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Temporal interferences driven by a single-cycle terahertz pulse in the photodetachment
dynamics of negative ions
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We present theory and calculations of a real-time-domain interferometry for the photodetachment dynamics
of negative ions in the presence of a single-cycle terahertz pulse. The photoelectron can follow two or more
classical trajectories to arrive at a detector simultaneously allowing the electron waves to interfere quantum
mechanically. Both the in-phase and antiphase oscillations can be observed in the photoelectron interferences
from negative hydrogen and fluorine ions depending on the pulse strength and the observing angle. Especially,
a temporal-caustic bifurcation is observed when the detection angle is not in line with the pulse polarization
direction. Similar interferences and bifurcations are also expected in the angle-resolved energy spectrum, as a
result of its approximate equivalence with the time-dependent electron flux at large distances.
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I. INTRODUCTION

One of the significant achievements in terahertz (THz)
techniques is the routine generation of a single-cycle THz
pulse, representing a limiting oscillation cycle of the electric
field in a propagating pulse. Compared with the more usual
multicycle pulses, it has several fundamentally different but
useful characteristics, including a different energy-transfer
mechanism, a nonzero spatial displacement of a free charge,
and also a one-directional momentum transfer. For example,
single-cycle THz pulses have found applications in manip-
ulating the alignment and orientation of polar molecules
[1,2]. Recently they have also been used to explore the field
ionization of Rydberg atoms, where a new threshold behavior
was discovered along with other interesting phenomena [3–5].
Here we demonstrate its possible applications in modulating
and controlling the photodetachment dynamics of negative
ions by analyzing the electron dynamics and the temporal
interferences caused by a single-cycle pulse.

The present idea of applying a single-cycle THz pulse
in the photodetachment process originates from traditional
photodetachment microscopy which has been and is still the
most accurate instrument for measuring the atomic affinity.
In photodetachment microscopy [6,7], a static electric field is
used to project the photoelectron towards a detector located at
a macroscopic distance (∼0.5 m) from the photodetachment
zone. A spatial interference pattern can be observed on the
detector and can be interpreted as quantum interferences
between electron waves propagated along different classical
trajectories [8–10]. A similar idea has also been implemented
for neutral atoms, known as photoionization microscopy
[11]. These direct-imaging techniques have achieved great
successes in recent years for visualizing the electron wave
function in atoms or ions [12–14]. In contrast with traditional
photodetachment (or photoionization) microscopy with a static
electric field, the current availability of a single-cycle pulse
provides an opportunity to observe electron interferences
in the real time domain. In this work we only focus on
the photodetachment dynamics of negative ions. For the
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photoionization of neutral atoms, the essential physical picture
is similar, and the theoretical methods developed here can be
extended by including the long-range Coulomb potential.

As illustrated in Fig. 1 for a weak single-cycle pulse, there
are two trajectories contributing to each time tf when the
electron arrives at the detector. One is generated earlier in
the photodetachment process and the other later, indicated by
the dotted lines in Figs. 1(a) and 1(b). The associated electron
waves interfere with each other as a result of the different
quantum phases accumulated by the electron moving along
these two trajectories. Two examples of the interference pattern
are shown in Figs. 1(c) and 1(d), respectively, for the hydrogen
(H−) and fluorine (F−) negative ions. Moreover, the amplitude
of a single-cycle THz pulse can easily reach several tens of
kV/cm in a table-top experiment. With a stronger driving
pulse, the electron dynamics becomes more complicated but
much more interesting: more than two trajectories may arrive
at a detecting point simultaneously, and the temporal caustic as
in Fig. 1(a) experiences a bifurcation by varying the observing
angle. As a consequence, both the in-phase and antiphase
oscillations can be observed between the temporal interference
spectra from H− and F−, reflecting the different angular
distribution of the initially outgoing electron wave.

Furthermore, our studies may also provide further insight in
understanding the electron dynamics in an intense driving laser
field which is usually encountered in strong field and ultrafast
physics. In our present system the electron is ejected from
a negative ion by absorbing one photon from a weak laser
field while, in strong field and ultrafast physics, the initial
electron wave is usually generated through the strong-field
tunneling process [15], or launched by a series of attosecond
pulses [16], or just using an ultrashort electron pulse [17].
However, except for the details of various electron sources,
the subsequent electron propagation after its generation is
quite similar between different systems, mainly determined
by the time-dependent vector potential of the driving field.
The semiclassical formulas used in the present work allow
us to propagate the electron wave exactly following classical
trajectories in the augmented phase space, thus providing a
clear physical picture for the embedded electron dynamics in
the temporal interference spectra. The semiclassical spectra
calculated in this way are quantitatively accurate as verified
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FIG. 1. (Color online) Demonstration of the temporal interfer-
ences caused by a single-cycle THz pulse with a maximum field
strength of 2 kV/cm. (a) tf vs ti with tf defined as the time
when the electron arrives at a detector located at (rf = 0.5 m, θf ).
(b) The unipolar momentum transfer from the THz pulse to an electron
generated at a certain initial time ti in the photodetachment process.
The detection angle θf could be changed as in the graph, and the
angle-resolved interference patterns are shown in (c) and (d) for H−

and F−, respectively, from quantum simulations with the electron
initial kinetic energy E0 ≈ 0.1454 eV. The relative intensity of the
electron flux is given by a color bar in the bottom right.

by comparing with quantum simulations. Although the time-
dependent electron flux is specifically calculated in our current
work, it is established that the temporal flux at large distances
is approximately equivalent to the angle-resolved energy
spectrum.

The remainder of this paper is organized as follows. In
Sec. II we give a brief description of the photoelectron
generation process, and discuss the different classical electron
dynamics expected in the single-cycle driving field. In Sec. III
both the quantum and semiclassical propagation methods
are described in detail. The different temporal interference
structures are analyzed in Sec. IV, as well as the temporal-
caustic bifurcation and its related physical observations. A
brief conclusion is given in Sec. V. Atomic units are used
throughout this work unless specified otherwise.

