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Ionization from Rydberg atoms and wave packets by scaled terahertz single-cycle pulses
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The strong-field ionization behavior when a Rydberg atom is exposed to a terahertz single-cycle pulse is
studied. Fully three-dimensional time-dependent Schrödinger equations and classical trajectory Monte Carlo
calculations are performed. Results from stationary eigenstates and Rydberg wave packets are presented, and it
is found that the ionization properties can be different for the two cases. All of the pulse parameters and physical
quantities are scaled versus the principal quantum number n. The ionized electron’s scaled radial, energy, and
angular distributions are investigated for different n, and the quantum results are interpreted using a semiclassical
method. The scaling relations of quantum interference amplitudes are discussed.
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I. INTRODUCTION

Strong-field ionization is a tool commonly used to study
and probe atomic and molecular structure. In contrast to
deeply bound electrons, Rydberg electrons have many novel
properties, such as weak binding energy, high density of
states, long period, large dipole moment, etc. The similar
frequencies between terahertz radiation and Rydberg orbits
makes terahertz field pulses an alternative tool to study the
properties of Rydberg electrons.

Strong terahertz radiation was used in many experiments
studying field ionization [1–7]. However, strong terahertz
single-cycle pulses have only become widely used in the past
few years. Strong terahertz single-cycle pulses are usually
generated by optical rectification in nonlinear crystals [8,9].
In most cases, the single-cycle pulses are nonsymmetric in
the time domain. The effects of asymmetry in field ionization
was studied theoretically in Ref. [10,11]. The field strength
of terahertz single-cycle pulses can be up to 1 MV/cm [12].
A 1-ps duration is approximately the same as the Rydberg
period with principal quantum number n ∼ 20, which makes
the terahertz single-cycle pulse an effective tool to probe and
study the periodic motion of Rydberg electrons.

Time-resolved studies of the spatial distributions of Ry-
dberg wave packets have been conducted extensively. Many
different optical tools have been used, such as ultraviolet laser
pulses [13–15], half-cycle pulses [16–18], single-cycle pulses
[19,20], microwaves [21–23], and others. Compared with the
other methods, the ionization properties of single-cycle pulses
on Rydberg wave packets have not been widely studied.
When a single-cycle pulse duration is much shorter than a
Rydberg period, previous studies showed that the threshold
field amplitude for ionization from a stationary Rydberg state
is proportional to (n/tw )2 [10,11], where n is the principal
quantum number and tw is proportional to the pulse dura-
tion. The ionization mechanism is described as displacement
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ionization. In the present paper, ionization of Rydberg wave
packets using single-cycle pulses with durations shorter than
or equal to one Rydberg period is studied.

For field pulse ionization due to a long pulse, the scaling
relations of ionization thresholds versus the principal quan-
tum number n have been studied before. Different ioniza-
tion thresholds can be found in different ionization regimes
[24]. For ionization due to a single-cycle pulse, only a few
studies have been conducted, including experimental [1] and
theoretical studies [10,11,25,26]. These studies focused on
the ionization probability versus initial pulse parameters or
the initial state nl of the Rydberg electron. The distributions
and scaling relations of a single variable physical quantity,
such as ionization probability, ionized electron angular dis-
tribution, energy distribution, etc., are presented in several
previous studies [1,11]. There have been no studies on the
scaling relations for correlated two-dimensional distributions
from single-cycle pulse ionizations in Rydberg atoms. It is
well known that classical calculations scale perfectly for
different n, but quantum calculations do not scale due to
the restrictions from the uncertainty principle. In this paper,
comparisons between quantum and classical calculations are
studied, including correlated distributions for two physical
quantities, at different scaled n states and scaled pulse param-
eters. Additionally, scaled ionization results for Rydberg wave
packets due to a single-cycle pulse are first discussed in this
paper.

This paper is structured as follows. Section II gives a brief
introduction to the quantum and classical methods used in our
calculations. Section III introduces the scaling relations for
pulse parameters and all physical quantities. The quantum and
classical results in different conditions are compared. Also,
the scaled properties of ionization and quantum interference
are studied. Section IV introduces the type of Rydberg wave
packets used in this paper, and the scaled ionization properties
from short- and medium-duration single-cycle pulses are in-
vestigated. Atomic units are used throughout the paper unless
specified otherwise.
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II. METHODS

A. Quantum methods

With a linearly polarized laser pulse in the dipole ap-
proximation, a hydrogenic atomic system follows the time-
dependent Schrödinger equation:

i
∂ψ

∂t
=

(
−1

2
∇2 − 1

r
+ F (t ) · z

)
ψ, (1)

where F (t ) is the time-dependent strength of the electric field.
The full three-dimensional wave function is expanded on a
spherical harmonic basis:

ψ (r, θ, φ, t ) =
lmax∑
l=0

Rl (r, t )

r
Yl0(θ, φ). (2)

The Ylm are spherical harmonics, and the cylindrical symmetry
of m = 0 is assumed in the present work. The lmax value is
the number of angular channels needed to converge all of the
physical quantities in the calculations. The radial wave func-
tions can be propagated using various methods. Split operator
and Crank-Nicolson methods are used in our calculations.
For the radial wave functions, the square-root mesh with a
Numerov approximation is adopted. Further details on the
wave-function propagation can be found in Ref. [27].

For the single-cycle laser pulse, two different forms are
used in our calculations. The first form was introduced in
Ref. [26]. It is used in this paper to reinterpret some results
from Ref. [26]. The pulse is expressed as

F (t ) =
⎧⎨
⎩

−Fm sin(ωt ), if − T < t < 0
−Fmβ sin(βωt ), if 0 < t < T/β

0, otherwise.
(3)

Fm is the peak intensity, and T is the duration of the first half
cycle, T = π/ω, and β is a factor representing the asymmetry
of the pulse. In the calculations, the pulse starts at ti = −T
and ends at t f = T/β.

