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Population transfer in Hamiltonian systems, such as between Rydberg states of atoms and vibrational modes
in diatomic molecules, has been both experimentally and theoretically demonstrated. All these systems have
the property that the classical frequency of the motion changes monotonically with energy. Referred to as the
twist condition, this property makes it possible to transfer population both by chirping a driving field within a
ladder climbing scheme and by adiabatically chirping through a multiphoton resonance connecting two bound
states. In this paper, we demonstrate that the latter method for population transfer can still be made to work in
a system which violates the classical twist condition. We use classical rigid rotor as an example system where
the frequency changes monotonically with energy and compare the responsible separatrix crossing mechanism
in phase space to that in a system which exhibits an extremum in the frequency-energy profile. We perform both
one-dimensional classical and quantum simulations and find that the quantum phase-space distribution mirrors
its corresponding classical counterpart.
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I. INTRODUCTION

As an indispensable tool in manipulation of atomic and
molecular systems, population transfer between bound states
of atoms and vibrational modes of molecules has received a
lot of attention from both experimental and theoretical fronts.
From the molecular perspective, preparation of advantageous
initial vibrational modes has been important in endeavors
toward molecular imaging using strong laser fields through
high-harmonic generation and electron rescattering [1]. There
are also experimental efforts to use molecules for quantum
computation research by exploiting vibrational-electronic cou-
pling, which requires controlling and manipulating vibrational
modes [2]. Interest in atomic control has also long stemmed
from the same venues as well as more classical problems
especially in Rydberg physics, such as creating Bohr-like wave
packets for precision spectroscopy and studying classical-
quantum correspondence (see Ref. [3] and references therein).

There have been mainly two robust methods for inducing
transitions between excited bound states of such systems: the
most common method is referred to as the “ladder-climbing”
scheme in which a population of initial state is carried through
many single photon transitions by adiabatically chirping a laser
field [4]. Classically, this can be achieved by driving the system
on resonance with the initial ensemble of trajectories in phase
space, creating an island of stability onto which the trajectories
can be loaded. Then by adiabatically chirping the laser
frequency, this island can be dragged around the phase space,
carrying with it the trapped population of classical trajectories
to a desired region in phase space, which may correspond to
a higher excited state. The second method is the multiphoton
adiabatic rapid passage, which works by adiabatically chirping
through a multiphoton resonance between an initial and a final
state. The latter has recently been subject to experimental
and theoretical studies, which demonstrated its effectiveness
in transferring population between Rydberg states in Li
atom using microwaves [5,6] and trains of impulsive kicks
[7]. Furthermore, the same method has been theoretically

demonstrated for inducing efficient multiphoton transitions
between vibrational modes of diatomic molecules [8]. These
studies have revealed that such multiphoton transitions can be
explained by a separatrix crossing mechanism taking place in
classical phase space, in addition to the traditional quantum
Floquet picture.

All of these systems have a common physical characteristic:
They are all closed Hamiltonian systems where the frequency
changes monotonically with energy. Quantum mechanically,
this would correspond to monotonically changing adjacent
energy level spacings with energy. This is commonly referred
to as the classical twist condition, which is very commonly
conformed to among mostly studied Hamiltonian systems (see
Ref. [9] and references therein). In the case of population
transfer using the ladder scheme, the fact that atoms conform
to the twist condition is vital for the method to work. Since
the main idea behind this method is to chirp the driving laser
between the initial and the final states, violation of the twist
condition at some frequency, which needs to be traversed
during the chirping, would mean to reverse the direction of
the chirp. This would take the population back down closer to
the initial state, preventing the ladder climbing scheme from
being useful.

However, what happens in a system violating the twist
condition, a nontwist system, when the multiphoton adiabatic
rapid passage scheme is used is not trivial. In this method,
chirping of the driving laser is not essential for the physical
mechanism taking place in the classical phase space [5].
Rather, chirping here only enhances the efficiency of the
population transfer. The classical phase-space structure of
nontwist maps has been extensively studied in Hamiltonian
systems [10,11], particularly with connection to magnetic
field lines and reconnection [12]. These studies have revealed
that in such systems, phase space is divided into regions
separated by a shearless curve, a curve along which the
twist condition is violated. When such a system is driven
close to the frequency at which the frequency-energy profile
exhibits an extremum, two sets of stable islands are formed
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above and below the shearless curve. As the driving strength
is increased, separatrices associated with these islands may
change topology and go from being heteroclinic (X points)
to homoclinic (O points), resulting in rich and interesting
dynamics in the classical phase space. Whether the previously
studied multiphoton population transfer scheme would work in
such a system to transfer population between classical actions
separated by the shearless curve in phase space is the question
we will investigate in this paper.

Beyond magnetic reconnection, the nontwist condition
may also be induced in atomic Rydberg systems. Younge
et al. have demonstrated that state-dependent shifts in atomic
energy levels can be induced by ponderomotive potentials
experienced by atoms in optical lattices [13]. The direction and
the magnitude of the shifts experienced by the energy levels
strongly depend on the state and result from an aspect ratio
between the size of the atom and the optical lattice period. They
observe a 50-MHz shift for n = 50 state of Rb atom, which
is roughly three orders of magnitude smaller than the energy
spacing between the n levels adjacent to n = 50. Although
this is not a large enough shift to induce an extremum in the
otherwise monotonically changing energy spectrum with n, it
suggests that it may be possible to engineer ponderomotive
potentials that for a very large n could potentially induce a
bound-state structure which violates the twist condition.