II. ELECTRON DYNAMICS

A. Photoelectron generation by a weak laser field

The considered atomic negative ion (H− or F−) is interact-
ing simultaneously with a weak laser field and an additional
single-cycle driving pulse. Since the electric field of the single-
cycle pulse varies much slower than the detachment laser
field [Fig. 2(a)], the whole photodetachment process can be
approximately divided into two steps: first, the photoelectron
is generated from the negative ion by absorbing one photon
from the laser field, and then the subsequent electron dynamics
will be dominated by the single-cycle THz pulse. In addition,
the currently available single-cycle pulse as in Ref. [3] is too
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FIG. 2. (Color online) (a) Field configurations for the present
system. The gray curve and the solid red line represent the weak
laser field and the single-cycle THz pulse, respectively, divided by
their corresponding field amplitudes tw = 0.5 ps. The oscillation
feature of the laser field is not distinguishable as a result of its much
higher frequency than the THz pulse. (b) Example calculations for
the time-dependent electron flux, corresponding to the interferences
shown in Figs. 1(c) and 1(d) with θf = 0. The dotted line is
calculated by the semiclassical propagation method. The solid and the
dashed curves are computed by directly solving the time-dependent
Schrödinger equations for H− and F−, respectively.

weak to do anything to a negative ion in the ground state.
However, it can strongly modify the electron dynamics once
the electron is launched into the continuum by a weak laser.
In this subsection we first outline several theoretical aspects
related to the initially photoelectron generation process in a
weak laser field.

The theoretical model has been well established for
one-photon photodetachment by a weak laser field [10,18].
The generated electron wave at an initial time ti can be
formally written as ψ(r,ti) = ψout(r) exp(−iE0ti), with the
time-independent part ψout(r) satisfying the following inho-
mogeneous Schrödinger equation:

(E0 − Ha)ψout(r) = Dϕi, (1)

where E0 denotes the photoelectron initial kinetic energy and
D is the dipole operator. For the linearly polarized laser along
the z axis, D = z. Ha is the atomic Hamiltonian including the
short-range potential and ϕi represents the initial bound state.
The electron goes into a spherically outgoing wave,

ψout(R,θi,φi) = C(k0)Ylm(θi,φi)
eik0R

R
, (2)

when the radius R satisfies
1√
2E0

� R � E0

Fm

, (3)
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with Fm denoting the field amplitude of an applied single-cycle
pulse. The right-hand side restriction in Eq. (3) is added by
considering an applied external field like a single-cycle pulse
of interest here, which requires the applied field strength
Fm to be not larger than k3

0/2 with k0 = √
2E0, therefore

guaranteeing that the external field does not distort the initially
outgoing wave obviously. R, θi , and φi in Eq. (2) are spherical
coordinates of the electron relative to the rest atom; C(k0) is a
complex coefficient dependent on the photoelectron energy E0,
and Ylm(θi,φi) is the spherical harmonic function representing
the initial angular distribution of the generated electron wave.
The photodetachment of H− gives an outgoing p wave with
l = 1 and m = 0, while the photodetachment of F− generates
an s wave with l = 0 and m = 0, where the d wave is
largely suppressed according to the Wigner power law near
the photodetachment threshold [19]. Note that the applied laser
has been assumed to be linearly polarized along the z axis.

Since our motivation is to study the temporal interferences
induced by a single-cycle THz pulse, a laser pulse as in
Fig. 2(a) is used with a finite duration. In a real experiment,
the laser-pulse duration can be longer than that in Fig. 2(a),
according to the discussions in the following subsection. For
simplicity we assume the laser field to be turned on and off
slowly enough so that the outgoing wave form in Eq. (2) is
still a good approximation at each time instant. Under this
assumption, the generated outgoing wave at each initial time
ti can be approximately expressed as

ψ0(R,θi,φi,ti) = fL(ti)ψout(R,θi,φi)e
−iE0ti , (4)

with fL(t) representing the slowly varying envelope of an
applied laser field. Specifically, the following laser field
envelope is used in our calculations:

fL(t) = 1

2

[
tanh

(
t − tu

tL

)
− tanh

(
t − td

tL

)]
, (5)

where tu = −2 ps and td = 2 ps, indicating the time when the
laser field is turned on and off, respectively. tL controls how
fast the laser field is turned on and off.

For H− we choose the photon energy �ωL = 0.9 eV and
tL = 50TL, where ωL and TL denote the laser frequency and
its oscillation period, respectively. The gray curve in Fig. 2(a)
depicts the laser pulse divided by its maximum field amplitude.
For F−, the photon energy is chosen to give an equal electron
kinetic energy E0 as for H−, which makes it possible to
compare the final results for the two negative ions. From
the model potentials adopted in our quantum simulations (see
Sec. III for the details), we obtain the binding energies for
H− and F− to be 0.02773 and 0.125116 a.u., respectively.
Therefore, the electron initial kinetic energy E0 = 0.1454 eV,
and the photon energy for F− is about 3.55 eV. To make sure
the laser field is turned on and off slowly enough, we choose
tL = 200TL for F−, and the resulted field envelope is similar
to that in Fig. 2(a) for H−.

B. Electron motion in a single-cycle driving pulse

The applied single-cycle pulse is also assumed to be linearly
polarized along the z axis. The specific profile is constructed

by a Gaussian-shape vector potential [4],

A(t) = −Fmtw√
2

e
− t2

t2w
+ 1

2 (6)

and its electric field F (t) has the following form:

F (t) = −
√

2Fmt

tw
e
− t2

t2w
+ 1

2 , (7)

with the field amplitude given by Fm and the pulse duration
controlled by tw. For the THz pulse considered here [Fig. 2(a)],
we set tw = 0.5 ps. Besides the vector potential and the
electric field, the integrals of A(t) and A2(t) are also two
important quantities for completely describing the electron
dynamics. They are directly related to the electron spatial dis-
placement and the quantum phase accumulation, respectively.
The analytical expressions for these integrals can be found in
Appendix A.

