et al., 1994). Although the spectral position of the

A0 band has been established experimentally to be at ;686

nm (Savikhin et al., 2001; Hastings et al., 1994), the position

of the connecting chlorophyll absorption band cannot be

determined directly due to considerable spectral congestion

(there are almost 100 Chl a pigments within PS I antenna

absorbing around 680 nm). However, our analysis strongly

suggests that the connecting Chl a pigment absorption band

should be positioned within ,5 nm of the A0 to reproduce

the observed spectral features.

Fig. 1 C (dashed line) shows the result of the fit of the (3 s
2 200 ps) difference spectrum under the assumption that

both pigments originally absorb at the same wavelength

(;686 nm), when g5 0�,Dm5 0.5 D/f andDa5 1.5 Å3f22.

The best fit was obtained with eeff5 7, and the corresponding

electrochromic shifts for both bands are listed in Table 1. Fig.

1 B also shows the net absorption due to these two pigments

for the case when A1 is in neutral (dashed line) and reduced

(solid line) states. Reasonable fits could be obtained only

with the assumption that the accessory pigment absorption

band lies within ,5 nm of the A0 absorption band.

Uncertainties in Dm (0.5.1.0 D/f), Da (1.5.4 Å3f22),

and g (220�.120�) lead to the range of eeff 5 6.13.

Although the two Chl a pigments closest to A1 experience

the largest electrochromic shifts, the rest of the Chl

molecules in the PS I complex can also yield significant

net electrochromic shift signal, provided that contributions

from many pigments add up constructively. Because the

actual spectral positions of the pigments is known only for

A0 and P700, precise determination of the electrochromic

shift signal due to each pigment is not possible. This may

increase the uncertainty in the eeff value.
To analyze the possible effect on the eeff value of including

the rest of the pigments, we have calculated Dne magnitudes

Electrochromic Shift of Chlorophyll Absorption 3125
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for all 96 pigments in the PS I structure (Jordan et al., 2001).

Each was assumed to have an absorption spectrum similar to

the one used for A0, but the maximum position was allowed

to change during the fitting procedure (except for A0 and

P700, whose absorption maximum positions are known).

The screening constant eeff was set to be the same across the

PS I interior. Together with eeff, the number of fitting

parameters was 95. These free parameters were then varied

to provide the best fit simultaneously to the steady-state

absorption spectrum of PS I (not shown) and the electro-

chromic shift spectrum shown in Fig. 1 C. In addition, the

parameters were optimized to produce minimal spectral

evolution due to the change in the electric field that ac-

companies electron transfer from FX to FA, FB and out

from PS I, as such evolution was not observed in our

experiments. The latter constraint turned out to dramatically

limit the lowest value of eeff for which a good fit could be

achieved. Perfect fits for all data were obtained with eeff 5
6.8 (Fig. 4 A, g 5 0�, Da 5 1.5 Å3f22, and Dm 5 0.5 D/f ).
In this case, the electrochromic shift signal was clearly

dominated by the four pigments nearest to A1: A0, con-

necting pigment, and two antenna pigments (ec-A3, A40,

A38, and A39 according to the labeling scheme of Jordan

et al., 2001). The absorption maxima positions for these

four pigments could be varied within 63 nm of their opti-

mal positions without affecting the quality of the fit. The spec-

tral positions of the rest of the pigments in PS I were not

critical; almost any random spectral distribution could be

chosen for these pigments (provided that such a distribution

results in the observed steady-state absorption spectrum).

Uncertainties in Dm (0.5.1.0 D/f), Da (1.5.4 Å3f 22), and

g (220�.120�) lead to the range of eeff 5 5.15.

Good fits also could be obtained for eeff fixed at 3 and

2, but the fitting procedure took considerably longer as

progressively more and more pigments had to be arranged in

a special manner. If eeff 5 3, both A0 and the connecting

pigment each contribute electrochromic shift signals of

comparable magnitude and shape as found in the experiment,

and the positions of the next closest pigments must be

optimized to lower the overall electrochromic signal. We

found that for a good fit, the six closest pigments had to

be placed within 63 nm of their optimal spectral position.

