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We predict the existence of a universal class of ultralong-range Rydberg molecular states whose
vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical origin of
these exotic molecules, accurately predicts their properties, and reveals features of ultralong-range Rydberg
molecules and heavy Rydberg states with a surprisingly small Rydberg constant. The latter is determined
by the small effective charge of the dressed anion, which outweighs the contribution of the molecule’s large
reduced mass. This renders these molecules the only known few-body systems to have a Rydberg constant
smaller than R∞=2.
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The richness of Rydberg physics is highlighted by two
exotic molecular systems which have attracted recent
interest: ultralong-range Rydberg molecules (ULRM)
and heavy Rydberg states (HRS). The ULRM is a fragile
dimer with a bond length ∼100 nanometers. This gargan-
tuan molecule consists of a neutral perturber atom (B)
bound to a highly excited Rydberg atom (A�) [1–4]. The
experimental observation of ULRMs [5–7] has led to their
use in many diverse applications, e.g., as probes of charge-
neutral interactions [8–13] or as impurities embedded in a
many-body bath [14–24]. ULRMs exist because the
Rydberg electron accumulates an appreciable phase shift
as it scatters off of the perturber, which in turn produces an
energy shift proportional to the S-wave scattering length
[25,26]. This binds the “trilobite” molecule, A�B, together
[27–29]. If the electron-perturber (e − B) complex pos-
sesses a P-wave shape resonance, a second, more deeply
bound, “butterfly” ULRM forms [30–32].
HRS (also called ion pairs or heavy Bohr atoms) are the

direct molecular analogs of a Rydberg atom [33–37]. An
atomic anion replaces the Rydberg electron, creating a
vibrational Rydberg state AþB−. The properties of these
molecules obey typical Rydberg formulae, but with the
electron’s mass replaced by the dimer’s heavy reduced
mass. Typically the excitation of pairs of ground state
atoms to HRS is difficult due to weak Franck-Condon
factors and electronic transition-dipole moments [36,38].

Recent proposals exploit ULRMs, with similar bond
lengths as HRS, to avoid these challenges [39,40]. In the
vicinity of the perturber, the electronic wave function of the
butterfly molecule and the metastable excited P anion have
the same symmetry [9]. The electron can thus be transferred
from the Rydberg state into the bound S anion state via a
dipole-allowed transition, which also supplies the required
energy to match the electron affinity and allow the reaction
A�B → AþB− to occur.
However, the exotic systems of ULRMs and HRS exist

typically in well separated energy intervals. In this Letter,
we predict a class of highly excited molecular states which
realize properties of HRS on the electronic energy scale of
ULRMs, thus combining both concepts. The inclusion of
higher partial waves (L ≥ 2) in the e − B interaction yields
a hierarchy of “truncated Coulomb” potential energy
curves (PECs) governing the vibrational motion associated
with every degenerate electronic Rydberg manifold,
labeled by n. Each level in the infinite electronic
Rydberg series becomes the dissociation threshold for
a set of trimmed heavy Rydberg series, or THRS
[see Fig. 1(c)]. The tHRS possess only a finite number
of vibrational states since the “truncated Coulomb” PECs
vanish once the perturber resides outside the Rydberg
electron’s orbit. The THRS preserve the basic attributes
of ULRMs; in particular, the perturbed electronic wave
function fills the entire Rydberg volume, while in HRS the
electron binds to the perturber. To address the physical
origin of the THRS, we map the ULRM system, A�B
[upper panel of Fig. 1(d)] onto an effective ion pair, AþBQ

[lower panel of Fig. 1(d)] where the perturber is dressed by
a fractional charge Q.
The dressed ion-pair model reveals that the perturber-

induced localization of the electron yields an effective
negative charge which is virtually independent of the
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internuclear distance R, leading thus to Coulomb-like
molecular PECs. This property arises due to the linear
energy dependence of the electron-perturber phase shifts
for L ≥ 2 which is universally satisfied for any type of
polarizable perturber at low energies. Additionally, the
magnitude of the fractional charge counterbalances the
heavy mass of the THRS and leads to a Rydberg constant
which is significantly smaller than R∞=2, the Rydberg
constant of positronium, the lightest ion pair.
We compute the ULRM PECs including L ≥ 2 phase