Using the cylindric coordinates with the negative ion as its
origin, the classical electron motion in the single-cycle driving
pulse can be described by the following equations:

pρ = k0 sin(θi), (8)

pz(t) = k0 cos(θi) + �pz(ti ,t), (9)

ρ(t) = k0(t − ti) sin(θi), (10)

z(t) = k0(t − ti) cos(θi) + �z(ti ,t), (11)

where (pρ , ρ) and (pz, z) represent the electron momenta and
coordinates in the separable ρ and z directions, respectively.
According to the physical consideration in Eq. (3), a more
reasonable starting point for the electron should be R sin(θi),
R cos(θi), which has been neglected in Eqs. (10) and (11)
because only the electron dynamics at large distances is
concerned where the small radius R has negligible effect. The
momentum transfer in Eq. (9) comes from the change of the
field vector potential

�pz(ti ,t) = A(t) − A(ti), (12)

which approaches a constant −A(ti) and only depends on the
initial time ti of photoelectron generation, when t is sufficiently
large such as t > 6tw. The field-induced electron displacement
in Eq. (11) consists of two parts:

�z(ti ,t) =
∫ t

ti

A(t ′)dt ′ − A(ti)(t − ti), (13)

where the first part
∫ t

ti
A(t ′)dt ′ comes from an accumulation

along with the vector-potential variation, and the second part
−A(ti)(t − ti) is caused by an additional drift momentum
−A(ti) obtained from the field at the initial time ti . Therefore,
Eq. (11) can be rearranged as

z(t) = [k0 cos(θi) − A(ti)](t − ti) + �̃z(ti) (14)

for t > 6tw, where the first-part contribution in Eq. (13) has
been approximated as �̃z(ti) = ∫ ∞

ti
A(t ′)dt ′, which is valid as

long as t is large enough so that the pulse field has gone to
zero.
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FIG. 3. (Color online) (a)–(e) Electron arrival-time plots with
different field amplitudes Fm. The solid blue lines, the dot-dashed
gray lines, and the dashed red curves correspond to (θi = 0, θf =
0), (θi = π , θf = π ), and (θi = π , θf = 0), respectively. (i)–(v)
Momentum-space geometry varying with different drift momentum
−A(ti) obtained from the single-cycle pulse. The dashed and the solid
circles represent the end points of the initial and final momentum
vectors, respectively, with their directions varying from 0 to 2π .
The bold red line represents the momentum transfer −A(ti), and the
length of the line indicates the relative value of −A(ti) compared
with the electron initial momentum k0. The heavy black line and the
dashed blue lines demonstrate the angle relationship between the final
electron-momentum direction and the initial momentum direction.
Note that the initial momentum k0 (the dashed blue line) has been
translated from the dashed circle to the solid circle for convenience
in displaying. The dot-dashed green lines in (iii)–(v) indicate the
maximum angle of the final momentum direction deviating from the
z direction.

By combining Eqs. (10) and (14), to eliminate θi , one can
find the following relationship between the initial electron-
generation time ti and the final time tf to arrive at a detector
located at (rf , θf ):

tf = ti + rf

k0
μ(ξ,ζ,θf ), (15)

with ξ = −A(ti)/k0 and ζ = �̃z(ti)/rf . The factor μ is an
arrival-time modulator caused by the driving pulse, and its
specific form is dependent on the value of momentum transfer
−A(ti) relative to the initial momentum k0 (Appendix A).
Various categories for the electron arrival-time plot are
illustrated in Figs. 3(a)–3(e), with the observing angle θf equal
to either 0 or π , where the spherical detector is assumed to

be placed at rf = 0.5 m as in traditional photodetachment
microscopy.

From Eq. (10) divided by Eq. (14), one can also reach the
following equation:

rf sin(θf )

rf cos(θf ) − �̃z(ti)
= tan(θkf

) = k0 sin(θi)

k0 cos(θi) − A(ti)
(16)

for the relations among θi , θf and the final momentum
direction θkf

. The right-hand side of Eq. (16) can be expressed
geometrically in the momentum space and Figs. 3(i)–3(v) show
all the possible geometries involved in the electron driven
process. After a geometry analysis, the initial emission angle
θi of the classical trajectory arriving at (rf , θf ) can be obtained
as

θi = θkf
+ α (17)

for −A(ti) � k0, where α = arcsin[ξ sin(θkf
)] and θkf

is given
by the left-hand side of Eq. (16). When −A(ti) > k0, there are
two solutions:

θi< = θkf
+ α, (18)

θi> = θkf
+ π − α, (19)

which corresponds to the two crossings between the heavy
black line and the solid circle in Figs. 3(iii)–3(v). The
subscripts “<” and “>” are consistent with the notation in
Appendix A, indicating the trajectory with θi< arrives at the
detector earlier than that with θi>. In addition, there is a
maximum angle θm

f the electron can reach [the dot-dashed
green line in Figs. 3(iii)–3(v)], and its specific form is given
by Eqs. (A14) and (A20) in Appendix A.

One immediate observation from Fig. 3 is that all the
background electron trajectories hardly driven by the single-
cycle pulse appear to arrive at the detector with a same final
time around tf = 2.21 μs. This is guaranteed by the simple
linear relationship in Eq. (15). The initial time ti of electron
generation is on the scale of picosecond, while the electron
arrival time tf is on the scale of microsecond (rf /k0 ≈ 2.21
μs). As long as the driving field is not too weak to influence the
electron momentum (�pz � 0.1k0), the variation of tf is still
appreciable on the microsecond scale. Therefore, the arrival-
time differences for the background electron trajectories
generated at different initial time (picosecond scale) can be
hardly distinguishable. In contrast, those trajectories driven by
the pulse field can be well separated in the arrival-time plot
(microsecond scale), reflecting the vector-potential variation
for different initial time. As a consequence, the restriction is
loose for the operation duration of the weak laser field which
can be longer than 6 ps in Fig. 2(a).

The various electron dynamics in Fig. 3 differ in the
momentum transfer obtained by the electron from the driving
pulse compared with its initial momentum obtained from the
weak laser field. According to Eq. (6), a maximum momentum

−Amax = Fmtw√
2

e1/2 (20)

can be transferred from the driving pulse to an electron. Note
that the single-cycle pulse has a definite direction of momen-
tum transfer. For our choice in Eq. (6), the momentum transfer
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is always positive. By interacting with the single-cycle pulse,
the electron initially ejected along the momentum-transfer
direction is accelerated, and will arrive at the detector much
earlier than the background electron, which are demonstrated
by the heavy solid blue curves in Figs. 3(a)–3(e) with θi = 0
and θf = 0.

