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Effect of Interacting Resonances on Dielectronic Recombination in Static Fields
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We find that the static field enhancement of dielectronic recombination may be strongly reduced b
the interaction between resonances through common continua. The interaction effect is not limit
to a few resonances but extends over wholen manifolds, thus it can significantly reduce the field
enhancement of the total recombination rate. The standard lowest order theory is recast using
complex Hamiltonian to include higher order terms usually identified with interaction through common
continua. We present calculations for C31 and Si111 using both time independent and time dependent
configuration average methods. [S0031-9007(98)05346-0]
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The recombination of an electron with an ion throug
the emission of a photon is an important process in ma
types of plasmas. This basic phenomenon has been
plored experimentally and theoretically for many years [1
The majority of calculations concerning photorecombina
tion utilize second order perturbation theory. The direc
capture of an electron from the continuum (radiative re
combination—RR) is described in first order. Capture int
a resonance state with subsequent stabilization through
emission of a photon (dielectronic recombination—DR
is a second order effect which is often a larger contribu
tion to the recombination cross section. The resonan
state is defined as an eigenstate of the atomic ion Ham
tonian, which for multielectron systems involves the inclu
sion of configuration interaction. The higher order term
in photorecombination are usually neglected; for exam
ple, calculations usually ignore the interaction between tw
resonances through a common continuum as well as the
terference between the direct (RR) and indirect (DR) path

There are several circumstances that make this a ve
good approximation for most practical applications. Firs
the resonances are usually too sharp in energy to
resolved, so the measurements probe the energy integra
cross section. Also, experiments usually probe total cro
sections with a sum over many possible final state
and many different incoming directions for the electron
very few measurements exist for photorecombination
a particular final state with the polarization of the photo
and the angle between the photon and the incident elect
measured. Finally, this is a good approximation for th
total DR cross section because the interaction throug
common continua is usually weak, so the resonances ne
to be closely spaced in energy to be affected; usually, t
direct configuration interaction keeps the resonance sta
too far apart for interaction through the continuum to b
important. Despite considerable theoretical effort [2–10
no one has yet found an uncontested case where the t
DR cross section changes by more than a few perce
when including interactions through the continuum. I
this paper, however, we find that the total DR cros
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section in static fields is strongly affected by thes
interactions.

Static fields can greatly increase the DR cross sectio
integrated over manyn manifolds [11–18]. This increase
arises because the electron is captured by the ion in
low-, state where the autoionization rate is much large
than the radiative decay rate; in static fields, the electro
precesses out of the low-, states into high-, states where
the radiative rate is larger than the autoionization rate th
increasing the photonemission probability. As we show
the effect of interaction through common continua can b
substantial. This situation arises because most laborato
fields are very small compared to atomic interactions
Even weak fields can thoroughly mix the states of ann
manifold due to the near degeneracy of the energy leve
However, the resulting eigenstates are closely spaced
energy thus opening the possibility of further mixing by
interaction through common continua. This interactio
serves to reduce the level of mixing from the fields an
thus reduce the DR cross section.

There are several important consequences of this redu
tion in the DR cross section. For example, in calculation
without interaction through the continuum, the DR cros
section increases with field strength to a saturation valu
because increasing the field strength cannot mix the sta
further once they become completely mixed. With thi
interaction, the saturation value is reached at much larg
field strengths since this interaction reduces the mixin
In the cases where the field strength is not known, this c
cumstance can strongly affect the estimated field streng
in an experiment.