The second form was used in Ref. [10], which is a sym-
metric, Gaussian-like, single-cycle pulse. It is expressed as

F (t ) = −C0Fm

(
t

tw

)
exp

[
−

(
t

tw

)2

− 0.1

(
t

tw

)4
]
, (4)

where C0 =
√

(
√

35 + 5)/5 exp[(
√

35 − 4)/4] ≈ 2.385 is a
constant that makes the maximum field amplitude to be Fm

[10]. The fourth-power term in the exponent is used to shorten
the Gaussian tail of the electric field without significantly
affecting the properties of a single-cycle pulse. The tw is a
scale of time width of the laser pulse. The electronic wave
function is propagated from ti = −3.5 tw to t f = +3.5 tw,
which gives well-converged results. The second form of the
Gaussian-like single-cycle pulse is mainly used in the rest of
the paper, due to its smooth expression and no discontinuities
in the time domain. Although this paper is based on these two
specific pulse types, the results can be generalized to other
pulses with similar asymmetry, duration, and strength.

The energy and angular distributions of the ionized elec-
trons are the focus of this paper. At the final time of the
calculations, the continuum part of the wave function is ex-
panded using energy-normalized Coulomb eigenstates. The

probability amplitude at a positive energy ε and angular
momentum l can be calculated as

aεl =
∫

dr Rl (r, t = t f ) fεl (r), (5)

where fεl is the energy-normalized regular Coulomb wave
function [28]. The energy distributions for ionized electrons
can be calculated as

dP

dε
=

lmax∑
l=0

|aεl |2. (6)

The angular distribution for the ionized part of the electron
wave functions at a given energy can be calculated as

d2P

d cos θ dε
= 2π

∣∣∣∣∣
lmax∑
l=0

aεl eiσl Yl0(cos θ )

∣∣∣∣∣
2

, (7)

where σl is the Coulomb phase shift [28]. Note that the
cylindrical symmetry of m = 0 is assumed in our calculations.
The integration of Eq. (7) at all positive energies gives the full
angular distributions at infinity. The emission angle θ is the
polar angle from the field polarization axis.

The radial distributions and the emission angle, just after
the pulse is turned off, are also studied in this paper. They are
mainly used to compare the results from quantum and classi-
cal calculations. The radial distribution of ionized electrons at
a given emission angle can be calculated as

d2P

d cos θ dr
= 2π

∣∣∣∣∣
lmax∑
l=0

∫
dε aεl fεl (r)Yl0(cos θ )

∣∣∣∣∣
2

, (8)

and the radial distribution averaged over all angles is
calculated as

dP

dr
=

lmax∑
l=0

∣∣∣∣
∫

dε aεl fεl (r)

∣∣∣∣
2

. (9)

B. Classical methods

For the strong-field ionization problem, the classical trajec-
tory Monte Carlo method is used [10]. Specifically, consider
a quantum problem starting from a stationary Rydberg eigen-
state at |nl〉. By using the microcanonical ensemble treatment
[29], the initial energies and angular momenta of the electrons
in classical calculations are set to be Ecl = −0.5/n2

cl, where[
(n − 1)

(
n − 1

2

)
n
]1/3

< ncl �
[
n
(
n + 1

2

)
(n + 1)

]1/3
,

and l2 − 1
4 < l2

cl � (l + 1)2 − 1
4 , when l �= 0, n. (10)

For l = 0 or n, the simple lower or upper bound at 0 or n is
used. At a large n and nonzero l , the above two inequalities go
to the following approximations:

n − 0.5 < ncl � n + 0.5, (11)

l < lcl � l + 1, (12)

where the classical quantities ncl, l2
cl are uniformly dis-

tributed in the given ranges, not the classical energy −1/2n2
cl.

Comparing with ncl being a single value fixed at n, this
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microcanonical ensemble treatment gives better agreement
between quantum and classical calculations in some critical
cases, which will be shown in Sec. III B.

In order to simulate the radial distribution from a stationary
quantum state, all the trajectories start the classical propaga-
tions from their respective classical outer turning point at a
random time tinit = tturn-on − α TRyd [10]. Here, tturn-on is the
turn-on time of the single-cycle pulse. For example, tturn-on =
−T for a single-cycle pulse in Eq. (3), and tturn-on = −3.5 tw
for a single-cycle pulse in Eq. (4). α is a uniformly distributed
random number between 0 and 1 to simulate the initial radial
distribution from a full Rydberg period. The initial angular
distribution of the electrons at tinit follows |Yl0(cos θ )|2. Initial
velocity direction of the electron is randomly selected as long
as it is perpendicular to the position vector, and the magnitude
of velocity is chosen to satisfy the initial angular momentum
lcl from the microcanonical ensemble in Eq. (12). The initial
direction of the velocity vector can be randomly chosen on the
tangential plane because the ionization probability does not
depend strongly on this velocity direction from our numerical
calculations. Then the electron is propagated considering only
the pure Coulomb potential 1/r until tturn-on, when the single-
cycle pulse electric field turns on. Next the electron trajectory
is calculated from both the 1/r potential and the single-cycle
pulse potential until the pulse turn-off time. To achieve the
final angular distribution, the electrons are then propagated
to a long fixed final time t f , when its momentum direction is
nearly converged. The statistics of the electrons’ final energy
and final velocity angle then give classical distributions which
are comparable with those from quantum calculations.

Additionally, the classical trajectory Monte Carlo method
can be extended to a semiclassical version, which is known
as the quantum trajectory Monte Carlo [30]. In this method,
the actions along the classical trajectories are calculated. If
there is more than one classical path that can go into the same
final region, e.g., position or momentum, the amplitudes of the
paths are added coherently using the classical actions as the
phase factor. The initial electronic states in our calculations
are Rydberg states in their position representations. If the final
state is in the momentum representation, e.g., when energy
versus angle distribution is studied, an extra factor of −pf · r f

needs to be added to the phase [30]. This is due to the Fourier
transform of the wave function to another representation.