However, if the electron was initially moving in the opposite
direction of the final momentum transfer, the situation can be
more complicated. When −Amax < k0, the electron is simply
decelerated and arrives at the detector much later than the
background electron, demonstrated by the dot-dashed curve
in Fig. 3(a) with θi = π and θf = π . The corresponding
geometry of the momentum space is given by Fig. 3(i).
Assuming −Amax = k0, which gives a critical field amplitude
Fm = Fc1 with

Fc1 =
√

2k0

tw
e−1/2, (21)

then the electron generated at an initial time ti corresponding
to the maximum momentum transfer will be stopped at z =
�̃z(ti) forever. For our case, this happens for the electron
generated at ti = 0 with an initial angle θi = π . Therefore, the
final time tf goes to infinity as the electron generation time ti
tends to 0. It is illustrated by the dot-dashed line in Fig. 3(b)
[see also Eq. (A21) in Appendix A], and Fig. 3(ii) depicts the
corresponding geometry in the momentum space.

With the field amplitude increasing, the maximum mo-
mentum transfer will be larger than the initial momentum,
and the electron can be finally folded back to the side in
the final momentum-transfer direction, which is illustrated by
the dashed red curve in Fig. 3(c) with its momentum-space
geometry given by Fig. 3(iii). Once −Amax = 2k0, another
critical field amplitude Fm = Fc2 is reached, which is just twice
the first critical field value Fc1 in Eq. (21). For this case, the
electron generated near ti = 0 with an initial angle θi ∼ π can
reach the detector almost at the same time as the background
electron, as shown by the dashed red line in Fig. 3(d), and the
initial and final circles in the momentum space will not overlap
anymore [Fig. 3(iv)].

If the applied driving field is strong enough so that −Amax >

2k0, then the electron dynamics goes into another interesting
region. As in Fig. 3(v), the two circles in the momentum
space will be completely separated for the momentum transfer
−A(ti) larger than 2k0, and even the electron initially moving in
the opposite direction with θi = π can also reach the detector
at θf = 0 much earlier than the background electron, as the
electron with θi = 0 does. Therefore, in the overlapping region
for θf = 0 in Fig. 3(e), there are four trajectories arriving at the
detector simultaneously. The electron wave parts propagating
along these trajectories can interfere quantum mechanically,
and more interesting phenomena beyond those in Fig. 1 can
be expected.

By a closer look at the momentum-space geometries
displayed in Fig. 3, one more interesting phenomenon which
we call “temporal-caustic bifurcation” can be found as the
observing angle approaches π/2 (Fig. 4). The temporal
caustics t cf in Figs. 3(a)–3(e) are those local extrema of tf ,
which corresponds to the classical boundary between the
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FIG. 4. (Color online) (a) Momentum space geometry after the
temporal-caustic bifurcation. The vertical dot-dashed line indicates
the corresponding situation of the newly born caustic. The arrange-
ment for the other lines and colors is the same as in Figs. 3(i)–3(v).
(b) and (c) An example of the electron arrival-time plot and its corre-
sponding initial-angle variation. The heavy blue point and two gray
points mark, respectively, the temporal caustic with A(ti) = Amax and
the newly born caustic with θi = π/2. (d) Temporal-caustic variation
with different detection angles and applied driving field amplitudes.
The dot-dashed green line shows the trace for the bifurcation point
(circle points) shifting with the varying field amplitude, and is also
the evolution curve of the newly born caustic with θi = π/2 after
each bifurcation point. The four demonstrated cases are specified
by the text arrows with different field amplitudes, respectively. The
heavy blue line and the bold dashed curve depict, respectively, the
temporal-caustic dependence on the observing angle θf for the same
type of line in the arrival-time plot as in Figs. 3(a)–3(e). The thin
dashed curve shows the variation trace of the joint point (square
points) for different field amplitudes. The dotted line indicates the
free-electron arrival time tf without interacting with any external
field.

dynamically allowed and forbidden regions in the augmented
phase space by including the evolution time t and its conjugate
momentum pt [20]. Classical trajectories are reflected near
the caustic, and the corresponding quantum wave has a local
maximum distribution. All the observed temporal caustics in
Figs. 3(a)–3(e) are caused by the maximum vector potential of
the applied driving pulse. However, another temporal caustic
may appear once the electron initial angle θi crosses π/2,
indicated by the dot-dashed gray line in Fig. 4(a).

To imagine the involved dynamic picture, one can first fix
the angle of the final kinetic momentum kf in the momentum
space as in Fig. 3(i), and then shift the solid circle away from
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and back to the dashed circle as in Fig. 4(a), following the
time-dependent variation of the vector potential A(ti). During
this simple game, the number of possible pairs of θi and ti
corresponding to each value of kf could be counted, which
gives an estimation for the number of contributed trajectories
as well as the temporal-caustic locations. For a small detection
angle θf , the temporal caustic t cf is the earliest arrival time tf as
in Fig. 3(a), which corresponds to A(ti) = Amax and θi < π/2.
With the observing angle deviating from the field-polarization
direction gradually, the corresponding initial angle θi also
increases.

Once a critical detection angle θc
f is reached, the corre-

sponding initial angle will be a right angle with −A(ti) still
the maximum vector potential. This critical case serves as
a bifurcation of the temporal caustic. With the observing
angle keeping increasing from θc

f , the temporal caustic for
θf = θc

f with A(ti) = Amax and θi = π/2 will split into two
caustics, one with A(ti) = Amax and θi > π/2, the other with
−A(ti) < −Amax and θi = π/2 as in Fig. 4(a). As a result
of the unipolar momentum transfer −A(ti) in a single-cycle
pulse, this kind of temporal-caustic bifurcation can only be
observed for the final angle θf < π/2. Figures 4(b) and 4(c)
give an example for the electron arrival-time plot tf vs ti in
the bifurcation region and its corresponding initial angle θi at
each initial time ti , where Fm = 20 kV/cm and θf = π/3. The
bifurcated caustics discussed above are marked by the heavy
blue point (Amax) and the gray points with the dotted guidance
lines (θi = π/2).