For ions in static fields, projection operator theory
[19,20] provides the most efficient formulation. The
solution C of Schrödinger’s equation may be written as
three coupled equations:

sE 2 PH0PdPC ­ PH0QQC , (1)

sE 2 QH0QdQC ­ QH0PPC 1 QDRRC , (2)

sE 2 RH0RdRC ­ RDQQC , (3)
© 1998 The American Physical Society
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where the total HamiltonianH ­ H0 1 D and the pro-
jection operatorsP 1 Q 1 R ­ 1. The HamiltonianH0
represents electrostatic interactions in the atom and ele
tron interactions with external fields,D is the electron
interaction with the radiation field,P projects onto states
of N bound electrons, one continuum electron, and n
photons,Q projects onto doubly excited states ofN 1 1
bound electrons and no photons, andR projects onto the
ground and singly excited states ofN 1 1 bound elec-
trons and one photon. In Eqs. (1) and (3), we hav
ignored the coupling between two continuum channe
through the radiation field. We may formally solve
Eq. (2) usingC ­ Pc

1
0 1 L to find

sE 2 H̃dQL ­ QH0Pjc1
0 l , (4)

where the complex HamiltoniañH is given by

H̃ ­ QH0Q 1 QH0PsE 2 PH0Pd21PH0Q

1 QDRsE 2 RH0Rd21RDQ , (5)

and jc
1
0 l is the homogeneous solution of Eq. (1). The

matrix element for DR is given by

M ­ kx jRDQjQLl , (6)

where jxl is a homogeneous solution of Eq. (3). Com
bining Eqs. (4) and (6) yields

M ­ kxjRDQsE 2 H̃d21QH0Pjc1
0 l . (7)

This is the main working equation of this paper.jMj2 is
directly proportional to a DR cross section which include
provision for interacting resonance structures.

The complex HamiltonianH̃ of Eq. (5) may be ana-
lyzed in a basis of statesjfal which are homogeneous
solutions of Eq. (2). In the pole approximation

kfajH̃jfbl ; H̃ab ­ Eadab 2
i
2

sGa
ab 1 Gr

abd , (8)

whereEa is the real energy of statejfal and

Ga
ab ­

4
k

kfajQH0Pjc1
0 l kc1

0 jPH0Qjfbl (9)

is a generalization of the autoionization rate and

Gr
ab ­ 2pkfajQDRjxl kxjRDQjfbl (10)

is a generalization of the radiative decay rate. The dia
onal elements ofGa

ab and G
r
ab are the usual autoioniza-

tion and radiative rates in atomic units. In these formula
k is the linear momentum of the Auger electron, contin
uum normalization is chosen as 1 times a sine functio
D ­

p
2v3y3pc3

P
i $ri is the dipole radiation field inter-

action, v is the frequency of the emitted radiation, and
c is the speed of light. The isolated resonance approx
mation neglects interaction through the continua by usin
G

a
ab ­ Ga

adab andG
r
ab ­ Gr

adab. This approximation
becomes problematic whenGa

ab 1 G
r
ab $ jEa 2 Ebj.

The DR cross section to go from channeli to statef
may be written as

s
f√i
DR ­

8p2

k3
i

Ç X
ab

DfafsE 2 H̃d21gabVbi

Ç2
, (11)
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where Dfa ­ kxf jRDQjfal and Vbi ­
kfbjQH0Pjc

1
0,il. This equation is formally equiva-

lent to that derived in Ref. [14] and used in Ref. [6],
but is in a form more amenable for investigating energ
averaged cross sections. Equation (11) is somewh
awkward in practical applications since often energy reso
lutions aremuchlarger than the widths of the resonances
The matrix H̃ab is complex symmetric so we can use
its eigenvectors and values to simplify the expression
Eq. (11). UsingX

b

H̃abUbr ­ UarẼr and
X
b

UbrUbr 0 ­ drr0 ,

(12)
Eq. (11) may be written as

s
f√i
DR ­

8p2

k3
i

Ç X
r

DfrsE 2 Ẽrd21Vri

Ç2
, (13)

where Dfr ­
P

b DfbUbr and Vri ­
P

b VbiUbr . If
the cross section is convolved with a weight function
W sE, E0d that has an energy width much greater than th
imaginary parts of̃Er then

ksf√i
DR l sE0d ­

Z
s

f√i
DR sEdW sE, E0d dE

.
16p3i

k3
i

X
rr0

DfrVriD
p
fr0V p

r0i (14)

3 W s1
2 RefẼr 1 Ẽr0g, E0dysẼp

r0 2 Ẽrd .

