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Coherent dipole transport in a small grid of Rydberg atoms
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We calculated the motion of one or two excitons through a small grid of Rydberg atoms. Both one- and
two-dimensional grids were studied with the number of sites in a direction between 4 and 10. To mimic the
possibility of nonperfect filling, calculations were performed with atoms randomly missing from sites. Results
are presented for four qualitatively different situations. (1) The corners and edges, with the randomness of
nonperfect filling, strongly affects the exciton motion and can pin the exciton. (2) For the case where a single
exciton is simultaneously generated at two sites, the direction in which the exciton moves can be controlled by
imprinting a phase difference on the two adjacent sites. (3) For the case where two excitons are generated at
adjacent sites, calculations where a pair of excitons move through the grid are compared to the one exciton case
to see whether exciton-exciton correlations are measurable. (4) The grid version of an exciton current can be
defined by analogy to a continuity equation in one dimension and by using the analogy to a velocity operator in
one, two, or three dimensions; for one dimension, the two definitions give similar results which means the direct
measurement of the current in one dimension is possible.
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I. INTRODUCTION

The transport of particles or energy or charge or spin, etc.
through a system has been of fundamental interest in science
from the earliest investigations through today. Transport
necessarily involves the coupling between spatially separated
regions of the system and the specific behavior of the transport
is determined by the coupling. In this paper, we investigate
the motion of an excitation (exciton) through a small grid
of Rydberg atoms where the coupling is due to the 1/R3

dipole-dipole interaction between states on atoms separated
by a distance R. Unlike our recent study [1] where we focused
on randomness in systems of several tens of thousands of
atoms, we will investigate how an exciton moves through a
small grid of Rydberg atoms, often less than 10 atoms total.
For an experimental realization, the only condition necessary
is for one atom or a couple of atoms to be in a Rydberg state
with angular momentum � with the others being in a state with
angular momentum differing by one, i.e., � ± 1. We treat the
case where one atom is (or a couple of atoms are) in a Rydberg
p state and all of the others are in a Rydberg s state. The
dipole-dipole interaction allows the p character to hop from
atom to atom.

The idea of Rydberg excitations hopping through a (nearly)
frozen gas of atoms goes back to the original experiments on
Rydberg gases [2,3] where a dense gas of Rydberg atoms led to
some states changing character. After changing character, the
excitations could hop through the “sea” of excited states. Since
the Rydberg states were generated from a gas of randomly
placed atoms, the character of the exciton hopping was strongly
affected by the random coupling between atoms. How an
exciton hops through a completely random Rydberg gas was
investigated in Refs. [4,5] with Ref. [5] showing that the
exciton is typically trapped in a region of two or three atoms
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in a random gas, which is consistent with the measurements in
Ref. [6].

The interaction of a pair of atoms through the near-field
form of the dipole-dipole interaction decreases with distance
like 1/R3. The near-field form of the dipole-dipole interaction
is appropriate because the energy difference between pairs of
Rydberg states with principal quantum number n corresponds
to frequencies of order ω ∼ 1/n3; the wavelength of the light
associated with this frequency is typically many orders of
magnitude larger than the separation of the atoms and/or
the total size of the system. The appropriateness of this
approximation has been checked experimentally and can lead
to different physical processes. For example, the dipole-dipole
interaction can lead to the suppression of excitation in a gas
and Ref. [7] observed the case where one atom prevented
the excitation of more than 1000 atoms. References [8,9]
observed this suppression between two individual atoms.
The coherence of the dipole-dipole coupling between a pair
of Rydberg atoms was investigated in Ref. [10]. Reference
[11] provided spectroscopic evidence for the dipole-dipole
interaction between cold Rydberg atoms. As a final example of
basic phenomena, Ref. [12] gave experimental and theoretical
evidence for spatially resolved observation of the effect
of dipole-dipole interactions between Rydberg states and
Ref. [13] measured the energy exchange between spatially
separated Rydberg atoms.

