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Degenerate Zeeman ground states in the single-excitation regime
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We demonstrate the importance of considering correlations between degenerate Zeeman sublevels that develop
in dense atomic ensembles. In order to do this, we develop a set of equations capable of simulating large
numbers of atoms while still incorporating correlations between degenerate Zeeman sublevels. This set of
equations is exact in the single-photon limit and may be interpreted as a generalization of the frequently used
coupled-harmonic-oscillator equations. Using these equations, we demonstrate that in sufficiently dense systems,
correlations between Zeeman sublevels can cause nontrivial differences in the photon-scattering line shape in
arrays and clouds of atoms.
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I. INTRODUCTION

Since its inception [1], the collective optics of both
ordered and disordered ensembles has been a vibrant field
of study [2–38]. The low-excitation (single-photon) regime is
of particular interest since, in this limit, exact computations
of ensembles of thousands of Jg = 0 → Je = 1 atoms are
possible [2–12,18,19,21,22,39]. This allows theorists to accu-
rately simulate large clouds and arrays of atoms [6,9,18,19].
Unfortunately, this technique only approaches exactness when
the transitions that are probed have this angular momentum
structure [11]. References [5] and [31] are an example of
such a system, where the absence of fine structure in 88Sr
leads to a singlet ground state. However, most experimental
setups do not contain this type of atom. For example, in many
well-known experiments, 87Rb, which contains degenerate
ground states because of its hyperfine structure, is the atom of
choice [4,6,9,40]. This makes the development of potentially
important quantum correlations possible.

The difference between an ensemble of Jg = 0 and Jg �=
0 atoms could reasonably be mistaken as trivial, but it
fundamentally changes the nature of the system. For atoms
with Jg = 0 and Je = 1, no matter how large the cloud of atoms
is, there is a single ground state: |ggg . . . g〉. Further, in the
low-excitation regime, a calculation must contain 3N singly
excited states or, when there is significant magnetic splitting,
N singly excited states. This is not the case when Jg �= 0
since the Hilbert space describing the set of ground states
contains (2Jg + 1)N elements, and the set of singly excited
states contains N (2Je + 1)(2Jg + 1)N−1 elements. This makes
the exact simulation of large clouds unfeasible, even in the
single-photon limit. As a result, one approach that has been
used is to stochastically distribute a Zeeman ground state Mg

to each atom and set the correlation operators equal to zero
[6,9,11]; see Eq. (8) below. As has been noted in Refs. [6,9],
these calculations produce line shapes that are qualitatively
different than those observed experimentally.

It is well understood that quantum correlations can play
an important role in sufficiently dense many-body systems.
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In various regimes, this is often dealt with by solving for
a set of physically relevant operators. Simulations containing
many degrees of freedom are then made possible by truncating
the resulting hierarchy of equations, either by factorizing or
dropping higher-order correlation operators, via a cumulant
expansion or some physically meaningful, alternative argu-
ment [11,19,37,41,42]. The presence of degenerate Zeeman
ground states introduces the potential for quantum correlations
between different atoms and Zeeman states that are absent
in the Jg = 0 case. When Jg �= 0, i.e., there are multiply
degenerate Zeeman ground states, the system behaves in a
fundamentally quantum manner with correlations which, as
will be shown below, change the optical properties of the
system. It should be noted that this issue was originally
addressed in Ref. [11] through the field theoretical derivation
of a hierarchy of operators capable of addressing these
correlations to all orders. This present work derives a set of
physically equivalent, yet perhaps more intuitive, equations by
examining and exploiting the properties of the master equation
[Eq. (1)] in the low-excitation limit. Further, we illustrate the
fundamental importance of addressing these correlations by
showing how the qualitative photon-scattering line shape in
two experimentally relevant systems strongly depends on the
presence of quantum correlations.

Specifically, we will derive both the lower-order oscillator
equations used in [6,9,11], followed by a generalized version
of these equations. The latter of these sets of equations includes
the correlations that occur when Jg �= 0. Further, we will
introduce an approximation to this generalized technique,
which is capable of simulating systems with large values
of N . We will then show that the two techniques give
different photon-scattering line shapes in both atomic arrays
and clouds. This indicates that in order to properly simulate
clouds of Jg �= 0 atoms, one must consider higher-order
quantum correlations. Lastly, we compare our results to the
experimental observations of Ref. [9].