shifts by employing the generalized local frame trans-
formation (GLFT) approach [41]. This framework requires
as input only a set of atomic quantum defects μl and
scattering phase shifts δL with l (LÞ indicating the elec-
tron’s angular momentum relative to Aþ (B). The generic
scope of the GLFT approach permits us to include the
effect of higher partial wave e − B scattering, avoiding the
limitations of the Fermi-Omont pseudopotential or Green’s
function methods [3,25,26,42–46]. The triplet e − B
scattering phase shifts are obtained from a nonrelativistic
two-electron R-matrix code [47,48]. We consider Rb atoms
and use atomic units unless otherwise specified. To
emphasize the universal aspects of the THRS, we neglect
the nuclear and electronic spin degrees-of-freedom, ignore
spin-orbit and hyperfine structure effects, and use only the

triplet e − B phase shifts. Such a scenario is realizable in a
spin-stretched experiment. M, the projection of L onto the
internuclear axis R, is a good quantum number and defines
the molecular symmetry.
Figure 1(a) shows the Σ (M ¼ 0) Rb2 PECs relative to

the n ¼ 30 Rydberg manifold including L ≤ 3 partial
waves. The blue curves depict the trilobite PEC
(S-wave scattering), the butterfly PEC (P wave), as well
as a new series of L ≥ 2 PECs which complete the ULRM
“family”: the “dragonfly” PEC (D wave), “firefly” PEC
(F wave), and so on. As L increases the PECs condense
into the ion-atom potential−α=2R4 (gray curve), where α is
the atomic polarizability. Exemplary electronic wave func-
tions with the perturber placed at R ¼ 200a0 are displayed
in Fig. 1(b). Near the perturber they manifest the dominant
spherical symmetry of the e − B interaction since the
Coulomb field is negligible. Thus, L is approximately a
good quantum number for labeling these states. These
molecules exhibit dipole moments in the hundreds of
debye, similar to the trilobite and butterfly molecules
(see the Supplemental Material [49]).
Unlike the trilobite and butterfly PECs, the L ≥ 2 PECs

are, to a good approximation, Coulombic. This is particu-
larly evident for molecular states having higher M values,
since the oscillatory fringes in the PECs vanish for

FIG. 1. (a) ΣRb2 Rydberg molecule PECs (blue) relative to the n ¼ 30 manifold. The smooth orange curves overlaid are the results of
the model, Eq. (2), and the ion-atom polarization potential is shown in gray. (b) Electronic wave functions ΨΣðz; ρÞ in cylindrical
coordinates are depicted for the family of L ≥ 2 states. The left column shows ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΨΣðz; ρÞj
p

for z ∈ ½−2000; 2000� and
ρ ∈ ½−2000; 2000�. The right column shows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΨΣðz; ρÞj
p

for z ∈ ½−250; 300� and ρ ∈ ½−250; 250�. The blue (orange) dot indicates
the position of the Rydberg core (perturber). (c) A schematic of the vibrational Rydberg series. The electron-ion potential (gray) supports
the bound states of the Rydberg atom (I). Each electronic Rydberg manifold labeled n, nþ 1;… (blue dashed lines) is the threshold for
theM ¼ 2D-wave PEC (black). This PEC supports a nuclear Rydberg series (orange dotted lines) of dressed ion-pair states (II) labeled
v − 1, v;…. (d) Two pictures of a ULRM: on top, the typical picture, where the Rydberg electron (red) scatters from the perturber
(orange) and forms a trilobitelike wave function (black contour). On the bottom, the dressed ion-pair picture, wherein the Rydberg wave
function is neglected and the relevant quantity is the electron’s charge distribution (red) around the perturber, forming a dressed anion.