When eeff 5 2, each of the four closest to A1 pigments

contributes an electrochromic signal that is larger than or

comparable to the total signal observed in the experiment.

This fit was sensitive to the position of the 10 closest

pigments—the first three pigments had to be within ,1 nm

of their optimal positions, and the restrictions of the

remaining pigments varied progressively from 62 nm to

67 nm. Any deviation from the optimal spectral arrange-

ment of these pigments would lead to a drastically different

electrochromic shift signal. To illustrate that, Fig. 4 B shows

the expected electrochromic shift signals for eeff 5 1, 2, and

5 (no fitting, g 5 0�, Dm5 0.5 D/f, and Da5 1.5 Å3f22) for

randomly chosen sets of spectral arrangement of antenna

pigments. No fit was possible with eeff # 1.

Good fits were also obtained with eeff fixed at 8 and 10

(g 5 0� and Dm 5 0.5 D/f ); in this case more and more

pigments had to be arranged in a special manner so that the

net electrochromic shift signal would increase and resemble

the experimentally measured signal.

PS I function does not require the optimization of pigment

arrangement in a way to produce the observed electro-

chromic shift spectrum. We find it rather improbable that 10

or more pigments near A1 happen to be positioned in a such

a rare way as to produce the observed electrochromic shift

spectrum, as required in the case of eeff 5 2 or 10. Thus, the

most probable value for eeff around A1 must be in the range

eeff 5 3.8. Including uncertainties in Dm (0.5.1.0 D/f),
Da (1.5.4 Å3f22), and g (220�.120�) would further

widen the range of possible values to eeff 5 3.20.

DISCUSSION

The value of the effective dielectric constant eeff measured in

this article is a microscopic parameter and should not be

confused with the conventional relative dielectric constant er
that characterizes the average macroscopic electric field.

There are three main contributors to the eeff in our case: i), the

FIGURE 4 (A) The measured electrochromic shift signal (solid line; the

same as in Fig. 1 C), and the best fit to the data obtained in a simulation that

includes all antenna pigments (g 5 0�, Dm 5 0.5 D/f, and Da 5 1.5 Å3/f ).

(B) Expected electrochromic shift signals in the case of arbitrary spectral

distribution of antenna pigments and eeff fixed at 5 (short-dashed line), 2
(long-dashed line), and 1 (dash-dotted line).
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presence of a water shell around the protein; ii), the presence

of a protein surrounding the chromophore; and iii), the

screening of the electric field due to polarization of the

chromophore itself.

To estimate the screening effect caused by the water shell,

we modeled PS I as an empty spherical cavity within high

dielectric constant media (er ; 80 for water). The size of the

cavity and the position of the charge within the cavity were

chosen to mimic the size of the PS I complex and the relative

position of the secondary electron acceptor A1. According to

this model, the presence of a water shell would lead to

a decrease of the electric field (screening) at the position

of nearby Chl a molecules of the order of 10% or less.

Comparably small water shell effects have been reported in

Blomberg et al. (1998).

In the case of a medium consisting of similar spherical

molecules subjected to a homogeneous external field E0, the

average macroscopic electric field Er within the medium will

be er times smaller than E0 (Er 5 E0/er), and the local electric
field Enet in the cavity occupied by one of the molecules can

be expressed as Enet 5 fEr, where f 5 (er 1 2)/3 (Böttcher,

1973; Bublitz and Boxer, 1997). Inside a protein er is low

(Rosen, 1963; Bone and Pething, 1982, 1985) and values of

f 5 1.0.1.5 are routinely used (Boxer, 1993; Rätsep et al.,

2000; Steffen et al., 1994). However, the contribution of the

protein medium and the chromophore itself to the value of f is
complex in the general case; therefore, in most of the Stark

effect studies, the products fDm and f2Da are determined

instead. In this article, the latter values were used in place of

Dm and Da, respectively, and Eq. 1 should result in a correct

prediction of Dn when Er 5 E0/er is used in place of Enet:

Dn52
1

hc
jD~mmj

���� f E~0

er

���� cos u1 1

2
Da f

E~0

er

 !2 !
: (4)

In the case of an electric field Ee created by an electron

on A1, however, we find that the electrochromic shift is

significantly smaller than that predicted by Eq. 4 and

expected in a conventional Stark experiment when Er 5 Ee/
er; instead Er 5 Ee/eeff must be used with eeff considerably
larger than typical er values for interior of a protein. This

discrepancy indicates significant local charge screening,

lowering the magnitude of the electric field of an electron in

the vicinity of A1.

Numerous calculations and experiments have shown that

the electrostatic properties of proteins depend strongly on the

mobility of charged and polar side chains (Pitera et al., 2001;

Simonson, 1998; Simonson and Brooks, 1996; Simonson

and Perahia, 1995; Rosen, 1963; Bone and Pething, 1982,

1985; Smith et al., 1993). The dielectric constant is a direct

measure of the polarizability of the protein medium and

reflects its relaxation properties in response to a charge

perturbation. The high value of eeff observed in our ex-

periment suggests that the electron transfer process in PS

I is accompanied by a significant reorganization of the

surrounding protein structure, leading to effective screening

of the electric field produced by the electron. This is

consistent with the results obtained in similar experiments on

the Stark effect in the bacterial RC (Steffen et al., 1994),

where the effective dielectric constant was measured to be

eeff ; 2.5–11.6 at 1.5 K around analogous cofactors

constituting the active electron transfer branch. Interestingly,

the bacterial reaction center exhibited substantial dielectric

asymmetry, with eeff being 2-5 times smaller along the

inactive branch of RC. According to Steffen et al. (1994), the

high effective dielectric constant may lead to enhanced

electronic coupling between reactant and product states by

decreasing the tunneling barrier height and increasing orbital

overlap. Our results on PS I support this trend and suggest

that a high local dielectric constant is perhaps a common

attribute of electron transfer sites in proteins. The effective

charge screening and associated reorganizational energy

(solvation) may also help to stabilize the product state and

prevent back transfer (Treutlein et al., 1992). Due to spec-

tral congestion among the electron transfer cofactors and

surrounding pigments, our experiment cannot distinguish

between the two almost symmetrical electron transfer

branches in PS I.

Recent x-ray structure of PS I (Jordan et al., 2001) reveals

207 water molecules incorporated into this protein structure.

Even though the present x-ray resolution is not sufficient to

detect all water molecules, it is clear that the concentration

of water molecules is especially high in the vicinity of the

electron transfer chain formed by secondary electron

acceptor A1 and three iron sulfur complexes FX, FA, and

FB. We count a total of 17 water molecules within 7 Å of

these cofactors, which leads to ;5 times larger local water

concentration in this area than the average water concentra-

tion in the rest of the protein. The concentration of water

molecules is especially high in the area between A1 and FX
(Fig. 5). The presence of water around electron transfer

cofactors may play a crucial role in increasing structural

flexibility of surrounding protein side chains (Bone and

Pething, 1985) necessary for achieving effective dielectric

screening. The analysis also reveals that polar and charged

side chains exhibit significant clustering in the same area.

The proximity of pigments forming the electron transfer

chain in PS I to each other and to connecting chlorophylls

may cause noticeable excitonic interactions (Witt et al.,

2002; Byrdin et al., 2002; Damjanovic et al., 2002).