II. THEORY

A. Master equation

This work considers an ensemble of atoms interacting, via
the dipole moments of an arbitrary Jg → Je transition, with
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both a laser and the quantized electromagnetic field. Assuming
the system is Markovian, we use the Lindblad form of the
master equation for the reduced density matrix ρ̂(t) [43,44],
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Here, C
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where n̂jj ′ ≡ (rj − rj ′ )/|rj − rj ′ |, and êq represents the q th
unit polarization vector. Using the rotating-wave approxima-
tion,
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where � is the detuning of the laser, D is the reduced dipole
matrix element [45], and Ej is the laser field for atom j .

B. Hierarchy of correlation functions

In order to simulate such highly correlated systems, in this
section, we will derive a hierarchy of operator expectation
values using Eq. (1). Note that a physically equivalent, field-
theoretical set of equations is presented in Ref. [11]. Here, we
calculate the time dependence of the expectation value of the
σ
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operators using the equation
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For this system, it is useful to probe the low-intensity
(|E||D| 	 �h̄) limit. This allows one to set terms ∝ σ

j+
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′σ

j−
Mgq

equal to zero since these terms only project onto states with
excited atoms. Further, we consider only the case where the
system is initially in an uncorrelated mixed state. This may
be simulated by stochastically assigning each atom a Zeeman
ground state M

j
g and then averaging over many runs [6,11].
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since the development of correlations between
different Mg values, for states with only ground-state atoms, is
increasingly slow in the low-intensity limit. Considering these
approximations gives
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(ê∗
q · Ej )Cq

Mg
δ

MgM
j
g

−
∑
j ′′ �=j

∑
M ′

gM
′′
g

∑
q ′q ′′

C
q ′
M ′

g
C

q ′′
M ′′

g
g

q ′q ′′
jj ′′ (αjj ′′ )

× {〈
σ

j ′′−
M ′′

g q ′′σ
j−
Mgq

σ
j+
M ′

gq
′
〉
δ

(Mg+q)(M′
g+q′)

}
. (6)

In order to solve for the one-atom correlation operators,
one must solve for the two-atom correlation operators, and
then the three-atom correlation operators, etc. This produces
a hierarchy of equations that grows exponentially with N .
Because of this, the expectation values of the correlation
functions are often factorized in the following way:〈
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keeping in mind that we have stochastically assigned a value
of M

j
g to each atom. This gives
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The approximate equations above are the ones typically used
[5,6,9,18,19] and are exact when Jg = 0 and Je = 1 [9]. The
factorized terms in Eq. (7) are often highly correlated for dense
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systems, making this approximation inadequate. In fact, as
will be demonstrated in Sec. III, their presence changes the
system’s photon scattering in nontrivial ways. A technique
capable of addressing these correlations, while remaining
computationally pragmatic, is required.

C. Reduced master equation

In this section, we develop a system of equations capable of
addressing the correlations that emerge in Eq. (1), in the low-
intensity limit. An alternate, yet physically equivalent set of
equations is presented in Ref. [11]. First, we write the density
matrix in the following way:

ρ̂(t) =
∑
e,e′

∑
m,n

ce,m;e′,n(t) |e,m〉 〈e′,n| . (9)

Here, e represents the number of excitations in a given state
and m is an index that runs over all the states within that
subspace. We assume that the system is initialized in the pure
state |0,g〉 and subsequently driven by a low-intensity laser. In
the low-intensity limit,

|c0,g;0,g| � 1 � |c1,m;0,g| � |c1,m′;1,n′ |. (10)

We also note that the rate of population transfer is ∝ c1,m;1,n�,
while the system approaches a quasisteady state at a rate ∝ �.
Therefore, we neglect the effects of population transfer, i.e.,
terms in Eq. (1), ∝ σ
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shows that the c0,g;0,g density matrix element only couples
to the c1,m;0,g elements, as well as their complex conjugates.
Also, to first order, the c1,m;0,g density matrix elements are
only coupled to the c0,g;0,g as well as the c1,n;0,g elements.
The relevant space of density matrix elements only couples to
states with 〈0,g| as the column state; therefore, the rows and
the columns of the density matrix are completely uncorrelated,
allowing us to rewrite ρ̂(t) as
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dramatically reducing the number of independent complex
numbers needed to describe the density matrix. Further, in the
low-intensity limit, the following properties are true:
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Considering the above approximations,
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The amount of elements in this subspace is N (2Je + 1)(2Jg +
1)N−1, which is considerably less than the 4N (Je + Jg + 1)2N

elements in the full density matrix. This allows us to simulate
clouds of significantly more atoms, while still including the
relevant correlations present in systems with Jg �= 0. An
interesting feature of Eq. (14) is that it is equivalent to
Eq. (8) for ensembles of Jg = 0 → Je = 1 atoms. For this
angular momentum structure, both approaches are exact in
the low-intensity regime and are equivalent to the coupled-
harmonic-oscillator approach typically used in the literature
[2–12,18,19,21,22,39]. This indicates that Eq. (14) may be
viewed as a generalization to these equations.