We have examined the effect of interacting resonance
using a configuration average type approximation tha
simplifies the atomic structure but preserves the effe
from the fields and the interaction through the continuum
In this approximation, the core angular momenta ar
ignored and thea states are simply labeled byn,m of the
Rydberg electron. The Rydberg orbital is generated from
the configuration-average Hartree-Fock equations with th
core orbitals frozen. The mass-velocity term is include
through first order perturbation theory. Finally, we ignore
the zero fieldinteraction through the continuum since this
has little effect on the cross section. For the system
considered below, the fields are too weak to mix state
from different n manifolds so the interaction of states
through the fields is incorporated by diagonalizing within
eachn manifold separately.

In terms of the Rydberg orbitaljn,ml of each doubly
excited configuration, the complex Hamiltonian is approxi
mately given by

kn,0m0jH̃jn,ml ­

µ
En, 2

i
2

Gn,

∂
d,0m0,,m

1 kn,0m0jHfieldjn,ml , (15)

whereEn, is the configuration-average energy andGn, is
the sum of the configuration-average autoionization an
radiative rates. The external field Hamiltonian is given
by Hfield ­ F ? z when B ­ 0 and Hfield ­ F ? x 1

B ? Lz in the crossed field configuration. TheB ­ 0
Hamiltonian conservesm, thus the diagonalization for each
1403
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TABLE I. Total DR cross section in perpendicular electric and magnetic fields integrated over an energy range including all
of the n ­ 25 38 manifolds for C31. The sr (sc) are cross sections obtained by ignoring (including) interaction through t
continuum.

B ­ 0 G B ­ 30 G

F sVycmd sr sMb eVd sc sMb eVd sr sMb eVd sc sMb eVd
0 0.50 0.50 0.50 0.50
2 2.18 1.05 2.96 1.06
4 2.21 1.43 3.51 1.60
6 2.22 1.65 3.54 1.97
8 2.23 1.79 3.44 2.21

10 2.24 1.88 3.29 2.32
15 2.25 2.02 2.97 2.41
20 2.26 2.09 2.79 2.41
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m is performed separately. The crossed field Hamilton
commutes with thez-inversion operator,z °! 2z, thus
the diagonalization for states with, 1 m ­ even and
, 1 m ­ odd are performed separately.

Within these approximations, the total DR rates in
grated over energy for a particularn manifold can be ob-
tained from Eq. (13) in the form

ksn,TOT
DR l ­

2p2i

k2
i

X
rr0

Ga
rr0Gr

rr0ysẼp
r0 2 Ẽrd (16)

with the generalized rates defined as

G
a,r
rr0 ­

X
,m

G
a,r
n, Un,m,rUn,m,r0 . (17)

The effects of interacting resonances are examined
contributions to the DR cross section from all of the sta
from then ­ 25 38 manifolds. Calculations have bee
performed for DR in the Li-like ions C31 and Si111. The
results of these calculations are presented in Tables I
II; the cross sections are integrated over an energy ra
covering then ­ 25 38 manifolds. Thesr is from a
calculation using the isolated resonance approximat
(i.e., ignoring interaction through the continuum) and t
sc is from a calculation using the complex Hamiltonia
(i.e., including the interaction through the continuum).
Figs. 1 and 2, these integrated cross sections are prese
in graphical form. Notice that the cross section summ
over 14 000 states can dramatically depend on whethe
not the higher order terms are included in the calculatio
of the DR cross section. As can be seen from th
tables and figures, the effect of the interaction throu
TABLE II. Same as Table I but for Si111.