As a brief summary we present an overall view in Fig. 4(d)
for the caustic dependence on the observing angle θf and the
driving field amplitude Fm. Taking Fm = 20 kV/cm for in-
stance, the bifurcation point is displayed by the corresponding
circle point, given by

θb
f = arctan(−k0/Amax), (22)

tbf = rf sin
(
θb
f

)/
k0 (23)

quantitatively, where the tiny differences of ti and �̃z(ti) have
been neglected. For θf < θb

f , there is one temporal caustic
following the solid blue curve with its arrival time tf given
by the corresponding solution at A(ti) = Amax in Appendix
A. After the bifurcation point, the newly born caustic with
θi = π/2 follows the dot-dashed green curve until θf = π/2,
with its final arrival time tf given by rf sin(θf )/k0 which
is invariant for different field amplitudes. For the driving
pulse with different field amplitude, the bifurcation point just
shifts along the dot-dashed green line according to Eq. (22),
and the newly born caustic follows the same dot-dashed
curve.

If the driving field is strong enough, another additional
temporal caustic will emerge from the fold-back trajectories
like those dashed red curves in Figs. 3(c)–3(e), which can
joint with the above discussed temporal caustic corresponding
to A(ti) = Amax after bifurcation point. The joint points are
indicated using square points in Fig. 4(d) for Fm = 40 kV/cm
and Fm = 50 kV/cm, respectively. The variation trace of this
joint point with different field amplitude can be approximately

determined by

θ
j

f = arcsin(−k0/Amax), (24)

t
j

f = rf√
A2

max − k2
0

, (25)

which is depicted by the thin dashed line in Fig. 4(d). After
the joint point θ

j

f , the two joint caustics disappear with the
trajectories generated near the maximum vector potential miss-
ing the corresponding final angle θf > θ

j

f , but the bifurcated
caustic with θi = π/2 still follows the dot-dashed green line
in Fig. 4(d) until θf = π/2.

At the end we would like to point out that the temporal-
caustic bifurcation is actually a universal phenomenon for
all kinds of electric-field driving pulses, which should be
observable as long as the driving field is not too weak to
generate a feasible angle range from θc

f to π/2 in an exper-
iment. More importantly, all the dynamic properties can be
easily understood by shifting and examining the momentum-
space geometry following the time-dependent variation of any
driving-field vector potential. Although the momentum-space
geometry in Fig. 3(i) has been well established as a basic
principle for the attosecond streak camera [21,22], the caustic
variation as in Fig. 4 has never been reported before.

III. PROPAGATION METHOD

A. Semiclassical propagation

Relying on the previous analysis on the classical electron
dynamics, the corresponding quantum wave can be constructed
quite accurately from those involved classical trajectories
using a semiclassical scheme. For the time-dependent propa-
gation, an augmented phase space is usually used by including
the time t and its conjugate momentum pt as two additional
dimensions. Therefore, for our present system, the Hamilto-
nian governing the electron motion in the augmented phase
space has the following form [20]:

H(ρ,z,t,pρ,pz,pt ) = p2
z

2
+ p2

ρ

2
+ F (t)z + pt (26)

in the cylindrical coordinate frame. Accordingly, two equa-
tions of motion are added to the standard Hamiltonian canon-
ical equations dt/dτ = 1 and dpt/dτ = −∂H/∂t , where τ

is used as an evolution parameter for the classical trajectory
propagating in the augmented phase space. In practice, it
is convenient to set t(τ = 0) = ti and pt (τ = 0) = −E0 as
two initial conditions, which guarantees τ = t − ti and pt =
−E(t), with E(t) denoting the electron instantaneous energy
during interaction with the field.

Starting from the initially generated outgoing wave
ψ0(R,θi,φi,ti) in Eq. (4), the electron wave associated with
each trajectory arriving at a final point (r , θ , φ, t) is constructed
as

ψν(r,θ,φ,t) = ψ0(R,θi,φi,ti)Aei(S−λ π
2 ), (27)

where the subscript ν is used to label the corresponding
trajectory. The semiclassical amplitude A corresponds to the
local density of neighboring trajectories. S is the classical
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action accumulated in the augmented phase space. The Maslov
index λ reflects the topological property of the classical
trajectory from the starting point to the end point, which
is naturally related to the caustics discussed above and the
corresponding mathematical structures of A and S in the
augmented phase space. The quantum wave �(t) at the final
point is the coherent superposition of the semiclassical wave
in Eq. (27) associated with all the possible trajectories arriving
at that point.

The semiclassical amplitude can be analytically derived out
as (Appendix B)

A =
∣∣∣∣ R2

k0(t − ti)2[k0 − F (ti)(t − ti) cos(θi)]

∣∣∣∣1/2

, (28)

which is only explicitly dependent on the field strength F (ti)
at the initial electron generation time ti . The semiclassical
amplitude diverges when k0 − F (ti)(t − ti) cos(θi) = 0, which
corresponds to the caustic locations as in Fig. 4(d). Therefore,
the Maslov index λ = 0 when k0 − F (ti)(t − ti) cos(θi) > 0,
and λ = 1 if k0 − F (ti)(t − ti) cos(θi) < 0.

The classical action S can also be obtained analytically, and
its value will be extremely large for a macroscopic distance
such as rf = 0.5 m considered here. However, the observable
physical effect comes from the small differences between
the huge phases accumulated along different trajectories.
To calculate the small phase difference between each two
trajectories, the following expression is used in our practical
calculations (Appendix B):

�S̃ = S̃1 − S̃2

= r� − r

2k0
ϒ − 1

2

∫ ti2

ti1

A2(t ′)dt ′

+A(ti1)
∫ t

ti1

A(t ′)dt ′ − A(ti2)
∫ t

ti2

A(t ′)dt ′, (29)

where

ϒ = A2(ti1)μ(ti1) − A2(ti2)μ(ti2), (30)

� = k0[μ(ti1) − μ(ti2)] − cos(θf )[A(ti1) − A(ti2)], (31)

and

S̃ = S − E0ti , (32)

which has included the contributed phase from an initially
outgoing wave in Eq. (4). For convenience, the arrival-time
modulator μ(ξ,ζ,θf ) has been denoted as μ(ti) briefly.