The paper is organized as follows: in Sec. II, we study the
classical separatrix crossing mechanism in one-dimensional
rigid rotor in the multiphoton population transfer context,
as an example system conforming to the classical twist
condition. This will serve as a case for comparison when
we investigate a particle in a potential well which violates
the twist condition in Sec. III. In Sec. III, we describe
this system and our one-dimensional classical and quantum
simulations of population transfer in this system. We find
that the multiphoton population transfer scheme can be made
to work to transfer population across the shearless curve
and describe the underlying separatrix crossing mechanism
responsible for the transfer. Our quantum simulations also
reveal that the same classical phase-space mechanism is at
play in quantum phase-space distribution.

We use atomic units throughout the paper unless we
explicitly specify other units.

II. CLASSICAL RIGID ROTOR IN ONE DIMENSION

In this section, we demonstrate the classical separatrix
crossing idea behind the multiphoton adiabatic rapid passage
observed in Rydberg atoms [5–7] using a one-dimensional
rigid rotor. Just as in a Rydberg atom with essentially one active
electron, in a rigid rotor, frequency changes monotonically
with energy. The only difference is that the frequency increases
with energy in a rotor, whereas it decreases with electronic
energy in an atom. This nonmonotonicity of frequency ω can
be expressed as

∂ω(J )

∂J
�= 0, (1)

which is referred to as the twist condition in Hamiltonian
systems. Here J is the classical action and corresponds to
the principal quantum number n in an atom and to angular

momentum L in a rigid rotor. In the latter case, this translates
into energy as E(L) = L2/(2I ), where I is the moment of
inertia, i.e., mR2 with m being the mass and R being the radius
of rotation. We assume the Hamiltonian for a one-dimensional
rigid rotor in the presence of periodic driving to be

H (x,p,t) = p2/2m + F (t)R cos(x), (2)

F (t) = F0 exp[−(t/tW )2] cos(ωt), (3)

where x and p are the usual position and linear momentum
coordinates in one dimension and F (t) is the time dependence
of the periodic driving. The driving field is enveloped inside
a Gaussian with a width of tW and has the amplitude F0. The
corresponding classical force is

Fx = −dV (x,t)

dx
= F (t)R sin(x), (4)

with V (x,t) = F (t)R cos(x) and the period of the classical
motion is T = 2πR/

√
2E/m. In the following simulations,

we assume a rigid rotor with m = 1 a.u. and R = 1 a.u. of
length.

In order to illustrate the classical transition through sepa-
ratrix crossing in a rigid rotor, we solve Hamilton’s equations
using a fourth-order adaptive step-size Runga-Kutta method
as described in detail in Ref. [5] using the Hamiltonian in
Ref. [8]. We assume two different transitions when the rotor
starts with an angular momentum of 12 a.u. and is driven to be
exactly resonant with a 4-photon and a 10-photon resonance,
connecting L = 12 with L = 16 and 22 respectively. The
resulting angular momentum distributions after a pulse of
168 periods of the rigid rotor at full width at half maximum
(FWHM) for three different driving field intensities, is seen in
Fig. 1.

The upper panel in Fig. 1 shows the probabilities P to
find the rotor in L up to 24 for peak driving field intensities
of 2.5 × 1010 W/cm2 (squares), 3.0 × 1010 W/cm2 (circles),
and 4.8 × 1010 W/cm2 (triangles). We have found that for
peak field intensities less than 2.5 × 1010 W/cm2, the rotor
stays in its initial classical state with no change in its angular
momentum or classical action. When the peak field intensity is
increased to 3.0 × 1010 W/cm2, roughly 80% of the population
jumps up to L = 16, remaining ∼20% staying in the initial
state of L = 12. Further increase of the intensity up to 4.8 ×
1010 W/cm2 does not increase the amount transferred into
L = 16 but rather spreads the population over a broad range of
angular momentum, which still peaks at L = 12 with P ∼ 0.2
and L = 16 with P ∼ 0.35.

The lower panel in Fig. 1 depicts the case when the rotor is
driven in resonance with a 10-photon transition which would
take it from L = 12 to L = 22, using the same Gaussian pulse
width as in the upper panel. The peak field intensities of 1.4 ×
1011 W/cm2, 1.8 × 1011 W/cm2, and 3.8 × 1011 W/cm2 are
labeled as the squares, circles, and triangles, respectively. For
field intensities less than 1.4 × 1011 W/cm2 we observe no
transitions into higher angular momenta, whereas we see about
60% transition into L = 22 for 1.8 × 1011 W/cm2 with no
spread over other angular momenta. For the higher intensity
of 3.8 × 1011 W/cm2, the population spreads over angular
momenta, again peaking at the initial L = 12 and the intended
final angular momentum of 22. The higher-order 10-photon

046607-2



MULTIPHOTON POPULATION TRANSFER IN SYSTEMS . . . PHYSICAL REVIEW E 83, 046607 (2011)

transition is harder to achieve at the same level of efficiency
as the 4-photon transition as the jump required in energy is
higher as well as the number of photons that need to absorbed
in the quantum-mechanical picture.