PHYSICAL REVIEW LETTERS 125, 123401 (2020)

123401-2



increasing M. For example, Fig. 1(c) schematically depicts
in black theΔ (M ¼ 2) dragonfly PECs, which dissociate at
each electronic Rydberg n manifold (blue dotted lines).
The dressed ion-pair model captures intuitively the

emergence of the Coulombic character in the L ≥ 2
PECs, simultaneously illustrating why the S- and P-wave
PECs are so different. The standard depiction of an ULRM,
for example a trilobite, is depicted in the upper panel of
Fig. 1(d). The perturber mixes the degenerate Rydberg states
to form the trilobite wave function, plotted as a contour. The
nodal pattern of this electronic wave function is linked to the
oscillatory fringes of the S-wave PEC [see Fig. 1(a)].
Starting out tabula rasa, in the bottom panel of Fig. 1(d)
the ULRM is viewed as an effective ion pair where the
perturber is dressed by a charge distribution [red sphere in
Fig. 1(d)] forming an anion of fractional charge. This
perspective ignores the total trilobite wave function except
for the charge distribution localized by the e − B interaction.
The effective charge is obtained by calculating the

difference in electronic probability accumulated in the
vicinity of the perturber with and without its presence.
The resulting integral is evaluated in terms of the phase
shift δLðkÞ at a given electronic scattering kinetic energy
½knðRÞ�2=2 ¼ 1=R − 1=2n2. The charge distribution at the
perturber is

hQLðRÞin ¼ −
ðdνdEÞ−1
πknðRÞ

dδLðκÞ
dκ

�
�
�
�
κ¼knðRÞ

; ð1Þ

where ν is related to the electronic energy E via
E ¼ −1=2ν2. The presence of the Rydberg electron’s
density of states dν=dE arises from the quantization of
the e − B scattering continuum by the Coulomb field of A�
(for details see [49]). The charge in Eq. (1) is proportional
to the time delay of the e − B subsystem, which leads to a
transparent interpretation [51]. A large and positive time
delay implies that the electron slows down near the
perturber, which consequently appears to be dressed with
a negative charge. A negative time delay has the opposite
consequence: the electron spends less time near the
perturber than elsewhere, dressing it with a positive charge.
The dressed anion and the positively charged Rydberg

core interact via a Coulomb force, FLðRÞ ¼ hQLðRÞin=R2,
yielding a potential energy VLðRÞ relative to the nth
manifold,

VLðRÞ ¼
1

2n2
−

1

2ðn − δL½knðRÞ�=πÞ2
; for R ≤ Rc; ð2Þ

where VLðR > RcÞ ¼ 0 for a perturber located outside the
electron’s orbit (Rc ¼ 2n2). Note that Eq. (2) was also
obtained via different methods in Ref. [52], which empha-
sized its similarities with the Rydberg formula. This high-
lights that the phase shifts play the role of molecular
quantum defects [53]. Due to the semiclassical nature of the

dressed ion-pair model, Eq. (2) captures only the shape of
the molecular PECs [see orange lines in Fig. 1(a)].
The effective charge in Eq. (1) elucidates the emergence

of Coulombic molecular PECs. For a generic phase shift
δL, as for S or P partial waves, the charge fluctuates
dramatically as R changes, yielding non-Coulombic
PECs. However, at low-energies and for L ≥ 2, only the
centrifugal barrier and the tail of the polarization potential
contribute to the phase shifts, imparting on them a universal
linear energy dependence. Namely, within the Born
approximation (BA), the L ≥ 2 phase shift is

δL ≈ πᾱLk2; ᾱL ¼ α

ð4L2 − 1Þð2Lþ 3Þ . ð3Þ

We confirmed that this closely matches the calculated phase
shifts for the alkali atoms (see [49]). The linear energy
dependence yields an effective charge virtually independent
of R which imprints the Coulombic character onto the
corresponding PECs. Indeed, substituting the BA phase
shifts in Eq. (2) and expanding it in powers of n−1 yields the
corresponding Coulomb potential and additional higher
order terms,