With the time-dependent phase S̃ given by Eq. (32), the
propagated wave in Eq. (27) for each trajectory can be
explicitly expressed as

ψν(r,θ,φ,t) = fL(ti)ψout(R,θi,φi)Aei(S̃−λ π
2 ), (33)

where the time-independent outgoing wave ψout(R,θi,φi) is
given by Eq. (2). Accordingly, the time-dependent electron
flux on a spherical detector can be calculated as

jr = |C(k0)|2 k2
0N

2
lm

Fmr3
j̃r , (34)

where

Nlm =
√

(2l + 1)(l − m)!

4π (l + m)!
(35)

is a coefficient in the spherical harmonic function. The reduced
flux j̃r is defined as

j̃r = Im

[( ∑
ν

ψ̃ν

)∗
∂

∂r

( ∑
ν

ψ̃ν

)]
(36)

following the spirit in Ref. [23]. The simplified wave function
ψ̃ν is given by

ψ̃ν(r,θ,φ,t) = Ãν

Nlm

Ylm(θi,φi)e
i(S̃ν−λν

π
2 ), (37)

with the modified semiclassical amplitude expressed as

Ãν = fL(ti)

μ(ti)

∣∣∣∣ Fmr

k2
0 − F (ti)rμ(ti) cos(θi)

∣∣∣∣1/2

. (38)

Specifically, taking an s-wave source (F−) for instance, the
simplified wave function for each trajectory is just

ψ̃s
ν (r,θ,φ,t) = Ãνe

i(S̃ν−λν
π
2 ). (39)

If there are two trajectories arriving at the detector simultane-
ously as in Figs. 3(a)–3(d), the electron flux from Eq. (36) has
the following specific form:

j̃r = pr1Ã
2
1 + pr2Ã

2
2

+ (pr1 + pr2 )Ã1Ã2 cos(��12), (40)

with pr = pρ sin(θf ) + pz cos(θf ), and the phase difference

��12 = (S1 − S2) − (λ1 − λ2)π/2, (41)

where the derivative of Ã in Eq. (36) has been neglected owing
to the same argument as in Ref. [23]. For a pz-wave source
like H−, the simplified wave function for each trajectory is

ψ̃s
ν (r,θ,φ,t) = Ãν cos(θi)e

i(S̃ν−λν
π
2 ) (42)

and the corresponding electron flux can be expressed as

j̃r = pr1Ã
2
1 cos2(θi1) + pr2Ã

2
2 cos2(θi2)

+ (pr1 + pr2 )Ã1Ã2 cos(θi1) cos(θi2) cos(��12) (43)

for two possible trajectories after replacing Ãν in Eq. (40)
by the combined term Ãν cos(θi) including the electron
initial angular distribution. For cases illustrated in Figs. 3(e)
and 4, there are four trajectories arriving at the detector
simultaneously in a certain region of the arrival-time plot.
Therefore, there are four terms contributing to the classical
flux amplitude in the first line of Eq. (40) or (43), and six
terms arise in the second line, which come from interferences
between each pair of two classical trajectories.

B. Quantum propagation

In this subsection we briefly summarize the numerical
procedures used in our exact quantum simulations by directly
solving the time-dependent Schrödinger equation. Although
the practical quantum computation turns out to be much more
difficult than the above semiclassical propagation method, it
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is still worthwhile to make some efforts in this direction,
and it answers two important questions: (1) How accurate
is the above proposed semiclassical propagation scheme?
(2) What will happen exactly in the classically forbidden
region, especially when the temporal caustic experiences a
bifurcation?

The starting point for the quantum propagation is to write
the full electron wave �(t) as

�(t) = ϕie
−iEgt + �̃(r,t)e−iE0t , (44)

where Eg = −Eb, with Eb denoting the binding energy of
the initially bound state ϕi . The electron wave except for the
initial state is represented as �̃(r,t) with a constant phase
exp(−iE0t) separated for convenience in practice. Substituting
the above wave function into the time-dependent Schrödinger
equation, one can immediately get an inhomogeneous equation
as follows:{

i
∂

∂t
− [Ha + HF (t) − E0]

}
�̃(r,t) = f (t)Dϕi (45)

under assumptions for the applied fields in Sec. II A. The
time-dependent Hamiltonian HF (t) [=F (t)z] on the left-
hand side of Eq. (45) comes from the electron interaction
with the single-cycle driving pulse. The atomic Hamiltonian
Ha = p2/2 + V (r), with V (r) denoting the binding potential
for a specific negative ion. For H− we adopt the angular-
momentum-dependent model potential along with the modi-
fied dipole operator proposed in Ref. [24]. A related discussion
can be found in Ref. [25] for different model potentials. For
F−, the model potential is taken from Ref. [26]. The initially
bound state ϕi and its corresponding energy Eg can be readily
obtained by diagonalizing the atomic Hamiltonian matrix in a
sufficiently large radial box.

Since the initial bound state has m = 0 and the applied
fields are also assumed to be linearly polarized (see Sec. II A
for details), the time-dependent electron wave �̃(r,t) can be
expanded as

�̃(r,t) = 1

r

∑
l

Ul(r,t)Yl0(θ,φ) (46)

on a two-dimensional space spanned by the discretized radial
points and angular momentum basis with different l values.
Using a split-operator technique, the separation of Ha from the
interaction term HF (t) allows us to propagate the electron wave
on each dimension independently. Therefore, the numerical
propagation for each time step δt can be divided into three
independent steps:

�̃1 = 1 − iHF δt/4

1 + iHF δt/4
�̃(t) − iδt

2
�

(
t + δt

2

)
, (47)

�̃2 = 1 − iHaδt/2

1 + iHaδt/2
�̃1 − iδt

2
�

(
t + δt

2

)
, (48)

and

�̃(t + δt) = 1 − iHF δt/4

1 + iHF δt/4
�̃2, (49)

where the Crank-Nicolson approximation has been used, and
the notation �(t + δt/2) is used to denote briefly the source

term on the right-hand side of Eq. (45). The above three steps in
Eqs. (47)–(49) ensure the numerical accuracy to be O(δt3) for
each time step. For the propagation on the radial dimension in
Eq. (48), a Numerov scheme is implemented on a square-root
mesh [27].