Equation (14) approaches exactness in the limit where the
system scatters a single real photon. This is shown in Fig. 1.
Here, we compare calculations of the photon-scattering rate γ

for individual configurations of dense clouds of four Jg = 1/2,
Je = 1/2 atoms driven by a plane-wave laser. In this figure, it
is shown that for larger Rabi frequencies, the photon-scattering
rate obtained using Eq. (1) yields different results than Eq. (14).
However, for lower-intensity lasers, the two calculations are
equivalent. Figure 1 also demonstrates that simulations using
Eqs. (8) and (14) produce different photon-scattering rates,
even at low laser intensities. Note that the results from Eq. (14)
approach the exact result [i.e., Eq. (1)], while Eq. (8) does
not. Equation (14) has the capacity to simulate much larger
ensembles than Eq. (1). This is demonstrated in Fig. 2, where
γ for a cloud of 16 atoms is calculated. Simulations with this
many atoms are not possible when using Eq. (1) since the
number of elements in the density matrix is more than 1013

times larger than the number required to use Eq. (14).

D. First-order correlations

While Eq. (14) allows one to simulate clouds containing
significantly more atoms than Eq. (1) does, its computational
capacity falls short of the ability to simulate clouds containing
hundreds of atoms. Since this regime is that of recent experi-
ments [6,9], an algorithm that can both simulate hundreds of
atoms and still keep the most relevant correlations is needed.
In order to accomplish this, we truncate the set of terms that
Eq. (14) spans.

First, the system is stochastically assigned the pure state
with zero excitations, labeled |0,g〉. Here, and in the rest
of this work, we assume a ẑ polarized laser. Upon a given
initialization, the set of c1,n |1,n〉 〈0,g| obtained through all
permutations of the following operation is kept:

σ
j ′+
M ′′

g q ′′σ
j−
M ′

gq
′σ

j+
Mg0 |0,g〉 , (15)

while all other terms are set to zero. In other words, we keep the
terms that are obtainable through an absorption of a single ẑ
polarized photon from the laser, as well as the states obtainable
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FIG. 1. Comparison between the photon-scattering rates γ , cal-
culated using Eq. (1) (solid lines), Eq. (8) (dotted lines), and the
approximate Eq. (14) (dashed lines), for a single, dense, randomly
distributed, Gaussian ensemble of four atoms. (a) Comparison of
the photon-scattering rate for systems being driven with a laser
such that V = 0.4�, where V ≡ |Ez||D|/2h̄. This is shown for both
on-resonance light, � = 0, and blue-detuned light, � = 1.1�. (b)
The same comparison for V = 0.025�. This demonstrates that the
two calculations give the same answer as V/� → 0. Note that the
discrepancies between calculations using Eq. (8) and using Eq. (14)
do not diminish with laser intensity.

through the exchange of one photon between atoms. This is
useful because the size of the relevant space scales ∝ N2 as
opposed to exponentially. Unlike Eq. (14), this algorithm’s
scaling with N is independent of the level structure of the
system, allowing for the simulation of large clouds of atoms
with complex angular momentum structures. The following
sections demonstrate that these approximations yield accurate
results in many relevant systems.

III. RESULTS

A. Photon scattering in an array of atoms

The collective nature of dipole-dipole interactions in a
one-dimensional array has been shown to produce nontrivial
radiative properties [9,19,30,39]. For this system, we show
the importance of correlations between degenerate Zeeman
ground states by demonstrating their effect on the photon
scattering of an array containing Jg = 1/2 → Je = 1/2 atoms.
Here the array is aligned along the ŷ direction, while the laser
is a plane wave propagating along the x̂ direction and polarized
in the ẑ direction. All of the results here are for an initially

FIG. 2. The photon scattering γ for a single stochastically
generated cloud of 16 Jg = 1/2 → Je = 1/2 atoms vs time.

uncorrelated mixture of Zeeman ground states, where every
value of Mg has an equal probability. For all the calculations
shown, this is simulated by stochastically averaging over 320
runs where every atom is assigned a random value of Mg .

The results from Eq. (14) are compared with the results
from both Eqs. (8) and (15). This is, to some extent, a
good quantification of the importance of correlations in the
photon-scattering process. Equation (14) contains correlations
between Zeeman states to all orders, Eq. (15) only includes
the correlations resulting from a single virtual photon
exchange between states, while Eq. (8) contains none of these
correlations.