Although this kind of multiphoton transition process can
easily be explained in the quantum-mechanical resonance
picture, Fig. 1 requires a classical process since there are
no classical resonances corresponding to discrete values of
angular momentum, as L is a continuous variable in classical
mechanics. The process which makes this multiphoton tran-
sition classically possible can be explained by investigating
the classical phase space in the standard action-angle (J,θ )
variables, as was done for Rydberg atoms in the past [5,7].
The canonical action-angle variables corresponding to the
Cartesian (x,p) coordinates are (L,θ ), where θ is the angular
position of a rigid rotor, i.e., θ = Rcos(x). For the 10-photon
transition with the peak field intensity of 1.8 × 1011 W/cm2

seen as circles in the lower panel of Fig. 1, the surfaces of
section plots in action-angle variables are seen in Fig. 2. Three
panels from top to bottom are snapshots in time at points in the
rising edge, at the peak, and the falling edge of the Gaussian
field envelope. The dark points show the phase-space positions
of an ensemble of trajectories which start out with a fixed
classical action or angular momentum of 12. In Figs. 2(a)
and 2(c), the field strengths are 1/8 of the peak field strength
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FIG. 1. Final population distribution in a one-dimensional rigid
rotor with an initial angular momentum of L = 12 driven at 4-photon
(upper panel) and 10-photon (lower panel) resonance frequencies.
The 4-photon resonance takes the rotor up to L = 16 and the
10-photon case takes it up to L = 22. In each case, results for three
different peak field intensities are shown, all of which are using a
pulse with a width of 168 periods at FWHM.
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FIG. 2. Classical phase-space structure for the one-dimensional
rigid rotor driven from L = 12 to 22 at the 10-photon resonance with
a peak intensity of I0 = 1.8 × 1011 W/cm2 seen in the lower panel
of Fig. 1. Panels (a) and (c) are snapshots in time during the rising
and falling edges of the Gaussian pulse envelope at intensities 2.26 ×
1010 W/cm2 and the middle panel is at the peak of the pulse. Larger
points mark the phase-space coordinates of the classical trajectories,
initially loaded onto the L = 12 line as seen in (a). As the field
intensity is increased, the island created at the driving frequency
grows larger and eventually touches the L = 12 line, resulting in
transportation of the trajectories on the L = 12 line to above the
island. As the field is decreased back down, substantial fraction of
the population ends up in L = 22 as seen in (c).

corresponding to 1.8 × 1011 W/cm2 peak field intensity. Note
that in Fig. 1(a), the trajectories are still on the L = 12 surface
as an island of stability is formed at the angular momentum
corresponding to the driving frequency, although the driving
is not yet strong enough for the island to become large enough
to touch the L = 12 surface. As the peak intensity is reached
in Fig. 2(b), the island of stability has become large enough,
and some of the trajectories that were initially on the L = 12
surface have moved across the island onto the L = 22 surface
by passing through the separatrix that connects the L surfaces
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above the island with those below it. As the field is ramped
back down such that the field strength is again 1/8 of that at
the peak in Fig. 2(b), the island of stability has shrunk back
to its size in Fig. 2(a), once again isolating the L = 12 and
L = 22 surfaces. Roughly 60% of the population ends up on
the L = 22 surface and the remaining stays on L = 12, as was
seen on the lower panel of Fig. 1.

III. PARTICLE IN ONE-DIMENSIONAL POTENTIAL
WELL: VIOLATION OF THE CLASSICAL TWIST

CONDITION

We now consider a physical system in which the classical
twist condition of Eq. (1) is violated. In such a system, the
classical frequency ω would exhibit an extremum as a function
of classical action since, violation of Eq. (1) would mean
∂ω(J )/∂J = 0. From the quantum-mechanical standpoint,
this could be thought as a system exhibiting frequencies which
may first increase and then decrease with increasing energy E

or corresponding principal quantum number n. As an example
of such a system, we consider a particle in a potential well
described by

U (x) = A exp[−(x/D)4], (5)