III. SCALING RELATIONS

In this section, the scaling behavior of single-cycle pulse
ionization with respect to the principal quantum n is studied:
we show quantum and classical results for different n but
with the field parameters scaled. Specifically, the physical
quantities are scaled as follows:

r ∝ n2, t ∝ n3, p (momentum) ∝ n−1,

E (energy) ∝ n−2, Fm ∝ n−4, (13)

and other unitless quantities are not scaled, such as angle or
ionization probability. The nuclear and electronic charges are
not scaled. For example, if Fm = 500 kV/cm is used at n =
15, then the scaled field strength at n = 30 can be calculated as
500 kV/cm · (30/15)−4 = 31.25 kV/cm. It is noted that, due
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FIG. 1. Ionization probabilities from scaled classical and quan-
tum calculations. The black dashed line is for classical calculations
with an initial energy spread of ncl given in Eq. (11). The blue
solid line is for classical calculations at a single value of n, and
the ionization probability converges to 14.6%. The magenta dotted
line is for quantum calculations up to n = 70. The red thick line
is a fitting for classical results with ncl spread. For ncl � 60, the
fitting function is Pion = 0.146 + 4573/n3.02. The inset figure gives
the classical ionization probability when the pulse parameters are
fixed at n0 = 15 and the initial classical energy state is at a single
value around ncl = 15, see Eq. (14). Scaling relations are given in
Eq. (13). Pulse parameters can be found in the text. The initial
angular momentum is fixed at l = 2.

to the same scaling relations for pulse duration and Rydberg
period, durations of the scaled single-cycle pulses will always
be the same fraction of one Rydberg period at different n.

As mentioned in Sec. II B, initial energies in classical
calculations can either be a single value or be a spread using
the microcanonical ensemble treatment. The initial spread in
angular momentum l only weakly affects the ionization prob-
ability and it is not scaled versus n (see Sec. III A). With all
these scaling rules, scaled results from classical calculations at
different n, as a single value without spread, should be exactly
the same. This is because the classical mechanics of the
Coulomb interaction are fully scalable. Conversely, as given
in Eq. (11), the microcanonical ensemble treatment requires
an energy spread of �ncl = 1, which do not scale with n.
This makes the classical calculations using a microcanonical
ensemble nonscalable. In quantum calculations, due to the
uncertainty principle δx δp � 1/2, results at different n are
also different. According to the correspondence principle, the
quantum and classical calculations should give the same re-
sults as n goes to infinity. For the following part of this section,
scaled quantum and classical calculations with different n are
performed, and the differences between them are compared.

In Secs. III A and III B, the single-cycle pulse in Eq. (3) is
used. In Sec. III C, the single-cycle pulse in Eq. (4) is used.

A. Ionization probabilities versus n

For example, scaled quantum and classical calculations at
different n are performed, and the ionization probabilities ver-
sus n are shown in Fig. 1. In the calculations, the single-cycle
pulse with the form in Eq. (3) is used. At n = 15, the pulse
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parameters are Fm = 2.05 × 10−6 a.u. = 10.5 kV/cm, T =
1.2402 × 105 a.u., and β = 1.5. All parameters are the same
as those in Ref. [26] (with a small modification [31]). At other
n, the pulse parameters are scaled using relations given in
Eq. (13). The initial state always has angular momentum l = 2
and is not scaled with n (see next paragraph). Classical results
with microcanonical ensemble treatment have much better
agreement with quantum results than the classical results with
a single value of n. Further details on why a spread of initial
energy behaves better than a fixed energy are discussed in the
next section.

A very important question related to perfect scaling is how
the initial angular momentum lcl should scale and how large
the difference is with respect to scaling. lcl determines both the
initial angular distribution and the angular momentum of the
electron. The angular distribution is a unitless function with
respect to angle θ and φ, and is not scaled with n. The angular
momentum is equal to vinitrouter and is scaled proportionally
versus n. However, l is a discrete value and cannot be arbi-
trarily scaled in experiments. To check the differences in ion-
ization probabilities with nonscaled angular momenta, several
classical calculations are performed with the only difference
being the angular momentum distribution. At a single value of
n = 15 and identical remaining parameters, the initial angular
distributions are kept unchanged as Y20. The initial angular
momenta are 0, 1, and 2. Ionization probabilities from these
calculations differ by less than 0.5% in the absolute value.
Note that, as presented in the blue solid curve of Fig. 1, l = 2
at n = 15 gives an ionization probability of around 14.5%.
In these cases, with the perfect scaling of classical dynam-
ics, ionization probabilities, with (n, l ) = (30, 2) → (15, 1),
(n, l ) = (60, 2) → (15, 0.5), (n, l ) = (120, 2) → (15, 0.25),
etc., would differ only by less than 0.5%. It can be seen
in Fig. 1 that the blue solid curve is mostly flat at large
n but with small variations at n near 15. It is shown that,
with a nonscaled lcl value, the classical calculations with a
single value of n are mostly scalable with small differences at
small n.