All of the calculations in this paper have as the starting
point a regular array of Rydberg atoms with a certain fraction
of atoms randomly missing from sites. The exciton(s) will start
at certain sites and the time evolution of the wave function will
be coherent. We will not address how realistic this situation is
but note that the necessary technology appears to be available.
Reference [14] describes trapped Rydberg atoms in an optical
lattice. Another method for creating a Rydberg array could
start with atoms trapped in an optical lattice with a subsequent
excitation to a Rydberg state. The calculations of Ref. [15]
gave an optimal choice in laser parameters that could lead to
Rydberg atoms being in a regular spatial array even though the
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unexcited atoms are randomly distributed. On a similar note,
Ref. [16] used polar molecules confined in an optical lattice to
investigate the time evolution of coherently excited dipoles.

We only treat the case of one (or a couple) exciton(s)
moving through a lattice. There have been several studies of the
many-exciton case for Rydberg gases (e.g., see Refs. [17–22]),
but the behavior of many excitons is beyond the scope of this
paper. There have been several studies of exciton transport
similar in spirit to the calculations presented here. Reference
[23] considers an interesting case of using Rydberg dressing
to effect transport of a more compact state. A similar system
was studied in Ref. [24] but dissipation was introduced
through coupling to states with short lifetimes. Reference [25]
experimentally imaged the dipole-dipole-mediated transport
of excitations between Rydberg atoms. The manifestation of
excitation transport in the energy spectra of atoms interacting
through the dipole-dipole term was numerically studied in
Ref. [26]. We investigate the case of having the atoms placed
on a lattice of sites with a specified amount of randomness in
the fraction of sites with missing atoms. Within investigations
using Rydberg atoms, Refs. [27,28] have addressed random-
ness within a lattice of atoms, up to six sites in Ref. [27]
and two sites in Ref. [28]. Also, Refs. [4,5] investigated
how an exciton hops through a completely random Rydberg
gas. Lastly, Refs. [29,30] treated the case of exciton motion
with “heavy-tailed disorder” in the diagonal elements of the
Hamiltonian.

We perform calculations for the coherent transport of
excitons through a lattice of Rydberg atoms. The exciton(s)
start at specific sites and the wave function is propagated by
using a Schrödinger equation in an effective-state basis set.
Thus, the calculations should capture all of the interference
effects that can lead to Anderson localization and represent a
special case of interacting particles in a random potential [31].
Conversely, because we do not include any types of dissipation,
the percolation or diffusive transport is not represented. All of
the calculations are presented for perfect lattices, for lattices
with 20% of the atoms randomly missing, and for lattices with
50% of the atoms randomly missing; while the missing atoms
lead to a decrease in the average strength of the interaction,
our results are not consistent with this being a dominant effect.
The atoms are assumed to be frozen in space for the short time
represented by the calculations. We focus on cases where there
are relatively few atoms so that the effects of edges and/or
corners become important. For example, Ref. [1] found that
randomness in large two-dimensional arrays with wrapped
boundary conditions did not lead to a large number of highly
localized states. The results presented below show that an
edge or corner in addition to the randomness will often lead to
strongly localized states. Also, interesting interference patterns
emerge during the exciton motion due to reflection from edges
and corners. We also present calculations for the case where
the motion of a single exciton can be guided if it can be split
between adjacent sites with one site imprinted with a phase.
For the type of exciton studied here, the motion is directed
opposite to the phase increase (negative group velocity), as
expected from the bands reported in Ref. [27]. In addition, we
give two definitions of the exciton current (one that can be used
only from experimental observables and one that requires the
exciton wave function) and compare them for a simple line of

atoms. Finally, we present results for two coherent excitons and
show that the restrictions on the exciton wave function leads to
correlation even though there is no interaction between pairs
of excitons.

Atomic units are used unless explicit SI units are given.

II. COMPUTATIONAL METHOD

For the calculations in this paper, we treat the case where
one or two atoms have p-state character and the rest have
s-state character. The dipole-dipole interaction is largest if the
s and p states have a similar principal quantum number. For
the cases treated in this paper, we chose the 30s and 30p

states of Rb. The specific choice of angular momentum, n, and
atom will affect the details of the exciton hopping but does not
change the qualitative features.