where A is the depth of the potential well and D is its width.
The corresponding classical force is Fx = −dU (x)/dx =
4x3U (x)/D4, and the acceleration is ax = Fx/m. In our
simulations below, we assume that A = −2.0 a.u. and D =
200 a.u., and the particle has a mass of m = 2 a.u.. This
describes a potential well with an approximately flat bottom
so when the particle is at the bottom of the well, it has a
very low frequency, just as it would just above the ionization
threshold at U (x = 0) = 0. Having higher frequencies in
between the bottom and the top of the well would mean that
the energy spectrum has to exhibit an extremum in between,
violating the twist condition. The classical frequency profile
for this particle can be seen in Fig. 3 both as a function of
energy and the classical action J/2π , which approximately
corresponds to the quantum-mechanical principal quantum
number n. The frequency has a maximum at around n ∼ 100,
at which point ∂ω(J )/∂J vanishes. Fig. 3 makes it clear
that if we start out with an ensemble of trajectories (or
equivalently with a quantum state) with n < 100 and wish
to transfer population to a state with n > 100 via usual means
of population transfer, such as ladder climbing, we would
run into a problem at the peak of the frequency profile at
n ∼ 100. Chirping the driving laser frequency from that of
the initial-state to the final-state frequency, we would have
chirp through the frequency corresponding to that at the
peak at n ∼ 100. At this point, chirping the frequency up to
higher pitch does nothing since there are no corresponding
frequencies in the spectrum. Similarly, chirping the frequency
down after this point would just guide the population back
down to its initial state through the same path it came up.
What happens as a result of this violation of the twist condition
and if it is at all possible to transfer any population to
states beyond the maximum at n ∼ 100 are the questions we
would like to investigate. For this purpose, we will try to
transfer population by driving the system at a multiphoton
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FIG. 3. Frequency versus energy (solid line) and frequency versus
n (dashed line) for the potential U (x) = A exp[−(x/D)4] with
A = −2.0 a.u., D = 100 a.u., and m = 2.0 a.u.. The classical action
is 2πn, where n approximately corresponds to principal quantum
number. The frequency ∼0.0122 at the peak around n ∼ 100 is where
the classical twist condition breaks down.

resonance and investigate what happens from both classical
and quantum-mechanical standpoints.

A. Classical simulations in one dimension

To study the underlying classical processes taking place,
we will peek into the classical phase space as we did in
the previous section. The canonical action-angle variables
(J,θ ) for our system are evaluated from the Cartesian (x-p)
coordinates as follows through the usual definitions for the
action and angle variables:

J =
∮

mv dx, (6)

θ/2π = t

T
=

∫ −x

x1

dx

v(x)
. (7)

Here v is the velocity of the particle, T is the period of its
motion, and t is time. We employ Chebyshev integration to
evaluate the action integral between the turning points x1,2 =
±D[− ln(E/A)]1/4, and a square-root mesh to calculate the
angle variable. From Bohr quantization, the classical action
approximately corresponds to 2πn, where n is the principal
quantum number.

The Poincare surfaces of section in phase space when the
system is driven with frequency ωc = 0.0122 a.u. at four
different field strengths can be seen in Fig. 4. This frequency
is just below the peak seen in Fig. 3. Overlayed with the
surfaces of section are the phase-space positions of trajectories
which were initially launched at E = −1.27 a.u., energy
corresponding to n = 80. In a field of 1.2 × 10−5 a.u., two
islands of stability are formed at two degenerate principal
quantum numbers corresponding to the driving frequency ωc

just below and above the peak in Fig. 3. Circles A and B

mark the heteroclinic separatrices (also called X points) for
the two sets of islands below and above the the peak of the
classical action at n ∼ 100. The islands of stability recur along
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FIG. 4. Classical phase-space structures for the nontwist system
in action (2πn) and angle variables with E = −1.27 a.u. and driving
frequency 0.0122 a.u., when the system is driven at four different field
strengths. Similarly to Fig. 2, the larger black points show the phase-
space coordinates of the microcanonical ensemble initially loaded
onto n = 80. In the upper two panels, (a) and (b), the circles mark
the heteroclinic separatrices formed by the increasing field strength.
The trajectories on the n = 80 line in (a) hop onto the island below
the shearless curve in (b) as a result of a reconnection in separatrix A

caused by the higher field strength. In (c), the field is strong enough
such that the heteroclinic separatrices A and B become homoclinic as
marked by the circles A′ and B ′. Finally, in (d), the stronger driving
causes a reconnection in the upper separatrix B ′, making the upper
region of the phase space accessible to the trajectories that were
captured onto the lower island in (b).

the direction of the scaled angle variable θ/2π at both n with
frequency ωc. The region between the these two sets of islands
corresponds to the classical n range between the degenerate
n values with frequency ωc straddling the peak at n ∼ 100 in
Fig. 3. The actual line corresponding to the peak value of the
classical action around n ∼ 100 is referred to as the shearless
curve. Along this curve, the rotation number, which is defined
as the horizontal jump a trajectory makes as it pierces through
the surface of section, is zero. In other words, dE(n)/dn = 0,
meaning that the trajectory on this curve does not drift in the θ

direction as it is strobed at the driving frequency ωc. The lines
above and below the shearless curve either have dE(n)/dn < 0
or dE(n)/dn > 0, making the trajectories drift either to the left
or to the right in the horizontal direction. This is again evident
from Fig. 3 as the tangent of the energy-frequency profile
changes sign as energy is traversed through the peak at roughly
n ∼ 100. As the energy-frequency curve gets steeper farther
away from the peak, i.e., as dE(n)/dn gets larger in magnitude,
the drift of the trajectories in the horizontal direction in phase
space speeds up further down and further up from the shearless
curve, albeit in the opposite directions.

As the driving field strength is increased to 2.5 × 10−5 a.u.
in Fig. 3(b), the islands of stability grow larger as the stable
surfaces straddling the islands merge into the islands. This
results in the shrinkage of the band of stable surfaces separating
the islands above and below the shearless curve as these lines
merge into the islands from above and below toward the

shearless curve. Phase-space positions of the microcanonical
ensemble of classical trajectories initially loaded onto the
n = 80 line seen in Fig. 3(a) are now captured onto the
island below the shearless curve, meaning that the n = 80
surface has merged into the island above it as it expanded.
The two heteroclinic separatrices A and B are somewhat more
prominent in this case compared to the weaker driven case in
Fig. 3(a).