It is seen in Fig. 1 that the differences between classical
calculations using the microcanonical ensemble and a single
value of n get smaller as n gets larger. To understand how
the two types of calculations converge to the same value as
n → ∞, consider a classical calculation on single-cycle pulse
ionization. Let P(n0 )

ion (n) be the ionization probability when the
principal quantum number is a variable of n and the pulse
parameters are scaled for n0. Then the averaged ionization
probability with n being a spread of n0 − δn to n0 + δn can
be calculated as

P̄(n0, δn) = 1

2δn

∫ n0+δn

n0−δn
P(n0 )

ion (n) dn

≈ 1

2δn

∫ n0+δn

n0−δn

[
P(n0 )

ion (n0) + P′(n0 )
ion (n0)(n − n0)

+1

2
P′′(n0 )

ion (n0)(n − n0)2 + O(n3)

]
dn

= P(n0 )
ion (n0) + 1

6
P′′(n0 )

ion (n0)(δn)2. (14)

Since classical calculations are perfectly scaled, e.g.,
P(n0 )

ion (n) = P(2n0 )
ion (2n), the derivatives can be calculated as

P(n0 )
ion (n0 + δn) = P(2n0 )

ion (2n0 + 2δn),

P(n0 )
ion (n0+δn)−P(n0 )

ion (n0)

δn
= P(2n0 )

ion (2n0+2δn)−P(2n0 )
ion (2n0)

δn
,

P′(n0 )
ion (n0) = 2 P′(2n0 )

ion (2n0). (15)

Thus, the first-order derivative P′(n0 )
ion scales as n−1

0 and the
second-order derivative scales as n−2

0 . The average ionization
probability from a spread of initial energy at 29.5–30.5 is
the same as that of 14.75–15.25. With δn = 0.5, the series
expansion gives n−2

0 asymptotic relations for the ionization
probability. Also, as n0 → ∞, all derivatives go to zero, and
the average ionization probability P̄(n0, δn) converges to the
single value of P(n0 )

ion (n0).
However, as can be seen in Fig. 1, the ionization probability

from classical calculations with ncl being a spread converge
as n−3 asymptotically to the classical calculations with a
single value of ncl. The n−3 relation is a coincidence, not a
general rule. This is partially due to the fact that the ionization
properties at these specific pulse parameters are very sensitive
to the initial energy state n of the electron. Since the pulse
duration Tpulse = 2.067 × 105 a.u. is much longer than the
Rydberg period at n = 15 (TRyd = 2.12 × 104 a.u.), over-the-
barrier ionization mechanisms dominate. The maximum field
strength βFm = 3.075 × 10−6 a.u. is in the same order as the
nuclear Coulomb field strength when the electron is at its
outer turning point [(2 ∗ 152)−2 = 4.94 × 10−6 a.u.]. Thus,
with pulse parameters fixed at n0 = 15, as n varies from 14.5
to 15.5, the ionization probabilities change rapidly and even
nonmonotonically.

As given in the inset of Fig. 1, the ionization probability
P(15)

ion (n) is very sensitive to the initial classical state n. The
average of P(15)

ion (n) for n varied from 14.5 to 15.5 gives an
ionization probability around 20%, but the P(15)

ion (15) itself
only gives about 15%. At n = 15 and δn > 1/16, which is
equivalent to n < 120 and δn = 0.5, the P(15)

ion (n) in Eq. (14)
cannot be well expanded as a Taylor series only up to O(n3).
That means the n−2 scaling relations derived in Eq. (14) does
not hold when n is not large enough. A mixture of n−2 and n−4

coincidentally gives a scaling relation of n−3, as presented in
Fig. 1. It was found that only when n is large enough, e.g.,
n > 120, did the Taylor series expansion in Eq. (14) correctly
represent the ionization probability, and a n−2 asymptotic
relation was found. Further details of ionization properties
with ncl from 14.5 to 15.5 are discussed in the next section.

B. Comparisons between quantum and classical methods

Originally found in Ref. [26], as well as shown in Fig. 1 in
the previous section, ionization probabilities from a classical
calculation at a fixed n of 15 are different from a quantum
calculations for n = 15. In this section, three calculations are
performed to study the ionization probability and physical
quantities of this process: fully quantal, classical with ncl fixed
at 15, and classical with ncl being a spread from 14.5 to
15.5. The initial angular momentum is set to l = 2. The pulse
parameters are given in the previous paragraph at n = 15.
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FIG. 2. Full radial distributions at the final time of the pulse,
from three different calculations. The initial angular momentum is
l = 2. The blue solid curve is from a classical calculation with the
initial ncl fixed at 15. The black dashed curve is from a classical
calculation with the initial ncl being a spread of 14.5–15.5. The
magenta dotted curve is from a full quantum calculation starting in a
15d state. The ionization probabilities from the three calculations are
14.3%, 20.7%, and 21.0%, respectively. The inset is a magnification
of the distribution with r f from 700 to 5500 a.u. Note that the
probability density scale is different for the inset.

The radial distributions at the final time are given in Fig. 2.
Both of the classical calculations give overall similar results
as compared with the quantum calculation. For the ionized
part at around 3000 a.u., results from the classical calculation
with ncl fixed at 15 do not match well with the quantum result,
while the spread ncl calculation gives much better agreement.
As mentioned in the caption of the figure, the ionized wave
function is a small portion of the whole wave function. Ion-
ization probabilities and continuum wave functions from the
fixed ncl and spread ncl calculations are very different.

To further study the details of the ionized part of the wave
function, two more classical calculations for ncl fixed at 14.5
and 15.5 are performed. The continuum radial distributions
from quantum and classical calculations are given in Fig. 3.
One notable quantity is the ionization probability. For ncl =
14.5, the ionization probability is only 0.77%, but it is 37.2%
for ncl = 15.5. As shown in the inset of Fig. 1 and discussed
in Sec. III A, field ionization processes with these specific
field parameters are very sensitive to the initial Rydberg state
for this range of n, because the ionization probability and
the ionized part of the wave function depend strongly on the
initial energy of the Rydberg electron. With that, it is better to
use a spread in initial energy, i.e., a microcanonical ensemble
treatment, in the classical calculation rather than just a fixed
energy as used in Ref. [26].