The computational techniques are the same as in the part of
Ref. [1] regarding the time-dependent calculations; these are
Figs. 1, 3, 5, and 7 of Ref. [1]. The exciton(s) is (are) treated as
a coherent quantum system. The atoms are assumed to be fixed
in space over the relevant time scales and, thus, the character of
the different atoms evolves through a quantum wave function

i∂�/∂t = H�, (1)

where the � contains the amplitudes for the different combina-
tion of states of each atom. We numerically solve this equation
by using the leapfrog algorithm:

�(t + δt) = �(t − δt) − 2iδtH�(t), (2)

which has a one time step error of order δt3. The leapfrog
algorithm has two nice features when H is time independent:
it exactly conserves the norm of � and exactly conserves 〈Hn〉
with n an integer.

The special case discussed here (p-state coherent motion
through a sea of s states) is treated as Eq. (6) in Ref. [27]. For
one exciton, the basis states can be labeled as |i,m〉, meaning
the p state is at site i with angular-momentum projection m.
In this special case, the nonzero matrix elements reduce to

Vim,i ′m′ = −
√

8π

3

(
dna1,nb0

)2

R3

× (−1)m
′
(

1 1 2
m −m′ m′ − m

)
Y2,m′−m(R̂), (3)

where the dna1,nb0 is the reduced matrix element between the
p state with principal quantum number na and the s state with
principal quantum number nb, (. . .) is the usual 3-j coefficient
and �R = �ri − �ri ′ is the displacement vector between sites i

and i ′. For two excitons, the basis states can be labeled as
|i1,m1; i2,m2〉 with i2 > i1.

For the general case, the nonzero matrix elements are
complex. In order to treat the largest number of atoms, we
further restricted the p state to have m = 0. This can be
accomplished experimentally by having an external field so
that the m = 0,1, − 1 states are sufficiently separated in energy
so that the motion does not mix m. Now the basis state can be
designated solely by the site i and the nonzero matrix elements
reduce to

Hii ′ = Vii ′ = −2

3
P2(cos θii ′ )

(
dna1,n,b0

)2

R3
, (4)
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where P2(x) = (3x2 − 1)/2 is a Legendre polynomial and
cos θii ′ = (zi − zi ′)/R. This expression is only for i �= i ′; when
i = i ′, the matrix element is 0: Hii = 0. For the two-exciton
case, the nonzero matrix elements reduce to

Hi1i2,i
′
1i

′
2
=

2∑
a=1

2∑
b=1

Hia,i
′
b
δi3−a,i

′
3−b

, (5)

where the one-exciton operator is from Eq. (4). If there are
N atoms, there are N one-exciton states and N (N − 1)/2
two-exciton states.

For atoms in a two-dimensional grid, the number of
atoms scales as N = N2

1 with N1 being the number of sites
in one direction; the number of two-exciton states for a
two-dimensional grid is N (N − 1)/2 � N4

1 /2. The number of
operations in one time step of Eq. (2) is from a matrix-vector
multiply, H�, and is proportional to the square of the number
of states. Thus, the number of operations involved in one time
step for the two-exciton problem in two dimensions scales like
N8

1 . Thus, the two-exciton calculations can transition from
computationally easy to “impossibly” long over a small range
of N1.

For the calculations with nonperfect filling, the results
were obtained by averaging over many different random
configurations. Each configuration was constructed by using
a random number generator to randomly decide whether or
not a site was occupied by a Rydberg atom. Thus, the number
of atoms in any run fluctuated with each configuration. If
there was no atom at the initial site of an exciton, then that
configuration was not used. If there was an atom at the initial
site of every exciton, then the Eq. (2) was solved and the
probability for an exciton to be at each site was stored and
averaged over many configurations. This mimics the way
an experiment would work if performed with destructive
measurement of the exciton position.

III. RESULTS

In all of our calculations, we use the 30s and 30p states of
Rb as our sea and excitation states, respectively. The size of
these states is less than 0.1 μm. The standard step distance
between atoms will be 10 μm. Thus, the interactions of
higher order than dipole-dipole are negligible. These states
have dipole matrix element d30s,30p = 846 a.u.; this value was
obtained by using the numerical method described in Ref. [32]
but based on the updated quantum defects in Ref. [33]. For
the one- and two-dimensional calculations, the atoms will be
confined in the xy plane, which means there is no angular
dependence to the matrix elements coupling different states.