Figure 3 compares the steady-state photon scattering rate
γ versus detuning � for an array of atoms using Eqs. (8),
(15), and (14). In the figure, it is seen that for array spacings
of 0.6λ, the photon-scattering line shape is equivalent using

-3 -2 -1 0 1 2 3

(a
rb

. u
ni

ts
)

FIG. 3. The photon scattering γ vs � for 1D arrays of ten
Jg = 1/2 → Je = 1/2 atoms. The line shape is calculated using
Eq. (8) (dotted lines), Eq. (15) (solid circles), and Eq. (14) (solid
lines) for various array spacings δr . Note that for larger values of δr ,
the two calculations agree well, indicating that correlations between
degenerate Zeeman states are less important. However, for smaller
array spacings, the effects of correlations on the photon scattering are
clearly seen.
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all three methods. This indicates that in this regime, higher-
order correlations do not play a significant role in the system.
Since the rate of virtual photon exchanges between states is
∝ 1/δr3, for smaller array spacings, correlations develop and
the photon-scattering line shapes given by the three methods
become qualitatively different. This is shown in Fig. 3, where
for array spacings of δr = 0.2λ, the line shape calculated using
Eq. (8) is still a Lorentzian structure, while the line shapes
calculated using both Eqs. (14) and (15) have deviated from
a Lorentzian shape, clearly forming double-peaked structures.
The figure demonstrates that for this value of δr , many of
the differences between Eqs. (8) and (14) can be explained
by the first-order correlations given by Eq. (15) since two the
calculations produce similar results. For even smaller array
spacings, however, the results between all three calculations
qualitatively differ. This is indicative of the fact that here, even
higher-order correlations need to be included.

B. Photon scattering in a cloud of atoms

In this section, we calculate the line shape of the scattered
radiation from a Gaussian cloud, with an average density N =

N
σxσyσz(4π)3/2 and a distribution

ρ(r) = N

σxσyσz(2π )3/2
exp

(
−

{
x2

2σ 2
x

+ y2

2σ 2
y

+ z2

2σ 2
z

})
,

(16)

driven by a plane-wave laser polarized in the ẑ direction. This
system is of particular interest due to recent experiments on
cold clouds of 87Rb [6,9]. 87Rb has two hyperfine ground states:
(5S1/2F = 1) and (5S1/2F = 2). In these two experiments,
the atoms are optically pumped into the (5S1/2F = 2) ground
state, and the closed transition to the (5P3/2F = 3) excited
state is probed. Presently, we demonstrate that such correla-
tions make nontrivial differences in the optical properties of
clouds. We should note that this section is incomplete with
respect to the task of simulating the experimental results of
Refs. [6,9] since it assumes, among other things, that the initial
ground state is a completely uncorrelated mixture of Zeeman
sublevels. However, it does demonstrate that these correlations
play a vital role in understanding the line shape of a cloud. All
of the results here are for an initially uncorrelated mixture of
Zeeman ground states, where every value of Mg has an equal
probability of being populated. For all the calculations shown,
this is simulated by stochastically averaging over 6000/N runs
where every atom is assigned a random position and value
of Mg .

To start, Fig. 4 shows the importance of correlations for
spherically symmetric clouds of ten Jg = 1/2 → Je = 1/2
atoms. Here all three calculations have been compared for
different values of Nλ3. Again, one can see that Eq. (8) is
insufficient to describe the photon scattering of the system.
While Eq. (14) allows for the simulation of clouds of atoms
that were previously unreachable, experimental relevance still
requires significantly more atoms. Fortunately, Fig. 4 shows
that for values of Nλ3 < 40, which are relevant to Refs. [6,9],
only first-order correlations are needed to obtain reasonably
good agreement with Eq. (14). This shows that for these
densities, keeping only the first-order correlations is sufficient.

-3 -2 -1 0 1 2 3

N = 10
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)

FIG. 4. The photon scattering for spherically symmetric Gaussian
clouds of ten Jg = 1/2 → Je = 1/2 atoms vs detuning � for various
densities N . The importance of correlations between degenerate
Zeeman ground states is shown by comparing Eq. (14) (solid lines),
Eq. (15) (solid circles), and Eq. (8) (dotted lines). Note that the figure
shows reasonable agreement between the results of Eqs. (14) and
(15). This shows that for the values of N shown, most of the relevant
physics is described by first-order correlations.