To verify our applications of the initial energy spread
in the classical calculations, the ionized radial and angular
distributions at the final time of the pulse are shown in Fig. 4.
It can be seen in the figure that the classical calculation
with an initial energy spread has a much better agreement
with the quantum calculation. Additionally, some interference
patterns, with respect to the radial distribution, appear in the
quantum results, but not in the classical results. Oscillations
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FIG. 3. Radial distributions at the final time of the pulse from
classical and quantum calculations. Only those from the ionized part
of the distributions are plotted. The red solid curve with small extent
around 1600 a.u. is from a classical calculation with ncl fixed at 14.5,
and the ionization probability for this case is 0.77%. The green solid
curve with the largest extent is from a classical calculation with ncl

fixed at 15.5, and the ionization probability for this case is 37.2%.
The other three curves are the same calculations as those introduced
in the caption of Fig. 2.

of the quantum interference amplitudes are discussed in the
next section.

C. Scaled physical quantities and quantum interferences

Scaled physical quantities from single-cycle pulse ioniza-
tion with scaled pulse parameters at different n are studied
in this section. The single-cycle pulse in Eq. (4) is used
in this section, and the pulse parameters are changed to
Fm = 500 kV/cm, tw = 500 a.u. for n = 15 from the pre-
vious section. The Rydberg period for the n = 15 state is
Tryd = 2πn3 = 21 206 a.u. Electrons are initiated in stationary
Rydberg eigenstates with angular momentum being zero.
Although a single-cycle pulse process with these parameters
only gives about 3.8% ionization probability, the small portion
of the ionized wave function gives a clear picture for the
properties of the ionized electron. The ionization probability
is the same for n = 15, 30, and 45. As discussed in Sec. III A
and in Eq. (14), with the same ionization probability for
15, 30, 45 in quantum calculations, the classical ionization
curvature P′′

ion is negligible in this case. Thus, to mimic the
quantum calculation, classical calculations with a single value
of n and a single value of l can be performed instead of
spreads, and the results would be the same.

The angular distributions for ionized electrons are given
in Fig. 5. In the figure, the classical results at different n
are scaled and overlapped. However, the results for scaled
quantum calculations are different near cos θ f = 1. Although
not shown in the figure, the rest of the angular distributions
for cos θ f from −1 to 0.6 are nearly the same for both
quantum and classical, at different n, and they are much
smaller than those near cos θ f = 1. As can be seen in the
figure, as n increases, the quantum angular distributions near
cos θ f = 1 become sharper. This is very different from the
classical results, and the reason for the sharp peak is quantum
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FIG. 4. Correlated distribution of the ionized electron’s radial position and its emission angle at the final time of the pulse. Parameters
of the field are given in the text of Sec. III A. Figure (a) is from a full quantum calculation, figure (b) is from a classical calculation with ncl

being a spread of 14.5–15.5, and figure (c) is from a classical calculation with ncl fixed at 15. The density distributions in all three figures are
normalized to their respective ionization probabilities, which can be found in the caption of Fig. 2.

interference. Quantum interference can strengthen distribu-
tion at some angles and weaken distribution at other angles.

Using the scaling relations for physical quantities in
Eq. (13), the classical action is also scaled, and the scaling
is

S =
∫

L dt ∝ n, (16)

where L is the classical Lagrangian. In the present problem,
with a small ionization probability, only two classical tra-
jectories can be found that go into the same final angle and
same final energy. Actions from the two trajectories scale as
n, as well as the difference �S between the two trajectories.
Since interference maxima can be found at every 2π phase
difference, oscillations of interference amplitudes, with re-
spect to scaled physical quantities, would be n times faster at a
higher n.

15

30

45

Classical

0.6 0.7 0.8 0.9 1.0

0.5

1

5

10

50
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d
P

/d
co

s

FIG. 5. Angular distributions for ionized electrons from quantum
and classical calculations. The initial angular momentum is l = 0.
Calculations are performed with different n as indicated by the leg-
ends and different scaled pulse parameters as indicated in Eq. (13).
At n = 15, Fm = 500 kV/cm and tw = 500 a.u. are used. Classical
results at all three n are the same.

To study the angular distributions in detail, results at scaled
final energy slices, E f = (15/n)2 × 0.002 a.u., are presented
in Fig. 6. In Fig. 6(a), the classical action versus final angle is
given. It can be seen that the action differences, �S, from the
two paths change faster as n gets larger, scaled as the factor
of n. In Fig. 6(b), the quantum angular distributions are given.
With a larger n, the action varies more rapidly. The amplitudes
of angular distributions also oscillate faster. Since the total
angular distributions are incoherent summations of angular
distributions at all positive energy slices, faster oscillations of
the angular distributions away from cos θ f = 1 lead to rapid
cancellation and flattening of the full angular distribution.
With the same ionization probability, constructive summa-
tions and sharper peaks around cos θ f = 1 can be expected
at higher n.

Finally, the correlated distributions of final emission an-
gle and final energy are given in Fig. 7. As mentioned in
Sec. III B and Fig. 4, quantum interferences may appear
in the correlated distributions at the final time. In Fig. 7,
quantum interference with respect to the scaled final energy
is found. The differences for classical actions between the
two paths are used to determine the quantum interference
maxima at E f . The action differences are aligned at the first

(a) Classical
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45

0.7 0.8 0.9 1.0
- 4
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S
/

(b) Quantum
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45

0.7 0.8 0.9 1.0
0.00

0.03
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d
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FIG. 6. (a) Classical action differences between two paths vs the
final angle, at a scaled final energy. The final energy is scaled for
different n, which are Ef = (15/n)2 × 0.002 a.u. The action differ-
ences are aligned as �S = 0 at cos θ f = 1. (b) Angular distributions
at scaled final energies from quantum calculations.
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FIG. 7. The correlated energy and angular distributions with scaled pulse parameters at n = 15, 30, and 45 for quantum calculations, and
at n = 30 for classical calculation. The maximum densities are normalized to 1.0 for all figures. The dashed lines are at cos θ f = 0.95, while
the circles are interference maxima calculated by the semiclassical method introduced in the text.

interference maximum, and all further maxima are found at
multiples of 2π phase differences. The classical results are
the same for n = 15, 30, and 45. No interference is found
in the classical results. In the figure of n = 15, only one
interference maximum can be found in the given range along
cos θ f = 0.95, while two maxima can be found for n = 30
and three for n = 45. This interference behavior is due to the
fact that semiclassical action is scaled proportional to n while
all physical parameters are scaled as those in Eq. (13). Thus,
the oscillations of interference amplitudes are also scaled as
n versus other scaled parameters. As discussed in Fig. 5,
Fig. 6 and earlier in this section, sharper peaks in angular
distributions near cos θ f = 1 can be found when n is larger.
Since the maximum angular momentum scales as n, there
are not enough angular channels that can localize the angular
distribution near cos θ f = 1 at a smaller n.