Using the above Eqs. (46)–(49), we first propagate the
electron wave numerically to a final time t = 6tw, for which
the numerical radial boundary rmax = 40 000 a.u. At the end of
this propagation, the obtained wave function is projected onto
all the l-dependent partial waves of Ha for each positive energy
ε, and the corresponding expansion coefficient is calculated as

Aεl =
∫

f̃εl(r)Ul(r,t = 6tw)dr, (50)

where the energy-normalized radial wave function f̃εl(r) can
be obtained by directly integrating the stationary Schrödinger
equation for Ha with specific values of ε and l. At a large
distance such as r = 0.5 m, the radial function f̃εl(r) behaves
asymptotically in a simple form:

f̃εl(r) =
√

2

πk
sin(kr + ϑεl), (51)

with k = √
2ε. The asymptotic phase ϑεl includes the phase

shift caused by the short-range potential V (r), which can be
calculated as

ϑεl = φ̃εl(rm) − βεl(rm). (52)

The first part φ̃εl(rm) in Eq. (52) is an oscillatory phase of the
computed radial function f̃εl(r) fitted at r = rm � rmax using
the sinusoidal form as in Eq. (51). The second term βεl(rm) is
a Wentzel-Kramers-Brillouin (WKB) phase correction in the
asymptotic region after r = rm, given by

βεl(rm) =
√

2εr2
m − l

∗ 2 + l
∗

arcsin[l
∗
/(krm)], (53)

with l
∗ = l + 1/2 following the Langer correction [28].

To calculate the electron flux on a spherical detector
located at a macroscopic distance such as 0.5 m from the
photodetachment source region, we use the outgoing part in
Eq. (51) and obtain the final electron outgoing wave as

�+(r,t) = −i

r

∑
l

Yl0(θ,φ)
∫

Aεl√
2πk

ei(kr−εt+ϑεl )dε, (54)

which can be explicitly written out as

�+(r,t) = −ik̄

r3/2
ei( r2

2t
− π

4 )
∑

l

Aε̄le
iϑε̄l Yl0(θ,φ), (55)

with k̄ = √
2ε̄ = r/t after using a stationary-phase approxi-

mation for the contained integration in Eq. (54). Finally, the
electron flux can be immediately obtained as

jr = 1

t3

∣∣∣∣∣∑
l

Aε̄le
iϑε̄l Yl0(θ,φ)

∣∣∣∣∣
2

(56)

from Eq. (55). One might have noticed that the second term
on the right-hand side of Eq. (56) is just the angle-resolved
energy spectrum. This is not a surprise, and it is actually
true for any driving pulses only if the involved interaction
volume and duration are negligible by comparing with the
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observing distance and the electron arrival time at the detector
(Appendix C). Therefore, all the features discussed in this work
for the time-dependent electron flux can also be expected in the
angle-resolved energy spectrum. In Appendix C a numerical
verification on the accuracy of Eq. (56) is also performed by
directly doing the numerical integration in Eq. (54).

IV. INTERFERENCES AND CAUSTIC BIFURCATION

Based on the electron dynamics analyzed in Sec. II B, var-
ious different structures are expected for the classical electron
arrival-time plot as in Figs. 3(a)–3(e) and 4 by varying the pulse
amplitude Fm or an observing angle θf . Using this kind of plot,
one can further determine how many classical trajectories the
electron follows to arrive at the detector simultaneously as in
Fig. 1(a), giving an oscillatory electron flux on the detector as
a function of time. Generally speaking, there are mainly three
qualitatively different situations involved in all the possible
arrival-time plots: two-trajectory contributed interferences,
four-trajectory contributed interferences, and interferences
with a temporal-caustic bifurcation. In this section we present
concrete calculations and discussions for each situation as well
as the quantum tunneling effects in the classically forbidden
region.

Before discussions for each specific case, we first clarify
some general rules and manipulations we have used in the
concrete calculations. As specified in Sec. II, we consistently
assume the detecting distance is 0.5 m as in traditional
photodetachment microscopy [6], and the photoelectron initial
kinetic energy E0 = 0.1454 eV, corresponding to a photon
energy of 0.9 eV for H−. In our presented figures, the
semiclassical flux was calculated using the reduced expression
like Eqs. (40) and (43). For those simple cases in Figs. 2(b)
and 5, a uniform approximation as in Ref. [23] has also
been used near an outmost caustic. To compare with the
semiclassical result, the exact quantum flux for H− given by
Eq. (56) has been scaled according to Eq. (34) with an analytic
expression for C(k0) known from Ref. [10]. Note that there is
no adjustable parameter between the displayed semiclassical
flux and the quantum flux for H− in all figures. The displayed
results for F− in Figs. 1 and 2 as well as in Figs. 5–7 have
been scaled with a constant which was obtained from Fig. 2(b)
by fitting the exact quantum flux for F− with that for H− at
tf = 2.048 μs. The quantum flux for F− displayed in Fig. 8(c)
has been fitted with the semiclassical flux at tf = 1.967 μs, and
that displayed in Fig. 8(d) has been multiplied by an arbitrary
constant for convenience to compare with the quantum flux
for H−.