Further increase in the driving field strength to 1.0 ×
10−4 a.u. in Fig. 4(c) results in a drastic topological trans-
formation of the heteroclinic separatrices A and B seen in
Figs. 4(a) and 4(b). As the driving field strength is ramped
up, the stable surfaces just below and above the shearless
curve keep merging into the main islands, eventually almost
only leaving the shearless curve separating the two sets of
islands above and below it. This morphs the the phase-space
topology such that the initially heteroclinic separatrices A and
B now become homoclinic. We label the new homoclinic
separatrices (also called O points) A′ and B ′ in Fig. 4(c).
The microcanonical ensemble of trajectories we have been
following are still seen on the island below the shearless curve
at this driving field strength as they were in Fig. 4(b).

For the highest field strength we consider in Fig. 4(d), the
phase-space positions of these trajectories which were initially
loaded onto n = 80 in Fig. 4(a) now lay on a line which
straddles the island with the homoclinic separatrix B ′. This
line stretches from below the island on the right to above the
island on the left, spanning an n range from n ∼ 80 to more
than 160. We have observed that the phase-space positions
of these trajectories drift in θ coordinate in time, suggesting
that this line is not the shearless boundary but still a line
which lay close to it. This hints to us that by turning off the
driving field at the right time, it may be possible to transfer a
substantial fraction of the initial ensemble to an n range above
the shearless curve, i.e., beyond the peak of the frequency
profile in Fig. 3.

Before we continue with the discussion of our classical
simulations any further, we explain our quantum-mechanical
simulations, as we contrast both in our later discussions.

B. Quantum calculations in one dimension

A detailed account of our numerical methodology for
our one-dimensional quantum calculations has been given
in Ref. [8] for the case of an IR driven diatomic molecule.
We solve the one-dimensional time-dependent Schrödinger
equation using a lowest-order implicit scheme using a uniform
mesh in space. We use the Hamiltonian

H (x,p,t) = p2/2m + U (x) + F (t)x, (8)

where U (x) is the same potential we used in our classical
simulations in Sec. III A and F (t) is identical to the one used
in Eq. (2). We employ a radial mesh in space that extends from
−250 a.u. to 250 a.u. using 4500 mesh points, which results
in eigenenergies accurate to within roughly a part in 105. This
is particularly important since change in the energy spacing
between adjacent n states around the peak in Fig. 3 is small. For
instance, the energy separation between n = 99 and n = 100 is
0.01231 a.u. compared to 0.01232 a.u. between n = 101 and
n = 100. The time step taken during the propagation of the
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Schrödinger equation is 5 × 10−5 times the classical period τ

between the turning points for the energy of the initial state. We
quote the driving pulse widths in units of τ in our discussions.
In all of our simulations below, we start in the n = 80 state
and drive the system at ωc = 0.0122, which corresponds to the
energy spacing between n = 100 and n = 99 roughly within
a part in 105. This is just below the peak in Fig. 3.

What happens to the quantum-mechanical counterpart of
the classical system described in Sec. III A when driven by an
electric field with peak field strength 7.0 × 10−5 a.u. is seen
in Fig. 5. Here the Gaussian driving field envelope has a width
of 90τ . For ease of picturing the migration of the initial-state
population, we have integrated the probability of finding the
system in a particular n state between n = 70–90 (solid curve),
90–110 (dashed curve), and 110–130 (dotted curve). The solid
curve starts at unity since the system starts out entirely in
n = 80. As the peak of the driving field envelope nears, the
system moves out of the P70−90 band and enters into the P90−110

band. The initial band P70−90 sharply drops to almost nothing
right after the pulse peak at t = 0 a.u., and almost the entire
population crosses first into the middle P90−110 band, and then
into the upper P110−130 band. The fraction of the population
residing inside the upper P110−130 band becomes maximum at
the pulse peak around 75%, at which point the total probability
in both the middle and the lower bands exhibit a minimum.
Soon after the pulse peak, the probability of finding the system
in the upper n-band quickly drops as P90−110 recovers. P90−110

peaks again as roughly 75% of the system is in the middle
n-band. Finally, the population returns back to the initial P70−90

band by the end of the pulse. Figure 5 shows periodic migration
of the probability between the initial lower n-band and an
upper band, while the middle n-band is crossed twice in one
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FIG. 5. Time dependence of the quantum probabilities to find the
system within three adjacent n-bands. The system initially starts as
a microcanonical ensemble with n = 80 and is driven by a Gaussian
pulse with a width of 90τ at FWHM and a peak field strength of
7.0 × 10−5 a.u. at ωc = 0.0122 a.u., just below the peak in Fig. 3.
The oscillations in three curves suggest that the substantial fraction
of the population is transferred up into the n = 110–120 band by the
peak of the pulse, and roughly 90% of it returned back to the initial
n = 70–90 band, exhibiting a full period of oscillation between the
upper and the lower n-bands.

period. This is in parallel with our previous discussion of
Fig. 4(d), where the phase-space positions of the trajectories
lay on a stable line extending from roughly n ∼ 80 to n ∼ 160
for a much stronger driving field of 4.0 × 10−4 a.u.. As the
trajectories did not lay on the shearless curve but rather below it
in Fig. 4(d), the phase-space positions of these trajectories drift
in time with different angular speed depending on where they
are vertically in the phase space. This results in the oscillation
of population below and above the stable islands in Fig. 4. The
same situation is quantum mechanically realized in Fig. 5, as
the lower band of n states represents region just below, and
the upper band represents the region just above the islands
in Fig. 4. The middle n-band corresponds to a region which
house the shearless curve.