IV. IONIZATION OF WAVE PACKETS

When dealing with strong-field ionization of Rydberg
atoms, the initial state can be either a stationary eigenstate,
or a coherent superposition of those eigenstates, which is
known as a wave packet. For field ionization with single-
cycle pulses, several studies on stationary states have been
conducted [1,10,11,25,26]. Since the spatial distribution for
stationary states and wave packets can be totally differ-
ent, the field ionization results are also different for these
two scenarios. In this section, the effects of strong-, short-,
and medium-duration single-cycle pulses on different initial
Rydberg states are studied. The single-cycle pulses with the
form of Eq. (4) are used.

Short-duration single-cycle pulses have been studied be-
fore [10]. A single-cycle pulse with duration much shorter
than one Rydberg period shifts the position of the Rydberg
electron by only a small amount without changing its ki-
netic energy. The small shift in space may introduce a large
Coulomb potential energy change if the electron is close to the
nucleus. If the electron is far from the nucleus, then the small
spacial shift barely changes the Coulomb potential energy.
Thus, a short-duration single-cycle pulse provides a tool to
probe the spatial distribution of an atomic system. Due to
the coherent superposition of the Rydberg wave functions
from different energies, the spatial distribution of a Rydberg
wave packet changes with time. A short-duration single-cycle

pulse applied at different times yields different ionization
probabilities.

Similarly, a medium-duration single-cycle pulse can also
be used to probe the spatial distributions of a Rydberg wave
packet. In this paper, a medium-duration single-cycle pulse is
defined as a single-cycle pulse with its duration approximately
the same as one Rydberg period of the Rydberg electron. With
a medium-duration single-cycle pulse, the highest ionization
probability is achieved when most of the electron distribution
is near the nucleus when the single-cycle pulse goes through
zero. This can be understood in that an electron reverses
velocity at the inner turning point at the same time as the
electric field of a single-cycle pulse reverses [20]. Thus,
a medium-duration single-cycle pulse provides similar ion-
ization properties as a short-duration single-cycle pulsewith
respect to the probe of the electron spatial distribution. It is
similar to those many-cycle long pulse ionizations on Rydberg
wave-packet experiments [13–15], where the Rydberg wave
packets absorb energy and become ionized when they are near
the nucleus.

The type of Rydberg wave packet used in this paper is
the superposition of two adjacent Rydberg eigenstates with
a variable relative phase:

|ψ (ti )〉 = n3/2|nl〉 + eiϕ (n + 1)3/2|(n + 1)l〉√
n3 + (n + 1)3

, (17)

where ϕ = −(En+1 − En)ti + ϕ0, ti is the starting time of the
pulse, and ϕ0 is a controllable parameter between 0 and 2π ,
which gives the superposition phase of wave packets at t = 0.

The two stationary states in Eq. (17) are not superposed
with equal weight. The n3/2 factor before the |nl〉 state is
due to the properties of radial wave functions of hydrogenic
eigenstates [32]

Rn(r) ∼ n−3/2 f (r) at small radius r, (18)

where f (r) is a radial function that does not depend on
principal quantum number n. This asymptotic behavior at
small radius can be used to add up the radial wave functions
from |nl〉 and |(n + 1)l〉 constructively or destructively at
small radius. The wave packet in Eq. (17) can thus have most
of its radial distributions near the nucleus or far from the
nucleus. As an example, radial wave functions of the coherent
superpositions of 15s and 16s states are shown in Fig. 8.
Experimentally, the n3/2 factor can be achieved by fine tuning
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FIG. 8. Radial wave functions of the hydrogen 15s, “15s + 16s,”
and “15s − 16s” states. Note that the 15s and 16s states do not have
the equal weight (1/

√
2) in the superpositions, see Eq. (17). The

“15s + 16s” represents a wave packet of ϕ0 = 0, while “15s − 16s”
represents ϕ0 = π .

the frequency and width of a laser pulse used to generate the
Rydberg wave packet.

Several quantum calculations were performed to study
the ionization probabilities versus ϕ0, and the results can be
found in Fig. 9. In the figure, the ionization probabilities
have huge differences at different superposition phases. At
ϕ0 ≈ 0, the wave packets add constructively at small radius,
and the ionization probabilities are at a maximum. At ϕ0 ≈ π ,
the wave packets add destructively at small radius. Most of
the electron probability is away from the nucleus, and the
ionization probabilities are at a minimum. The ionization
probabilities satisfy simple cosine relations versus the initial
phase, and the fitting functions are given in the figure caption.
Also, the ϕ0-averaged ionization probabilities are the same as

(a) Short duration
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(b) Medium duration

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0/

P
io

n

FIG. 9. Ionization probabilities for 15s + exp(iϕ0)16s wave
packets vs the superposition phase ϕ0 as given in Eq. (17). (a) A
short-duration pulse process with Fm = 2000 kV/cm and tw =
606 a.u. (b) A medium-duration pulse process with Fm = 60 kV/cm
and tw = 3029 a.u., where the pulse duration is approximately one
Rydberg period for 15s state: 7.0 tw = TRyd ≈ 21 206 a.u. The black
dotted lines are weighted averages of ionization probabilities for
stationary 15s and 16s states, separately. The averages are 11.7%
and 13.1% for the two processes, respectively. The red points are
from quantum calculations, while the red dashed lines are their
fittings. The fitting functions are 0.116 + 0.112 cos(ϕ0 − 0.057) and
0.130 + 0.123 cos(ϕ0 − 0.245) for the two processes, respectively.
Details for the fitting functions can be found in the Appendix.