Excitonic interactions are known to lead to an increase in

Dm. It has been shown, for example, that the redmost pig-

ments in PS I absorbing at 714 nm exhibit values of fDm 5

2.3 6 0.20 D, i.e., about four times larger than monomeric

Chl a (Rätsep et al., 2000). The latter increase has been

attributed to strong excitonic coupling between two or more

antenna pigments. The quantitative effect of possible exciton

coupling between the pigments surrounding A1 on values
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and directions of Dm is not known. However, the inclusion of

this effect into our simulation is expected to increase the

electrochromic shift effect (and eeff), unless the angle u

between D~mm and E
*

net for the excitonically coupled

molecules would be close to 90� (tentatively 90 6 10�).
The electric field of an electron positioned on A1 is well

localized in space and thus may serve as a probe of opti-

cal properties of the nearby pigments not accessible in

conventional optical absorption measurements due to

spectral congestion. According to the simulation discussed

above, the electrochromic shift of four nearby pigments must

account for most of the measured signal. Our recent

experiments (to be published) suggest that electron transfer

in PS I from Synechocystis sp. occurs primarily along the

A-branch of the RC, and the four nearest pigments therefore

are A0 (ec-A3), connecting pigment (A40), and two an-

tenna Chls A38 and A39 (Jordan et al., 2001). No visi-

ble electrochromic shift signal was observed at wavelengths

,675 nm or .700 nm (Fig. 1 C), which requires that the

absorption maxima of pigments experiencing strong electro-

chromic shift lie in the range 680–695 nm. The absorption

maximum position of A0 has been measured in independent

experiments to be ;686 nm (Savikhin et al., 2001; Hastings

et al., 1994), which agrees well with the current conclusion.

To the best of our knowledge, optical properties of the other

three pigments have not been determined experimentally.

Recently, two groups used the 2.5-Å resolution x-ray

structure of PS I from Synechococcus elongatus and the

available experimental data to calculate Qy transition

energies of all 96 Chl a pigments found in PS I (Byrdin

et al., 2002; Damjanovic et al., 2002). According to Byrdin

et al. (2002), the four pigments nearest to A1 absorb at

wavelengths lec-A3 5 683 nm, lA40 5 701 nm, and lA38 5

lA39 5 694 nm. Strong excitonic coupling between A38 and

A39 leads to considerable splitting, resulting in two exciton

transitions at 702 and 686 nm with ;85% of the oscillator

strength in the upper excitonic band, and is consistent with

electrochromic shift data. Somewhat weaker excitonic

interaction was calculated for ec-A3 and ec-B2 Chls (labeled

as S5 and S3 in Byrdin et al., 2002), and the resulting

excitonic bands (674 and 689 nm) would stay close to the

optimal positions predicted by our simulations. However,

positioning the connecting chlorophyll (A40) at 701 nm

would result in a significant negative signal in the region

between 700 and 710 nm that was not observed (Fig. 1 C).
A different set of transition energies was obtained in

Damjanovic et al. (2002) by using the semiempirical INDO/S

method and crystal structure of PS I. According to this

model, the excitation (diagonal) energies of the four

pigments are lec-A3 5 685 nm, lA40 5 677 nm, lA38 5

667, and lA395 689 nm. Excitonic interaction between Chls

A38 and A39 and mixing with charge transfer states would

result in excitonic transitions at ;667 and ;693 nm.

Similarly, interaction between ec-A3 and ec-B2 leads to

excitonic states absorbing at 676 and 686 nm. The oscillator

strength of each of the excitonic bands is not readily available

in Damjanovic et al. (2002), and it is possible that the two

upper excitonic states (667 and 676 nm) do not contribute

effectively to absorption. According to this model, however,

the connecting chlorophyll A40 absorbs at 677 nm, which is

inconsistent with electrochromic shift data showing negligi-

ble signal for wavelengths at and below 677 nm (Fig. 1 C).
An intriguing aspect of PS I is the presence of antenna Chl

a molecules with absorption energies well below that of

P700. Among several causes of the red shift, excitonic

coupling of two or more Chl a molecules has been proposed

as the most plausible mechanism (see, for example,

Zazubovich et al., 2002; Damjanovic et al., 2002; Byrdin

et al., 2002). Based on structural and spectral analysis, Chls

A38-A39 were suggested as possible candidates responsible

for the extreme red absorption.710 nm (Jordan et al., 2001;

Byrdin et al., 2002) in Synechococcus. Although it has been

shown that the optical properties of the red Chls in

Synechocystis deviate from those in Synechococcus (Zazu-

bovich et al., 2002; Frese et al., 2002), hole-burning studies

indicate that the dimers responsible for the redmost

absorption in these two species are probably structurally

equivalent (Zazubovich et al., 2002). Thus, the absence of

electrochromic shift signal at wavelengths .700 nm (Fig.