A useful quantity is the energy scale of the matrix element
between nearest neighbors: Esc ∼ d2/R3 = 1.06 × 10−10 a.u.
We can convert this to a timescale by tsc = 2π/Esc = 5.93 ×
1010 a.u. which is 1.43 μs. This gives a sense of the timescale
needed for the p state character to move from site to site. The
Hamiltonian can be scaled in terms of d2/R3, which means
our results can be scaled in a similar way. For example, the
timescale is decreased by a factor of four if the dipole matrix
element is a factor of two larger; the timescale is decreased by
a factor of eight if the separation between atoms is a factor of
two smaller.

FIG. 1. The average number of sites for the p state to have moved
in the x direction when the exciton starts at the lower-left corner of
a two-dimensional array (blue) or at the center of the left edge of the
array (red). The array has 7 × 7 possible sites. For the corner initial
position, the solid line is for 0% missing atoms, the dotted line is for
20% missing atoms, and the short-dash line is for 50% missing atoms.
For the “center of left edge” initial position, the dash-dot line is for
0% missing atoms, the dash-dot-dot-dot line is for 20% missing, and
the long-dash line is for 50% missing.

A. One exciton starting at a corner or edge

In this section, we present the results of calculations where
the wave function has a single exciton that initially is at a
corner or an edge position. For all of the calculations, we show
the results for a 7 × 7 array of atoms, although the 5 × 5 and
9 × 9 arrays showed similar results.

Figure 1 shows the average distance the exciton has hopped
in the x direction divided by the distance between adjacent
sites. Results are shown when the exciton starts at the lower-left
corner of the array and for when it starts at the center of the
left edge of the array. The ordinate of Fig. 1 can be thought
of as the average number of sites the exciton has moved in
the x direction. By symmetry, the average distance hopped in
the y direction will be the same as the x direction for a corner
start. For the center-edge initial position, the average distance
hopped in the y direction is 0 by symmetry.

Some of the general features should be expected. For
example, as the fraction of missing atoms increase, the distance
the exciton hops at early times decreases. This arises because
missing sites mean the exciton must hop further to reach
the next atom. However, the decrease is not simply due to
the decrease in the interaction strength but is more due to
a missing site blocking the motion of the exciton. If 	x is
divided by the fraction of missing sites, then all of the curves
are approximately the same for times less then �1 μs. This
scaling would not result if the time was scaled by the average
decrease in coupling, d2/R3, but does result if the early-time
motion to the next site is blocked a fraction of the time. Also, it
might be expected that a perfect array will lead to the exciton
hopping quickly to the other side of the array with something
like ballistic transport but with substantial spreading due to the
highly localized initial state; thus, the solid and the dash-dot
lines show an early-time peak of ∼4 sites.
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Perhaps surprisingly, the early-time behavior (t < 1.5 μs)
of the exciton does not show a strong effect on whether the
exciton starts in a corner or at an edge. The early-time increase
in 	x is very similar even though the corner start is effectively
missing atoms below it. This result is due to the fact that the
early-time behavior of 	x is only determined by the presence
or absence of atoms immediately to the right of the starting
position. For the exciton to hop up or down and then right
(which is available for an edge start but not down for a corner
start) requires a longer time and shows up later in the graph.

For the case with missing atoms, the long-time behavior
of the hopping seems to lead to a finite size 	x noticeably
less than the average for the array, which is three. As the
randomness increases from 20% to 50%, it is not surprising
that the average hopping distance decreases. However, it is
somewhat surprising that the hopping distance is so small.
From Ref. [1], it seems that there is not a large amount of
localization in two dimensions (for example, see Figs. 5 and
6 of Ref. [1]) even for a large amount of randomness. This
was explained as being due to the many paths an exciton can
take through a two-dimensional (2D) lattice even when many
sites are missing atoms. However, Fig. 1 for 50% missing
has an average hopping distance of ∼1.5 sites at late times,
which indicates most excitons are pinned within one or two
sites of the edge. The small hopping distance in Fig. 1 is due
to the additional “defect” from the edge of the lattice itself
which helps to pin the exciton compared to the calculations of
Ref. [1] where there were no edges. Finally, it is not surprising
that the late-time value of 	x does not depend on the starting
position since the exciton will move in y as well so that the
initial y position will not be so important.