0- averaged
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FIG. 10. Energy distributions for ionizations from 15s +
exp(iϕ0)16s wave packets as introduced in Eq. (17). A short-duration
single-cycle pulse with parameters in the caption of Fig. 9(a) is used.
The results are plotted for ϕ0 = 0, π , and averages of ϕ0 ranging
from 0 to 2π .

the weighted average ionization probabilities for 15s and 16s.
These properties can be derived from the coherent superposi-
tion of the wave packets. Details for the ionization probability
versus ϕ0 can be found in the Appendix.

As derived in the Appendix, the ionization probability ver-
sus superposition phase ϕ0 satisfies (assuming initial weights
of the two stationary states are approximately the same)

Pion  P̄st + A cos(ϕ0 + ϕs), where

Aeiϕs =
∑

l

∫ ∞

0
dε 〈ψ f 1|ε l〉〈ε l|ψ f 2〉. (19)

The P̄st is the ϕ0-averaged ionization probability. The |ψ f 1〉
and |ψ f 2〉 are continuum wave functions ionized from the
two stationary states in Eq. (17). The maximum ionization
probabilities are slightly shifted from zero phase, where
the shifts ϕs of 0.057 and 0.245 radians are found. The
small phase shift is the argument of the overlap integral of
continuum wave functions ionized from the two stationary
states. The depth of the ionization curve is determined by
the amplitude of the overlap integral. For both short- and
medium-duration single-cycle pulse ionizations, the minimum
allowed ionization probability is very close to zero. This
indicates that A  P̄st, and the overlap integral nearly reaches
the maximum. As a comparison, the ionization curve due to
a medium-duration single-cycle pulse is slightly deeper than
that of a short-duration single-cycle pulse. In this case, the
continuum wave functions ionized from two adjacent states
due to a medium-duration single-cycle pulse have a slightly
larger overlap than those due to a short-duration single-cycle
pulse.

Energy distributions of the ionized wave functions from
wave packets with different superposition phase ϕ0 are given
in Fig. 10. In the calculations, short-duration single-cycle
pulses are used. Pulse parameters and ionization probabil-
ities can be found in Fig. 9(a). Most of the ionized wave
functions are at low energies, and the energy distribution
is decreasing versus E . Since the majority of the electron
radial distributions from the wave packet of ϕ0 = π are at the
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outer turning point, the displacement-caused potential energy
change by a short single-cycle pulse is much smaller than that
of the ϕ0 = 0 case. Thus, the energy distribution from ϕ0 = π

decreases much faster and earlier than that of ϕ0 = 0 and
the ϕ0-averaged results. Ionization probability from ϕ0 = 0
is at a maximum, while ϕ0 = π is at a minimum. It can be
proved that Pion(ϕ0) + Pion(ϕ0 + π ) = 2P̄st. It can be seen in
the figure that the ϕ0-averaged ionization probability is always
the average of those from ϕ0 = 0 and π , at all energies.

Additionally, scaling relations for ionizations from Ryd-
berg wave packets are also studied. Instead of the |15s〉 +
eiϕ0 |16s〉 state, the initial wave packet is changed to |30s〉 +
eiϕ0 |31s〉 and |45s〉 + eiϕ0 |46s〉 states. Using the scaling re-
lations given in Eq. (13), the pulse parameters are scaled
versus the principal quantum number n. For all three wave
packets given here, although �n = 1 is not scaled as n, curves
of ionization probabilities versus ϕ0 due to both short- and
medium-duration pulses are nearly the same as those in Fig. 9.
For short- or medium-duration pulses, at t = 0, only those
electrons within a small radius near the nucleus can be ionized
[11]. The critical radius is proportional to the free electron
shift in a field pulse, rc ∝ Fmt2

w, and is also scaled as n2. In
all three wave packets |15s〉 + eiϕ0 |16s〉, |30s〉 + eiϕ0 |31s〉, and
|45s〉 + eiϕ0 |46s〉, the probabilities to find electrons within a
small radius (rc < 2n2) are nearly the same, since they all
have �n = 1. Thus, the curves of ionization probability are
also the same for all three wave packets, and for both short-
and medium-duration pulses.

Classical calculations are performed to investigate the
ionization probability versus the radial distributions of wave
packets. Electrons are initiated at the energy and angular
momentum of a 15s state. The pulse parameters for short- and
medium-duration pulses are defined in Fig. 9. For every rinit at
t = −3.5 tw, two separate classical trajectories are calculated.
The first trajectory includes the field pulse and the 1/r core
Coulomb potential, while the second trajectory considers only
the 1/r core Coulomb potential. Then the ionization probabil-
ity from the first trajectory averaged over θ is plotted versus
radial position at t = 0 from the second trajectory, which is
independent of θ . The ionization probability versus r at t = 0
can be found in Fig. 11. This figure can be compared with
Fig. 8, since ϕ0 in Eq. (17) gives the radial distribution of wave
packets at t = 0 when there is no single-cycle pulse. For ex-
ample, for the short pulse in Fig. 11, electrons are ionized only
when they have r � 250 at t = 0. For the medium-duration
pulse, electrons can be ionized when they are slightly farther
away from the nucleus at t = 0, and the ionization probability
curve is smoother than that of a short pulse. Additionally, for
a wave packet of 15s − 16s with ϕ0 = π , illustrated as the
green dotted line in Fig. 11, the probability to find the electron
within rc � 250 a.u. is very small. The ionization probabilities
can be estimated from an integral