The upper panel in Fig. 6 depicts the time dependence of
the n distribution for the same driving pulse as the one in
Fig. 5 with a width of 90τ at FWHM. The lower panel is
for the exact same set of parameters except the width of the
pulse is 25τ . In both cases, the system starts out in n = 80

FIG. 6. Time dependence of the n distributions in the nontwist
system driven by pulses with widths 90τ and 25τ at the same
frequency and the peak field strength as in Fig. 5 from quantum
simulations. The upper panel clearly shows the population going up
in n and reaching n ∼ 120 before returning back down to a small
spread around the initial state n = 80 as indicated in Fig. 5. The
shorter pulse in the lower panel, however, does not give enough time
for the population to come back down from n ∼ 120, leaving almost
the entire population in a small spread around n = 120.
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FIG. 7. (Color online) Snapshots of classical phase-space positions of the trajectories and the quantum Wigner distribution at different
points during the field pulse as shown in the upper panel of each figure. The driving frequency and the pulse parameters are same as those
in Fig. 6. The phase space is represented in action-angle variables as usual and the classical trajectories are depicted by the black points.
The system starts out in n = 80 at t = −0.73 ps and the classical trajectories make their way up to n ∼ 120 shortly after the pulse peak.
The quantum phase-space density clearly mirrors the classical phase-space positions of the trajectories. At the end of the pulse majority of the
population ends up at n ∼ 120 as in the lower panel in Fig. 6.

and as the field strength becomes large enough, most of the
probability migrates up in n up to n ∼ 120 just until after
the peak of the pulse. For the wider pulse width of 90τ at
FWHM, the probability bounces back to n ∼ 80 by the end
of the pulse, as depicted in Fig. 5. In case of the shorter pulse
width of 25τ , the pulse is not long enough for the population
to return back down to n ∼ 80, and the electric field is only
strong enough for a time period long enough for the population
to reach n ∼ 120. As the pulse strength diminishes after the
peak, the population settles to n ∼ 120. The fact that by timing
the width of pulse we can control the fraction of the population
that ends up in either below or above the classical shearless
curve is a mere consequence of the drifting of the trajectories
in the classical angle coordinate, i.e., the nonzero rotation
number. The classical trajectories stay along a line adjacent to
the shearless curve as in Fig. 4(d), and the angle coordinate
varies with time according to

θ̇ = ∂H/∂J = 1

2π
∂E/∂n. (9)

Therefore, it vanishes only at the peak in Fig. 3. The direction
of drifting is also opposite on the opposite sides of the shearless
curve due to the fact that ∂E/∂n has opposite signs on either
side of the peak seen in Fig. 3.

To see this oscillation in time inside the phase space from
both classical and quantum-mechanical points of view, we
evaluate quantum-mechanical phase-space density in time
and plot it against the classical phase-space position of
the trajectories at different instances during the driving pulse.
We employ the Wigner function to represent the quantum-
mechanical phase-space density. Classical action-angle vari-
ables correspond to n-angle variables in quantum mechanics

since n = J/2π , and the Wigner function can be defined as
(Ref. [14])

W (n/2,θ,t) = 1

2π

∑
n′

ψ∗
(

n + n′

2
,t

)
ψ

(
n − n′

2
,t

)
e−in′θ .

(10)

It has the properties∫ 2π

0
W (n/2,θ,t)dθ = |ψ(n/2,t)|2, (11)

∑
n′

W (n/2,θ,t) = |ψ(θ,t)|2, (12)
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FIG. 8. The final n distributions in Fig. 7 from classical (triangles)
and quantum (bars) simulations. Note the excellent agreement
between the classical and quantum distributions.
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FIG. 9. Final n distributions from classical (triangles) and quantum (bars) simulations for various peak field strengths and pulse widths.
The left column has three pulse widths: 25τ (a1), 35τ (b1), and 45τ (c1) all for the peak field strength of 7.0 × 10−5 a.u.. In the left column,
the peak field strength is twice as high, 1.4 × 10−4 a.u., and (a2), (b2), and (c2) correspond to the same pulse widths of (a1), (b1), and (c1),
respectively. Note that doubling the peak field strength roughly increases the oscillation frequency between n ∼ 80 and n ∼ 120 for a given
pulse width, and in some cases the quantum simulations display interference patterns which are absent in the classical simulations due to the
lack of phase information.

and for an eigenstate |n0〉 W (n,θ ) = δn,n0/2π . It is also pe-
riodic as its classical counterpart, W (n/2,θ,t) = W (n/2,θ +
2π,t).