Figure 2 shows the probability that the exciton is in the
column with site x at different times when the exciton starts
in the lower-left corner of the array. As above, these results
are for a 7 × 7 array but similar-size arrays give a similar
result. The results in this figure correspond to 50% filling of

FIG. 2. Same arrangement as Fig. 1 for 50% filling. The prob-
ability for the exciton to be in the column with site x at different
times: solid (1 μs), dotted (2 μs), dashed (3 μs), dot-dash (4 μs), and
dash-dot-dot-dot (10 μs). x = 1 is the leftmost edge of the array and
x = 7 is the rightmost edge. At t = 0, the exciton is in the lower-left
corner of the array.

the sites. At t = 0, the probability to have x = 1 is 1. Even
before the scale time of tsc ∼ 1.4 μs is reached, the exciton has
substantial population in the columns two and three at 1 μs.
By 2 μs, the population in each column has nearly reached
the late-time value with the main exception being the farthest:
columns five to seven. Note that, even at the latest time, there
is only a population of �1/20 in column seven compared with
a roughly statistical value of �1/7 for the case with no missing
atoms. This figure shows that an experiment would not need
substantial delays to obtain the late-time distribution of an
exciton if there is a large fraction of missing atoms. It also
shows that the exciton is somewhat pinned to the left edge of
the array with ∼3/4 of the population in columns one to three.

Figure 3 shows the 2D probability for the exciton to be
at different positions after 2 μs when starting at the middle
of the left edge. The different filling probabilities are 0%
missing [Fig. 3(a)], 20% missing [Fig. 3(b)], and 50% missing
[Fig. 3(c)]. From Fig. 3(c), it is clear that the exciton does not
move far during this time when 50% of the sites are missing;
even in Fig. 3(b), there is a substantial population still at the
initial site while there is very little remaining at the initial
site for perfect filling. This is another indication that the edge
plus randomness can pin the exciton. Figures 3(a) and 3(b)
show an interesting feature: the highest probability is for the
exciton to be either above or below the initial position. For the
0% missing case, the highest probability is at the upper and
lower edges of the array. For the 20% missing case, the highest
probability is for the exciton to remain in place. However, the
next highest probabilities are at the (x,y) = (2,4 ± 2) sites
(i.e., shifted to the right by one site and up or down by two
sites).

B. One exciton: coherent superposition of two sites

In Ref. [27] is a discussion of the band structure of an
exciton that hops by using the dipole-dipole interaction (see
Figs. 2, 3, and 4 for one-, two-, and three-dimensional arrays).
Although the bands are an infinite, perfect lattice property,
there are features of the bands that are manifest in finite,
imperfect arrays. One of the simplest properties is the transport
of an exciton when adjacent sites are given different phases.

We performed calculations for one exciton with an initial
wave function that was the coherent superposition of two sites.
One can choose the sites to mimic various directions in �k. As
an illustration, we chose to have �k to be in the x direction.
The wave function at t = 0 had the form �(0) = [|ix,iy〉 +
exp(iφ)|ix + 1,iy〉]/

√
2 where |ix,iy〉 indicates the exciton is

at the site (ix,iy). For small positive φ, the wave function
mostly projects onto states with positive kx . As φ increases,
the average kx also increases.

Figure 4 shows results for a perfect 6 × 6 lattice where the
exciton is started with the mixture [|3,3〉 + exp(iφ)|4,3〉]/√2.
The plot shows how far the exciton moves from its initial
expectation value of 〈x〉(0) = 3.5 in units of sites. The different
curves correspond to different values for φ. There is only one
curve for negative φ because the 	x changes sign if φ changes
sign for the symmetric starting condition in this figure.