ULðRÞ ¼ −
α

2R4
þ ᾱL

n5
−
2ᾱL
n3R

−
6ᾱ2L
n4R2

þ;…; ð4Þ

where in ULðRÞ the ion-atom polarization potential
−α=2R4 is added. The prefactor of the Coulomb term
matches Eq. (1) in the large n limit where ν → n, i.e.,
hQLðRÞni ¼ −2ᾱL=n3, and for Rb the L ¼ 2 fractional
charge is ∼ − 6.08=n3. Considering only the dominant
Coulomb and constant terms in Eq. (4) results in a nuclear
vibrational spectrum which obeys a Rydberg formula EnL

vJ
with a redefined Rydberg constant RnL

0,

EnL
vJ ¼ ᾱL

n5
−

R0
nL

ðv − ηJÞ2
; R0

nL ¼ 2mABᾱ
2
L

n6
: ð5Þ

mAB is the reduced mass of the molecule and J is the
nuclear angular momentum. The constant energy shift,
ᾱL=n5, included in this formula is consistent with the
truncation of the Rydberg series to a finite number of
states by the vanishing of ULðRÞ at the classical turning
point. The maximum number of states is given by
vmax ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ᾱLmAB=n
p

. The nuclear quantum defect ηJ
accounts for the effects of the non-Coulombic terms in
Eq. (4) as well as the complicated molecular potential
energy curves at short internuclear distances, R < 30 a0.
The nuclear defects ηJ are system dependent and their
evaluation is beyond the scope of this study.
Figure 2 shows the family of L ≥ 2 PECs relative to the

n ¼ 30 manifold for (a) Σ (M ¼ 0) and (b) Δ (M ¼ 2)
molecular symmetry, where for simplicity we use the BA
phase shifts and set μl ¼ 0. In both panels the PECs
within the dressed ion-pair model (orange) condense to
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the atom-ion potential (gray) as L → ∞. As seen in
butterfly ULRMs, the PEC oscillations disappear with
increasing M [30,31,54]. Figure 2(b) shows the smooth
Δ PECs: the results of the GLFT method (blue) are in
excellent agreement with the dressed ion-pair model
(orange).
In general, the calculations of GLFT theory for

L ≤ 1 match those obtained by the Green’s function
method [44–46] and Omont’s pseudopotential (see [49]
for details). Note that these methods share a crucial
approximation: the phase shifts are fully accumulated at
the perturber, and thus the polarization potential is replaced
with a zero-range e − B interaction. The validity of this
approximation breaks down near the classical turning point
where the e − B momentum vanishes, yielding divergent
scattering volumes − tan δLðkÞ=k2Lþ1 for L ≥ 1 [53]. This
low-energy unphysical behavior could invalidate the
molecular PECs, especially for L ≥ 2. Therefore, the
L ≥ 2 PECs were numerically calculated by diagonali-
zing a divergence-free, soft-core polarization potential
Ve−BðrÞ ¼ −ðα=2Þðβ4 þ jr −Rj4Þ−1, thus avoiding the
use of the phase shifts altogether. In Fig. 2 the soft-core
results (green squares) match the GLFT results (orange
curves) for all R < Rc, beyond which the GLFT, and in fact
all methods using phase shifts as external input,
break down.
Figure 3 confirms the Rydberg character of the vibra-

tional spectrum of the adiabatic Born-Oppenheimer
dragonfly PECs, which we focus on as they are the deepest

of the L ≥ 2 PECs. Here, we remove any approximations
on the phase shifts and use the exact, rather than the BA, δL.
We show results for fixed nuclear rotational quantum
number J ¼ 0. The spectra, εnLvJ , are obtained numerically
using a hard wall at R ¼ 30a0 which mimics the short-
range physics. Here, a more detailed theoretical description
of the latter would only result in modified quantum defects
ηJ, maintaining the Rydberg characteristics of the εnLvJ .
Across several n manifolds, Fig. 3(a) shows the effective

nuclear quantum number V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R0
nL=ðᾱL=n5 − εnLvJ Þ

p

(blue
dots) for the Δ dragonfly PECs. The black dashed lines
show the V ¼ v − ηJ, derived from Eq. (5), where we have
fitted ηJ to the numerical data. The evident linear depend-
ence manifests a THRS. For high n manifolds, i.e., n ¼ 70,
the nuclear states for v > 50 yield a Rydberg spectrum;
deviations occur at v < 50 due to the polarization potential.
At low n manifolds, i.e., n ¼ 20, nearly all the nuclear
states form a Rydberg series since the Coulomb-like PEC
dominates the polarization potential due to the relatively
large effective charge. In general, at large v, the quantum
numbers V agree well with the dashed black lines which
correspond to Eq. (5) with a fitted nuclear quantum
defect ηJ.
Figure 3(a) also shows the rescaled difference of suc-

cessive energy levels, Δϵ ¼ j2ðεnLvJ − εnLv−1JÞ=R0
nLj−1=3

(orange circles), which more sensitively probes the
Rydberg character of the series. The linear dependence