Understanding the utility of keeping only the first-order
correlations, we may apply our calculations to systems of
experimental interest, i.e., atoms with Fg = 2 → Fe = 3. In
Fig. 5, we compare the photon-scattering line shape of a
spherically symmetric cloud of 80 atoms using both Eq. (8),
which includes no correlations, and the calculations keeping
the first-order correlations; see Eq. (15). The presence of
first-order correlations broadens the line shape to a nontrivial
degree, suppressing the on-resonant scattering in particular.
This again indicates the importance of correlations between
Zeeman states upon calculating the line shape.

FIG. 5. The photon scattering for a spherically symmetric Gaus-
sian cloud of 80 Jg = 2 → Je = 3 atoms. The dotted line corresponds
to the results obtained using Eq. (8), which includes no Zeeman
correlations, while the solid line is the calculation that includes the
first-order correlations, given by Eq. (15).
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FIG. 6. |S(ω)|2, where S(ω) is the transfer function defined in
the text, vs laser detuning �. The dotted line corresponds to the
results obtained using Eq. (8), which includes no Zeeman correlations,
while the solid line is the calculation that includes the first-order
correlations, given by Eq. (15). The solid circles correspond to the
experimental data originally reported in Ref. [9] and the calculations
are conducted for these experimental specifications, as described in
the text.

Reference [9] reports the coherent light transported through
a cloud of atoms. They observe the transfer function,

S(ω) = (El + Es) · ẑ
El · ẑ

= 1 + Es · ẑ
El · ẑ

, (17)

which is essentially a quantification of the interference
between the electric field from the laser, El , and the electric
field scattered off of the atoms, Es , at the position of the
detector. In Fig. 6, we compare the results from both Eq. (8)
and the calculations that keep the first-order correlations in
Eq. (14). This simulation uses the experimental parameters
given in Ref. [9]. The cloud now has a fixed size, i.e.,
σx = 1.5λ, σy = σz = 0.25λ, which for the clouds of 10 and
83 atoms shown give values of λ3N � 2.4 and λ3N � 19.9,
respectively. Unlike the previous simulations given above,
the probe beam is now a linearly polarized Gaussian laser
propagating in the x̂ direction, with an amplitude

El,z(r) = E0

1 + i x
xR

exp

[
ik

y2 + z2

2q(x)

]
exp[ikx], (18)

where 1
q(x) = 1

R(x) + 2i
kw2(x) , xR = kw2/2 is the Rayleigh

length, w(x) = w
√

1 + x2/x2
R , E0 is the field amplitude,

and R(x) = x + x2
R/x, where w = 1.54λ is the waist of the

laser. When comparing with the experimental data, one can
see that the inclusion of correlations between Zeeman states
does not explain the difference between the observations and

the calculations. While, similar to experimental observations,
the calculations that include Zeeman correlations have a
significantly smaller redshift than the results obtained using
Eq. (8), the calculated line shape is still non-Lorentzian.
This differs from experiment, where the key qualitative
experimental observation is that the line shape is Lorentzian
[9]. This could indicate that the assumption of an initial,
completely uncorrelated mixture of Zeeman states is incorrect.

IV. CONCLUSION

In this work, it is demonstrated that in certain atomic
systems, correlations between degenerate Zeeman ground
states can have an important effect on the scattered light. This is
first shown for one-dimensional (1D) arrays of atoms, where
such correlations qualitatively change the photon-scattering
line shape of a closely spaced array. It is also shown that for
Gaussian clouds of multilevel atoms, the photon-scattering rate
can be nontrivially changed by these correlations.

In order to simulate these regimes, we developed a set of
equations capable of accurately simulating large ensembles of
atoms coupled to the electromagnetic field, compared to the
full master equation. For Jg = 0 atoms, this system is identical
to the coupled-harmonic-oscillator equations commonly used
in the literature, allowing Eq. (14) to be interpreted as a
generalization of this approach. While this set of equations
is capable of probing different regimes (see Fig. 3), it falls
short of the capacity to simulate the large ensembles of
atoms present in many experiments. Because of this, an
approximation capable of simulating ensembles of the order
of hundreds of atoms is developed; see Eq. (14). It is then
demonstrated that in many systems, this approximation gives
nearly identical results to Eq. (14), indicating its potential
utility in reproducing experimental results in the future. Thus
far, the effects of nondegenerate Zeeman structures have
remained largely unexplored. In many cases, such atoms are
often replaced by two-level atoms with modified dipole-dipole
interactions. This work demonstrates that this approach is
often inadequate since more complicated angular momentum
structures result in correlations that produce rich physics and
many systems cannot be understood unless this is explicitly
considered.
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