The initial change in position with respect to time is positive
for negative values of φ (and, hence, negative kx) and is
negative for positive values of φ. This may be the opposite
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FIG. 3. Same arrangement as Fig. 1. The probability (with
arbitrary normalization) for the exciton to be at different sites at
t = 2 μs for (a) 0% missing, (b) 20% missing, and (c) 50% missing.
The different shades represent a linear decrease in probability. The
initial position of the exciton is at the middle of the left edge: x = 1,
y = 4. The legend in panel (c) is for all figures.

of what a casual reader expects but it agrees with the results
plotted in Fig. 3 of Ref. [27]. The case where the p orbital is
oriented out of the plane corresponds to the band that starts at
ε � 1 at k = 0 and decreases from that value. A band with a
decreasing ε versus k corresponds to a negative group velocity.

FIG. 4. Similar to Fig. 1 but with different array size and initial
conditions. The change in the average x for an exciton coherently
excited at neighboring sites for a 6 × 6 array with 0% missing. The
two sites (x,y) = (3,3) and (4,3) are equally excited with the latter
site having phase φ relative to the first. The solid line is for φ = π/8,
the dotted lie is for φ = −π/8, the short dashed line is for φ = π/4,
and the dash-dot line is for φ = π/2.

At later times (starting ∼1 μs), the exciton reflects off of the
lattice edge and starts to move in the opposite direction.

Although the results are not presented in this paper, we also
performed calculations for randomly missing sites. The results
are similar to those presented in previous sections. The results
for 20% missing have the same generic behavior as in Fig. 4
but the average 	x does not increase or decrease as rapidly as
the perfect-lattice case; also, the largest change in position is
not as big as for the perfect lattice. The results for 50% missing
have even smaller contrast than the 20% missing case.

The results of Fig. 4 show that there can be considerable
control over the exciton motion even starting with only a two-
site coherence. If there were different angular momenta and/or
polarization of the exciton, the band character can substantially
change. Thus, measuring how the exciton moves when started
with two-site coherence, even in a small grid of Rydberg atoms,
will give insight into the exciton band(s).

C. Definition of probability current

The probability current �J is defined as �J =
(�/[2Mi])[�∗ �∇� − � �∇�∗] for a particle moving through
space. This definition is derived from the Schrödinger equation
in nearly all textbooks on quantum mechanics (see, e.g.,
problem 1.14 of Ref. [34]). This definition is not applicable for
the exciton hopping through a lattice due to the discreteness
of the exciton position. However, the instantaneous current
density could be an interesting quantity for the hopping exciton
because it gives insight into the motion at a particular time: a
given density at time t , ρ = �∗�, does not determine J . For
example, � ∝ exp(ikx − αx2) gives the same ρ independent
of k while �J is proportional to k. Although this definition
of probability current cannot be applied for the exciton
hopping through the finite lattices, the current density can
be generalized by using a velocity operator defined as

�v ≡ −i(�rH − H �r ). (6)
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For the exciton Hamiltonian of Eq. (4), the x component of
the velocity operator is

(vx)jj ′ = −i(xj − xj ′ )Hjj ′ , (7)

and the x component of the current density can be defined as

(Jx)j = Re

[
ψ∗

j

∑
j ′

vjj ′ψj ′

]
, (8)

where j is the index that specifies the lattice site of the exciton.
This definition presumes the knowledge of the wave function
at all sites and can only be extracted from calculations.

For the one-dimensional case, it is possible to define a
current density that only uses the time derivative of the
probability for the exciton to be on each site. This definition
is of interest because it can be implemented in an experiment
to show the flow of exciton probability. We artificially expand
the grid for the exciton to be extended from the sites 1 − N

to the sites 0 − (N + 1) but the probability for the exciton to
be at sites 0 or N + 1 is always 0. For the definition of the
current density, we define the Jx to be at the half-integer grid
1/2,3/2, . . . ,N + 1/2. Since the exciton sites 0 and N + 1
always have 0 probability, we define the current density at
the 1/2 and N + 1/2 sites to be 0 because the population of
excitons at sites 0 and N + 1 do not change with time. For all
other sites, we define

dρ(ix,t)

dt
≡ −[Jx(ix + 1/2,t) − Jx(ix − 1/2,t)], (9)

where ρ(ix,t) = |�(ix,t)|2 is the probability for the exciton
to be at site ix at time t . The right-hand side is a definition
of how the current changes if the probability is restricted to
local hopping. This is not the case when sites beyond nearest
neighbor can contribute to the exciton motion. However, this
definition will allow for a qualitative picture of the flow of the
exciton through the lattice.