Figure 7 shows the time evolution of the Wigner distribution
overlayed with the classical phase-space positions of the

trajectories for the 25τ wide pulse in the lower panel of Fig. 6.
As in in Fig. 4, action-angle variables are used to picture
the phase space and the point in time during the pulse is
displayed in a panel on top of each frame. In the first frame
at t = −0.73 ps, both quantum-mechanical Wigner function
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and the classical phase-space positions lay on top of each
other on the n = 80 line as the phase space is composed of
parallel lines in n since the field has not been turned on yet.
As the pulse picks up at t = −0.27 ps, the Wigner function
has spread out from just a line to a band of n around n = 80,
and the classical phase-space positions of the trajectories have
been distorted from the straight line in the first frame. The peak
field strength gets larger as the pulse reaches t = −0.14 ps and
t = −0.05 ps, and the Wigner distribution has spread up in n

substantially and reaches n ∼ 100. Throughout, the classical
and quantum distributions show agreement when the shape and
maxima of the Wigner function compared with the classical
phase-space curve. At t = 0.09 ps just after the peak of the
pulse, the Wigner function has spread up in n to roughly 120
and its feature corresponding to the classical curve is clearly
seen by a π phase shift in the θ coordinate. As the pulse
falls, at t = 0.14 ps and t = 0.30 ps, the tip of the classical
curve deforms and extends up in n and the peak of the Wigner
function follows it to n ∼ 120. After the pulse, at t = 0.56 ps,
both classical and quantum distributions have a wide spread
in n, but most of both the Wigner function and the classical
trajectories end up along the n = 120 line.

The final n distributions in the last frame of Fig. 7 at
t = 1.79 ps are plotted in Fig. 8 obtained by integrating the
phase-space distributions along the θ coordinate. The bars
represent the n distribution from the Wigner function and the
triangles show the classical distribution. Both peak just above
n = 120 and spread out in n between roughly the initial state
n = 80 and n = 120, with the classical shearless curve laying
right in between the two. It is not a coincidence that both initial
and the effective final states are separated from the peak around
n = 100 in Fig. 3 by exactly 20 states. This is has to do our
choice of the driving frequency ωc = 0.0122 a.u., which was
just below the peak in Fig. 3. Recalling the case of the rigid
rotor in Fig. 2, multiphoton driving always places the island
of stability between the initial and the final states, and as the
driving field strength is increased the island gets bigger and
finally touches the initial and final states as in Fig. 2(b). This
connects the initial state below the island and the final state
above it through a separatrix. The only difference in the rigid
rotor is that the energy-frequency profile is monotonic and
there exists only one island. In the nontwist case, however,
there are two islands separated by the shearless curve almost
at the driving frequency. As the driving field strength is
increased, the islands grow larger and one of them eventually
touches the lower initial state below. As in the rigid rotor
case, this transports the classical trajectories (or the quantum
states) up over the islands, only this time instead of through
a heteroclinic separatrix, two separatrices which morph into
homoclinic separatrices as the pulse is wept through.

Figure 9 has both the classical and the quantum final n

distributions we get when we vary the pulse width and the
driving peak field strength independently. As in the previous
figure, the bars represent the distribution resulting from our
quantum-mechanical simulations, whereas the triangles are
from classical calculations. In the first column, the peak field
strength is 7.0 × 10−5 a.u. and the pulse widths are 25τ , 35τ ,
and 45τ at FWHM for (a1), (b1), and (c1), respectively. In
the right column, the peak field intensity is twice that in the
left column, 1.4 × 10−4 a.u., and the pulse widths are same

for each row. Looking at each row independently, doubling
the driving field strength while keeping the pulse width fixed
roughly doubles the oscillation period of the populations
between the initial and the final states. In other words, the speed
at which the classical trajectories drift in the θ coordinate in
Fig. 7 is higher for higher peak field strength. This results in the
faster beating of the classical ensemble as well as the quantum
phase-space distribution between above and below the islands
as seen in Fig. 5. Going down on a row while keeping the
peak field strength fixed in Fig. 9 shows the migration of the
final population peak in n as the pulse gets longer. Going
from a 25τ wide pulse in (a1) to a 45τ wide pulse in (c1),
the population only travels back to n ∼ 100 from the upper
edge at n ∼ 120. Quantum and classical simulations agree
quite well as the triangles closely resemble the distributions
expressed by the bar plots, especially for the narrower
pulses.

IV. CONCLUSIONS

We have performed classical and quantum-mechanical
simulations of population transfer in two physically distinct
cases: one in which the frequency of the system monotonically
increases with energy and another one where it exhibits an
extremum. The first case is referred to as the twist condition
and we chose a one-dimensional rigid rotor to demonstrate the
classical dynamics that take place in the phase space when we
try to transfer population between excited states. The condition
where the frequency-energy profile exhibits an extremum is
called the nontwist condition and we consider a particle in
a one-dimensional potential well with approximately a flat
bottom to simulate this condition.