P̃ion,est =
∫

dr |ψ (r)|2Pion(r). (20)

For ϕ0 = π , the integral gives ionization probabilities of 0.3%
for the short-duration pulse and 0.9% for the medium-duration
pulse. These values are very close to values at the minima in
the quantum calculations in Fig. 9.
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Medium duration pulse
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FIG. 11. Ionization probability from classical calculations vs the
radial position r of electron at t = 0. The electron is initiated at
energy of n = 15 and angular momentum of zero, where the distance
of the classical outer turning point is approximately 2n2 = 450 a.u.
See text for details of r. Short- and medium-duration pulses are
defined in the caption of Fig. 9. The radial distribution from a wave
packet of 15s − 16s with ϕ0 = π , as shown in Fig. 8 and Eq. (17), is
plotted as a reference. The radial distribution is plotted in arbitrary
units.

The ionization probabilities from Rydberg wave packets
at different superposition phases can differ by a factor of 5
or more. A short- or medium-duration single-cycle pulse can
be used as highly efficient time-resolved probe to study the
spatial distributions of Rydberg wave packets.

V. CONCLUSIONS

In this paper, the scaling behavior for terahertz single-
cycle pulse ionization from a Rydberg atom was studied. Two
different forms of single-cycle pulses were used in this paper,
an asymmetric pulse [26] and a symmetric pulse [10]. A
previous study [26] found discrepancies between the quantum
and classical calculations for single-cycle pulse ionizations of
a Rydberg atom. Results from quantum calculations, classical
calculations with a single value of n, and classical calculations
using a microcanonical ensemble treatment are compared in
detail. In some critical cases of over-the-barrier ionizations
where the field strength is near the ionization threshold,
classical calculations with a spread of n give much better
agreement with the quantum calculations. The scalings for
pulse parameters and other physical quantities versus princi-
pal quantum number n were studied. With the scaled physical
quantities, classical results with a single value of n are nearly
perfectly scaled, but the quantum results are not. Interferences
in the correlated distributions of the electron’s final energy and
emission angle were studied by quantum and semiclassical
methods. It was found that the oscillations of interference
amplitudes scale as n.

Single-cycle pulse ionization from Rydberg wave packets
was also studied. The Rydberg wave packets were introduced
as a superposition of |nl〉 and |(n + 1)l〉 states with a differ-
ent relative superposition phase. The ionization probabilities
versus superposition phase were studied for both short- and
medium-duration single-cycle pulses, and sinusoidal relations
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were found. The amplitude and argument of the overlap in-
tegral of ionized wave functions were discussed. The overlap
integral determines the depth and shift of the ionization curve.
Additionally, ionization with scaled pulses from Rydberg
wave packets was also studied. Scaled pulses at higher n wave
packets yield nearly the same ionization curves as for lower n,
for both short- and medium-duration single-cycle pulse.
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APPENDIX: WAVE-PACKET IONIZATION
PROBABILITIES VERSUS SUPERPOSITION PHASE ϕ0

The initial wave packet before the single-cycle pulse is
given in Eq. (17):

|�i〉 = c1|n1l〉 + c2eiϕ0 |n2l〉, (A1)

where c1 and c2 are real amplitudes for the two states as given
in Eq. (17) and ϕ0 is the superposition phase of the wave
packet. Since the Schrödinger equation is linear, the final wave
function after the single-cycle pulse can be written as

|� f 〉 = c1|ψ f 1〉 + c2eiϕ0 |ψ f 2〉, (A2)

where c1, c2, and ϕ0 are exactly the same numbers as those
in Eq. (A1). Here, |ψ f 1〉 and |ψ f 2〉 are the respective wave
functions after single-cycle pulse ionization for the initial
stationary states |n1l〉 and |n2l〉. The ionization probability
for the wave packet can be calculated as (|ε l〉 is the energy-

normalized continuum eigenstate)

Pion =
∑

l

∫ ∞

0
dε |〈ε l|� f 〉|2

=
∑

l

∫ ∞

0
dε |〈ε l|c1ψ f 1 + c2eiϕ0ψ f 2〉|2

=
∑

l

∫ ∞

0
dε

[
c2

1|〈ε l|ψ f 1〉|2 + c2
2|〈ε l|ψ f 2〉|2

+ c1c2eiϕ0〈ψ f 1|ε l〉〈ε l|ψ f 2〉 + c.c.
]
. (A3)

Note that integration over the first two terms is the weighted
average of ionization probabilities from the two stationary
states, defined to be P̄st. Let the continuum wave-function
projection be∑

l

∫ ∞

0
dε 〈ψ f 1|ε l〉〈ε l|ψ f 2〉 = Aeiϕs , (A4)

where A is the real amplitude and ϕs is the argument for
the projection. The ionization probability in Eq. (A3) can be
simplified as

Pion = P̄st + 2c1c2A cos(ϕ0 + ϕs). (A5)

This explains that the ϕ0-averaged probabilities of Pion are
always the same as the weighted averages of the stationary
state ionization probabilities. By comparing Eq. (A5) with
wave-packet ionization curves in Fig. 9, the projection phase
ϕs of the two continuum wave functions can be determined.

For c1, c2 from Eq. (17) at a large n, it can be shown that
2c1c2  1. Thus, Eq. (A5) can be simplified as

Pion  P̄st + A cos(ϕ0 + ϕs). (A6)

The overlap amplitude A of the continuum wave functions,
as given in Eq. (A4), significantly affect the depth of ioniza-
tion probabilities versus ϕ0. When c1 = c2 = 1/

√
2, A � P̄st,

which gives the upper bound of the overlap integral of the two
continuum wave functions.
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