The case of a line of six atoms is shown in Fig. 5 for a
different fraction of missing atoms. The exciton is started at
the first x site. The two definitions, Eqs. (8) and (9), give
similar currents for the times shown even though they are
based on completely different definitions. Thus, even though
the definition in Eq. (9) is only qualitatively relevant, the
resulting current densities give information about how the
exciton moves through the lattice of atoms. The definition
of J means the current at site 1/2 is exactly 0 at all times.
Conservation of norm means the current is also exactly 0 at all
times for site N + 1/2.

There are qualitative features for this specific example that
highlights some of the physics processes. At 1 μs, the largest
current is for the case of 0% missing atoms and is smallest
for 50% missing atoms. This matches the expectation that the
exciton moves most easily through a perfect lattice. For 0%
missing atoms, the exciton moves to larger x for 1 and 2 μs
and reflects off the lattice edge and moves to smaller x for
3 μs. This is seen in the current which is positive and moving
to the right for 1 and 2 μs but is negative (indicating motion
to the left) and peaked near the end of the lattice at 3 μs.
One nontrivial feature is that the current for both the 20%
and 50% missing sites are noticeably negative at small x for
2 μs. This feature is from the reflection of the exciton off

FIG. 5. The current density defined in Eq. (9) for a line of six
atoms at three different times. For the definition of Eq. (8), the current
is only defined at the sites; the line is to guide the eye. The dash-dot
line (triangles) is the case of 0% missing atoms. For the definition
of Eq. (9), the current is only defined on the half-integer points; the
lines are to guide the eye. The exciton is started at the first x site. The
case of 0% missing is the solid line (plus signs), the 20% missing
is the dotted line (crosses), and the 50% missing is the dashed line
(diamonds). All curves have been scaled by the same factor.

missing sites which gives a left-moving population at early
times. This reflection from missing sites leads to population
reflecting from the left edge of the lattice at 3 μs which gives
a noticeable positive current at small x at that time.

The one-dimensional current, Eq. (8), can be easily general-
ized to two or three dimensions. However, there is not enough
information in dρ(ix,iy,t)/dt to constrain a definition of a
vector current Jx(ix,iy,t) and Jy(ix,iy,t) similar to Eq. (9) since
there are 2(N − 1)N unknowns and only N2 − 1 independent
equations. However, integrals along a line of atoms can give
the total current in the x or y direction. For example, in Eq. (9),
the density can be generalized to ρ(ix ,t) ≡ ∑

iy
ρ(ix,iy,t). This

could lead to some insight into how the exciton hops through
two-dimensional arrays.

D. Two coherent excitons

Although two excitons do not directly interact with each
other, the restrictions on the wave function lead to an effective
interaction which cannot be neglected when there are two
or more excitons hopping through the lattice. This can be
seen in the simplest case of two excitons. The wave function
can be expressed as the amplitude for one exciton to be at
site j1 and the other exciton to be at site j2: ψj1,j2 . Since
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the exciton is simply the existence of a p state at a certain
site, there cannot be terms in the wave function corresponding
to j1 = j2. Also, j1,j2 is indistinguishable from j2,j1. Thus,
we artificially order the sites and restrict j1 < j2. Thus, this
system is similar to a Hubbard model with infinite onsite
interaction or a Tonks–Girardeau gas on a lattice. The main
difference is that the long-range nature of the hopping allows
the exciton combination to directly hop from j1 < j2 to
j ′

1 > j2. This calculation is a special case of two particles
coherently hopping in a random potential [31]; it may be worth
pursuing calculations of this system to much larger sizes to
understand the asymptotic localization properties.

To have the strongest possible effect from two excitons,
a higher density of excitons is important. Unfortunately, this
requirement is in conflict with having a reasonable range of
sites for the excitons to hop. In two dimensions, even several
atoms in each direction (e.g., 6 × 6) will lead to the excitons
rarely finding each other. To increase the effect of having a
second exciton, we focus on the case of one dimension and
start the excitons at adjacent sites.