1 C) argues against assigning A38-A39 as redmost Chls.

Spectral properties of A38-A39 are of special importance as

they are positioned close to the connecting Chl (A40) and

may facilitate fast excitation energy transfer from the antenna

to P700 (Jordan et al., 2001).

In conclusion, the high effective (local) dielectric constant

around electron transfer cofactor A1 in PS I reported in this

work, along with the previously measured high effective

dielectric constant along the active electron transfer branch

FIGURE 5 The structure of the RC in PS I. Large spheres represent water

molecules within 10 Å of the electron transfer chain.
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in bacterial RC (Steffen et al., 1994), indicate that protein

reorganization leading to effective charge screening is

a necessary structural property of a protein and facilitates

effective charge transfer. The electric field of an electron

on A1 also serves as an effective probe of optical properties

of nearby pigments, which are not otherwise accessible in

conventional absorption experiments due to spectral con-

gestion. The measured electrochromic shift signal implies

that the Chls A38 and A39 are not the redmost pigments in

PS I. The data presented in this work may serve as an

important constraint for improving the accuracy of existing

and future models of the energy and electron transfer process

in this important protein.
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van Zanvoort, M. A. M. J., D. Wróbel, P. Lettinga, G. van Ginkel, and Y. K.
Levine. 1995. The orientation of the transition dipole moments of
chlorophyll a and pheophytin a in their molecular frame. Photochem.
Photobiol. 62:299–308.

Varadarajan, R., T. E. Zewert, H. B. Gray, and S. G. Boxer. 1989. Effects
of buried ionizable amino acids on the reduction potential of recombinant
myoglobin. Science. 243:69–72.

Weiss, C. J. 1972. The pi electron structure and absorption spectra of
chlorophylls in solution. J. Mol. Spectrosc. 44:37–80.

White, N. T. H., G. S. Beddard, R. G. Thorne, T. M. Feehan, T. E. Keyes,
and P. Heathcote. 1996. Primary charge separation and energy transfer in
the photosystem I reaction center of higher plants. J. Phys. Chem.
100:12086–12099.

Witt, H., E. Schlodder, C. Teutloff, J. Niklas, E. Bordignon, D. Carbonera,
S. Kohler, A. Labahn, and W. Lubitz. 2002. Hydrogen bonding to P700:
site-directed mutagenesis of threonine A739 of photosystem I in
Chlamidomonas reinhardtii. Biochemistry. 41:8557–8569.

Woodbury, N., and J. P. Allen. 1995. The pathway, kinetics and
thermodynamics of electron transfer in wild type and mutant reaction
centers of purple nonsulfur bacteria. In Anoxygenic Photosynthetic
Bacteria. R. E. Blankenship, M. T. Madigan, and C. E. Bauer, editors.
Kluwer, Dordrecht, The Netherlands. 527–557.

Zazubovich, V., S. Matsuzaki, T. W. Johnson, J. M. Hayes, P. R. Chitnis,
and G. J. Small. 2002. Red antenna states of photosystem I from
cyanobacterium Synechococcus elongatus: a spectral hole burning study.
Chem. Phys. 275:47–59.

Zinth, W., and W. Kaiser. 1993. Time-resolved spectroscopy of the primary
electron transfer in reaction centers of Rhodobacter sphaeroides and
Rhodopseudomonas viridis. In The Photosynthetic Reaction Center.
J. Deisenhofer and J. Norris, editors. Academic Press, London, UK. 71.

3130 Dashdorj et al.

Biophysical Journal 86(5) 3121–3130