FIG. 3. The effective nuclear quantum number V (blue dots)
and the rescaled difference of successive energy levelsΔϵ (orange
circles) for the (a) Δ and (b) Σ “dragonfly” molecular curves at
different n manifolds. The dashed lines correspond to linear fits
of V with unity slope. The insets depict the nuclear wave function
at two different eigenenergies evaluated either numerically
(orange line) or by using fitted Coulomb wave functions (blue
dots). Note that an arbitrary offset is added to Δϵ for illustration
purposes.

FIG. 2. The L ≥ 2 PECs relative to the n ¼ 30 manifold for
(a) Σ and (b) Δ molecular symmetry using the BA phase shifts.
The orange (blue) lines indicate the PECs within the ion-pair
model (GLFT approach). The green squares denote the results of
the numerical perturbation theory for a soft-core polarization
potential. The polarization potential is shown in gray. We have set
μl ¼ 0 for this comparison.
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of Δϵ on v with unity slope indicates that the nuclear
states possess the proper Rydberg energy scaling,
i.e., ΔE ∼ 1=v3.
Figure 3(b) shows the same quantities as in 3(a) for the Σ

“dragonfly” PEC. In Fig. 2(a) the potential wells are too
shallow to support localized bound vibrational states.
Instead, they produce low-amplitude oscillations of V
around the linear fit (black dashed lines) which are seen
faintly on this scale. The Δϵ values show this modulation
more explicitly, highlighting the non-Rydberg nature of the
corresponding spectrum. The insets in Fig. 3 illustrate the
numerical nuclear wave functions (orange lines) at two
different eigenenergies; the blue dots denote fits to the
Coulomb wave functions. Evidently, in Fig. 3(a) the
numerical and the fitted wavefunctions are in excellent
agreement. In panel (b), deviations in the outermost lobes
are observed due to the wells in the Σ PEC, but the overall
nodal pattern of the wave functions is determined by the
dominant energy scale of the Coulomb-like potential.
The laboratory excitation of THRS will be similar to that

of trilobitelike ULRMs, requiring three-photon excitation
via admixture of the nf quantum defect state of Rb or by
using other, more favorable, quantum defect states in other
atoms [6,48,55]. The nuclear quantum defects can be
extracted by scanning the appropriate energy range to
obtain a spectrum which can be fit to the Rydberg formula.
The short-range physics at R < 30a0, where molecular ion
formation and other ultracold chemistry can occur, is
beyond the scope of the present work, but it will affect
the size of the nuclear quantum defects and, more
importantly, the lifetime of the Rydberg states [16].
A firm upper limit on the lifetime is set by the unperturbed
Rydberg atom’s lifetime, which depends on ðn; lÞ quantum
numbers and for the n values considered in typical
experiments can range from 1 − 100 μs. However, as in
the HRS, the lifetimes will likely be substantially reduced
by nuclear decay channels to ∼1–100 ns. These lifetimes
increase with both v and J; J could be increased by
applying a very weak electric field to create pendular
states [56].
In summary, we have identified new vibrational states in

ultralong-range molecules which form a trimmed heavy
Rydberg series with very small Rydberg constant.
The GLFT method for ULRM method enables us to
accurately determine the highly excited underlying
Coulomb-like PECs that stem from the electron’s inter-
action with with the perturber. Although we focused on
these new attributes, the effects of higher partial waves may
contribute to more accurate theoretical spectra to compare
with ongoing experimental efforts [8,9,11,42,48]. Finally,
because of the generic character of the presented binding
mechanism, we expect that similar trimmed Rydberg series,
as described and analyzed here in the context of ULRMs,
could occur in any system containing a Rydberg atom and a
polarizable perturber, e.g., atoms with more complex

structure, multiple atoms, excitons, or even large com-
pounds like fullerines or nanodroplets.
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