The results in Fig. 6 show how the separation of two
excitons behave in a one-dimensional lattice. The expectation
value of the separation is calculated from

	x =
∑
j1<j2

(j2 − j1)|ψj1j2 |2, (10)

where the calculations with missing atoms include a subse-
quent averaging over the different configurations of missing
atoms. The situation for Fig. 6 starts the excitons in sites one
and two of the lattice. To contrast with independent excitons,
we performed calculations for two different initial positions
of the excitons using exactly the same atomic arrangements as
for the two-exciton calculations. For the uncorrelated excitons,

FIG. 6. The expectation value of the separation of two excitons in
a one-dimensional line of seven atoms. The excitons start at sites one
and two. The calculations for two-exciton hopping are for 0% missing
atoms (solid line), 20% missing atoms (dotted line), and 50% missing
atoms (short-dashed line). The calculations for two independent one-
exciton calculations are for 0% missing atoms (dash-dot line), 20%
missing atoms (dot-dot-dot-dash line), and 50% missing atoms (long-
dash lines).

we calculated the expectation value of the separation from

	x =
∑
j1,j2

|j2 − j1|
∣∣ψ (1)

j1

∣∣2∣∣ψ (2)
j2

∣∣2
, (11)

where ψ (k) starts with the exciton initially at site k.
One clear difference between the calculations is the fact that

	x � 1 for all times for the two-exciton calculation while
	x can be less than one for the uncorrelated calculation.
The reason is that the closest two excitons can be in the
correlated calculation is a one-site separation which means
the expectation value will always be larger than or equal to
one. However, in the uncorrelated calculation, the probability
the two excitons are on the same site is not 0 and, in fact,
all calculations lead to an initial decrease in 	x from 1 as
both excitons spread into overlapping sites. Another important
difference is that the separation is larger for almost all times
in the full calculation compared with the uncorrelated calcu-
lation. This means there is an effective repulsive interaction
between the excitons at early times that leads to an increase in
separation. However, there are some similarities between the
correlated and uncorrelated calculations that indicate that some
aspects of the exciton hopping is included in the uncorrelated
calculation. For example, the case of 0% missing sites (solid
line for correlated and dash-dot line for uncorrelated) shows
an initial rise through ∼2 μs, followed by a decrease through
∼3.2 μs, with a subsequent increase through ∼5 μs.

IV. CONCLUSIONS

We performed calculations for excitons coherently hopping
through small lattices. Unlike the results in Ref. [1] which were
for the largest computationally accessible lattices, the small
lattice leads to new effects arising from the corners and edges
of the lattice. For example, it seems that a corner or an edge
can lead to strongly localized excitons when there are other
randomly missing sites. Also, starting the excitons at particular
spots can lead to interesting patterns in the transport that arises
from reflections at edges and corners. For example, starting
the exciton at the center of an edge can lead to population
mostly localized at the sides of the lattice at particular times.
Also, imprinting a phase on an exciton evenly divided between
adjacent sites can lead to directional motion even for small
lattices. For the type of exciton investigated here, the direction
of motion is opposite that of the phase increase, i.e., the exciton
has negative group velocity.

The exciton current density has not been previously investi-
gated for Rydberg gases. Calculations were performed for two
possible definitions of exciton current density: one definition
requires the wave function and is, thus, only accessible to
calculation while the other definition could be used in an
experiment. The two definitions provided similar results for
the case of an exciton hopping through a line of atoms.

Calculations were also performed for a two-exciton system
and compared to that of two uncorrelated excitons with the
same initial conditions. For a line of atoms, the exciton
Hamiltonian is similar to a Hubbard model with infinite
onsite interaction or a Tonks–Girardeau gas on a lattice with
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important differences arising from the long-range nature of
the exciton hopping. For the cases investigated, the two-
exciton calculation demonstrated both striking differences and
similarities to the uncorrelated calculation. The two- (or more)
exciton case probably deserves a more in-depth treatment than
given here.
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