B ­ 0 G B ­ 300 G

F sVycmd sr sMb eVd sc sMb eVd sr sMb eVd sc sMb eVd
0 1.25 1.25 1.25 1.25

10 1.51 1.39 1.80 1.42
20 1.95 1.64 2.37 1.69
30 2.31 1.89 2.90 1.97
40 2.57 2.12 3.37 2.26
50 2.77 2.31 3.76 2.53
75 3.09 2.67 4.45 3.11

100 3.27 2.90 4.84 3.56
150 3.46 3.18 5.15 4.12
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the continuum is to reduce the energy integrated cro
section. The largest effect is at the smallest fields; a
the fields increase, the states become spread by a lar
amount and thus become less susceptible to interacti
through continua. The reduction is larger forB fi 0 since
the density of states is larger; however, the cross secti
is still enhanced forB fi 0. The structure of the core
increases the separation of the Rydberg states in ze
field; thus the interaction through the continuum will be
somewhat less when the configuration approximation
lifted, but we still expect a sizable effect.

We suggest the following qualitative explanation for the
effects seen in these calculations. In the isolated res
nances approximation, the states are mixed by the fie
to the extent that the field can overcome the differenc
in energy from the change in quantum defect with,. By
adding a complex term to the Hamiltonian, Eq. (5), the
states become further separated in the complex ener
plane and thus are less mixed for a given field strengt
This effect can be seen in a simple two state case. Su
pose two states have exactly the same real energy b
wildly different decay rates. If a small coupling be-
tween the states is introduced, the isolated resonance
proximation gives two states that are equal mixtures o
the two original states and thus each of the eigenstat
decays with a rate equal to the average of the rates of t
unmixed states. Using interacting resonance theory, th
mixing between the states becomes appreciable only wh
the coupling matrix element becomes comparable to th
difference in decay rates.
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FIG. 1. Plot of the numbers in Table I. The dotted lines wit
squares (B ­ 0) and triangles (B ­ 30 G) are the isolated reso-
nance approximation results, while the solid lines with asteris
(B ­ 0) and diamonds (B ­ 30 G) include the interaction
through the continuum.

The time independent implementation of this theor
rests on the ability to diagonalize complex symmetr
matrices. For ions in static electric fields the matrices a
moderately large. The number of states that participa
in H̃ becomes so large in crossed electric and magne
fields that even present day supercomputers are pushe
the limit [21]. For this reason, we have developed a tim
dependent method that offers interesting possibilities. W
note that the time dependent function

Dfistd ­
X
r

Dfre2iẼrtVri ­
X
ab

Dfase2iH̃tdabVbi

(18)
can be obtained without diagonalizing̃H. The integral of
the absolute value squared equalsZ `

0
jDfistdj2dt ­ i

X
rr0

DfrVriD
p
fr0 V p

r0iysẼp
r0 2 Ẽrd ,

(19)
which should be compared with Eq. (14). This metho

FIG. 2. Plot of the numbers in Table II. The dotted lines wit
squares (B ­ 0) and triangles (B ­ 300 G) are the isolated
resonance approximation results, while the solid lines wi
asterisks (B ­ 0) and diamonds (B ­ 300 G) include the
interaction through the continuum.
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allows the utilization of parallel computers in the calcu-
lation of DR rates in crossed electric and magnetic field
becauseDfistd can be obtained using standard time prop
agation techniques. This time dependent method has be
tested on the simple systems above and gives very acc
rate results.

In conclusion, we have shown that DR cross section
in static fields are strongly affected by interactions
between resonances through a common continuum
The interacting resonance effect extends over a larg
number of n manifolds and significantly changes the
total recombination rate in certain temperature an
field ranges. Field enhanced DR cross section ca
culated in a configuration average approximation ar
substantially reduced when going from the real Hamil
tonian formulation of isolated resonance theory to
the complex Hamiltonian formulation of interacting
resonance theory. We expect that future field enhanc
DR cross sections in a full intermediate coupling ap
proximation will also be affected by interactions between
resonances.
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