Multiphoton transitions we studied using the one-
dimensional rigid rotor, where the frequency of motion
changes monotonically with energy, is similar to our previous
work involving population transfer in Rydberg atoms driven
by microwaves [5], impulsive trains of kicks [7], and diatomic
molecules in IR fields [8]. The classical separatrix crossing
mechanism we demonstrated in Rydberg atoms is identical to
the one we observe in the rigid rotor. At the driving frequency,
an island of stability is formed between in the phase space
which lays between the initial and the finals states when the
phase space is plotted in action-angle variables. As the driving
field strength is increased, the island grows larger equally in
both up and down directions in action. It eventually touches
the initial and the final states connecting them through a
separatrix formed by connecting lines in phase space which
quantum mechanically would correspond to the initial and final
n manifolds.

In the nontwist case, the structure of the classical phase
space differs from the one when the frequency changes
monotonically with energy, i.e., the rigid rotor. In action-angle
variables, we observe two islands of stability separated by a
shearless curve, all of which are phase-space structures well
studied in nontwist maps [10–12]. Along the shearless curve,
the classical frequency is maximum and the trajectories do not
drift in the θ coordinate. Further away from the shearless curve,
phase-space positions of the trajectories drift faster because
the frequency varies more substantially with energy. In other
words, the magnitude of dE/dn is larger as one gets further
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away from the shearless curve. In case of the rigid rotor, there
is no special line at any particular classical action along which
dE/dn vanishes.

Driving the nontwist system at a frequency just below the
peak of the frequency profile, we are able to transfer an initial
microcanonical ensemble of classical trajectories from below
the shearless curve to another line above it in phase space,
through the line on which the Hamiltonian twist condition
is violated. We parallel our classical simulations with one-
dimensional quantum calculations and find that classical and
quantum mechanics mirror one another in how the dynamical
process takes place in phase space. The mechanism at play
differs from its counterpart in a system which conforms to the
twist condition in that two separatrices form and reconnect
as the field strength is increased in the nontwist system. As
the field is increased from zero, two homoclinic separatrices
form as the islands below and above the shearless curve grow,

just like in the rigid rotor. When the field becomes strong
enough, these separatrices topologically change and become
homoclinic. In the process, the initial ensemble of classical
trajectories follow the changing phase-space structure and
follow a line that extends from below the lower island to
above the upper island. Properly timing the length of the
driving pulse, substantial fraction of the population can be
made to end up in a final state that is same distance from
the initial shearless curve as the initial ensemble of the
trajectories.

ACKNOWLEDGMENTS

The authors would like to acknowledge valuable discus-
sions with J. D. Hanson and K. A. Mitchell. This work
was supported by the Office of Basic Energy Sciences, US
Department of Energy.

[1] C. D. Lin, A. T. Le, Z. Chen, T. Morishita, and R. R. Lucchese,
J. Phys. B 43, 122001 (2010).

[2] J. T. Lin, M. Hayashi, S. H. Lin, and T. F. Jiang, Phys. Rev. A
60, 3911 (1999).

[3] F. B. Dunning, J. J. Mestayer, C. O. Reinhold, S. Yoshida, and
J. Burgdörfer, J. Phys. B 42, 022001 (2009).

[4] D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and
L. D. Noordamm, Chem. Phys. Lett. 290, 75 (1998).

[5] T. Topcu and F. Robicheaux, J. Phys. B 42, 044014 (2009).
[6] H. Maeda, J. H. Gurian, D. V. L. Norum, and T. F. Gallagher,

Phys. Rev. Lett. 96, 073002 (2006).
[7] T. Topcu and F. Robicheaux, J. Phys. B 43, 115003 (2010).

[8] T. Topcu and F. Robicheaux, J. Phys. B 43, 205101
(2010).

[9] V. I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1978).

[10] J. E. Howard and S. M. Hohs, Phys. Rev. A 29, 418 (1984).
[11] D. del-Castillo-Negrete, J. M. Greene, and P. J. Morrison,

Physica D 91, 1 (1996).
[12] P. J. Morrison, Phys. Plasmas 7, 2279 (2000).
[13] K. C. Younge, B. Knuffman, S. E. Anderson, and G. Raithel,

Phys. Rev. Lett. 104, 173001 (2010).
[14] Q.-L. Jie, S.-J. Wang, and L.-F. Wei, Phys. Rev. A 57, 3262

(1998).

046607-10

http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1103/PhysRevA.60.3911
http://dx.doi.org/10.1103/PhysRevA.60.3911
http://dx.doi.org/10.1088/0953-4075/42/2/022001
http://dx.doi.org/10.1016/S0009-2614(98)00531-4
http://dx.doi.org/10.1088/0953-4075/42/4/044014
http://dx.doi.org/10.1103/PhysRevLett.96.073002
http://dx.doi.org/10.1088/0953-4075/43/11/115003
http://dx.doi.org/10.1088/0953-4075/43/20/205101
http://dx.doi.org/10.1088/0953-4075/43/20/205101
http://dx.doi.org/10.1103/PhysRevA.29.418
http://dx.doi.org/10.1016/0167-2789(95)00257-X
http://dx.doi.org/10.1063/1.874062
http://dx.doi.org/10.1103/PhysRevLett.104.173001
http://dx.doi.org/10.1103/PhysRevA.57.3262
http://dx.doi.org/10.1103/PhysRevA.57.3262