For the basic interferences coming from two trajectories,
a schematic demonstration has been given in Fig. 1 with
Fm = 2 kV/cm, which can be easily calculated by both the
semiclassical method and the quantum approach. In contrast
with the usual double-slit interferences as in traditional
photodetachment microscopy [6,10], the two trajectories in
our present system are ejected at the same initial angle
approximately, but their initial launch time is different as
in Fig. 1(a). Besides the quantum interferences, different
angle dependence can also be observed for flux amplitudes
in Figs. 1(c) and 1(d). This can be easily understood by
examining semiclassical expressions in Eqs. (40) and (43),
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FIG. 5. (Color online) Interferences with two trajectories in-
volved for each arrival time tf , where rf = 0.5 m and θf = 0.
(a) Fm = 10 kV/cm. (b) Fm = 20 kV/cm. In both (a) and (b) the
dotted line is the semiclassical result after Eq. (36), while the solid
and the dashed curves are quantum calculations after Eq. (56) for H−

and F−, respectively.

which attributes this discrepancy to the different angular
distributions of the initially generated electron wave from
H− and F−, respectively. The quantum fluxes from Figs. 1(c)
and 1(d) for θf = 0 are compared quantitatively in Fig. 2(b),
where the corresponding semiclassical flux is also displayed.
The excellent agreement among different calculations further
confirms the simple physical picture established by the
semiclassical theory.

Figure 5 presents more examples for two-trajectory con-
tributed interferences, where much more interference oscilla-
tions can be observed by increasing the pulse amplitude. In
both Figs. 2(b) and 5, quantum fluxes for H− and F− coincide
almost perfectly. This is because the electron initially outgoing
angle θi = 0 for both the two involved trajectories with θf = 0
[see also Fig. 3(a)]. According to the semiclassical formulas
in Eqs. (40) and (43), the electron flux with θi = 0 should
be exactly the same for an s-wave source (F−) and a p-wave
source (H−) except for an energy-dependent prefactor as in
Eq. (34), which has been scaled out for comparison. For the
time tf very close to r/k0 ≈ 2.21 μs in Figs. 2(b) and 5 (as well
as other figures in the following), the discrepancy between the
displayed semiclassical flux and exact quantum fluxes comes
from two aspects: (a) the semiclassical amplitude experiences
a divergence near tf = r/k0 because another temporal caustic
exists according to Eq. (15), which cannot be resolved in the
electron arrival-time plot as in Fig. 1(a) near r/k0 ≈ 2.21 μs,
and (b) the background electrons near tf = r/k0 are almost
unaffected by the single-cycle pulse and their effect has not
been included in semiclassical calculations.

Figure 6 shows an example calculation where four-
trajectory contributed interferences are involved, which
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FIG. 6. (Color online) Interferences with possible four trajec-
tories involved for each arrival time tf , where Fm = 50 kV/cm,
rf = 0.5 m, and θf = 0. (a) The electron arrival-time plot reproduced
from Fig. 3(e) as a reference. The corresponding semiclassical results
(dotted or dashed curves) and quantum calculations (solid green
curves) are shown in (b) and (c) for H− and F−, respectively. Quantum
fluxes for H− and F− are compared in (d) with their respective line
shapes indicated in the legend. (e) The phase difference between two
trajectories from the marked branches in (a).

corresponds to the electron arrival-time plot in Fig. 3(e) with
Fm = 50 kV/cm and θf = 0. We only calculated the electron
flux for tf � 1 μs by considering the clarity in displaying
as in Fig. 6 and also the computing efficiency in quantum
calculations. For the electron arrival time tf less than 1 μs,
it is just the basic two-trajectory contributed interferences as
in Fig. 5 discussed above. For the present calculations, an
excellent agreement between the quantum and semiclassical
fluxes can also be observed in Figs. 6(b) and (c) for H− and
F−, respectively, except for a small region near the temporal
caustic t cf = 1.743 μs, where the semiclassical formulas like
Eqs. (40) and (43) break down. Figure 6(d) shows a comparison
between quantum fluxes for H− and F−. In the two-trajectory
contributed region (tf < 1.743 μs), the two fluxes oscillate
in pace and coincide almost perfectly, which is the same as in
Figs. 2(b) and 5 we have discussed above. However, in the four-
trajectory contributed region (tf > 1.743 μs), an antiphase
oscillation is observed clearly between electron fluxes from
H− and F−. This can also be understood quite well from the
semiclassical picture. The initially outgoing angle θi = 0 for
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FIG. 7. (Color online) Analysis for the four-trajectory con-
tributed region in Fig. 6 by taking F− for instance. The bold solid
green curve is the quantum flux for F−, which is reproduced from
Fig. 6(c) as a reference. The thin solid blue curve is the semiclassical
flux contributed by the two trajectories from the solid blue lines
in Fig. 6(a) with θi = 0, and the dashed red curve presents the
semiclassical contributions by the two trajectories from the dashed
red curve in Fig. 6(a) with θi = π . The bold dot-dashed line shows
the contribution of the other four terms in the semiclassical-flux
expression coming from the quantum interferences between those
trajectories with different initial angles.

trajectories from the solid blue line in the electron arrival-time
plot [Fig. 6(a)], while θi = π for trajectories from the
dashed red curve in Fig. 6(a). According to the semiclassical
formulas, the interference term contributed by trajectories
with θi = 0 and θi = π has an initial-angle dependent factor
[cos(0) cos(π )] = −1 in Eq. (43) for a pz-wave source like
H−, which reverses the oscillatory behavior with respect to the
interference term in Eq. (40) for an s-wave source like F−.

Another two interesting observations are related to the
oscillation amplitude and phase of the electron flux in different
time ranges. In the two-trajectory contributed region, only the
initial launch time is slightly different for the two involved
trajectories whose initially outgoing angles are approximately
the same. As a consequence, they almost follow the same
classical orbit except for a tiny difference between their
evolution duration. Therefore, the semiclassical amplitudesA1

and A2 are approximately equal. According to Eqs. (40) and
(43), an approximate zero value can be touched as in Fig. 2(b)
[Figs. 5 and 6], when cos(��12) = −1 (note pr1 ≈ pr2 in our
current system). However, in the four-trajectory contributed
region, the finite minimum values are observed clearly in Fig. 6
for the oscillatory fluxes. To understand this, we divide the
semiclassical-flux expression into three parts as in Fig. 7 by
taking F− for instance. From Fig. 7 one can immediately find
that the electron flux from the two trajectories with θi = 0
only experiences one oscillation between 1.85 and about
2.2 μs (see the following discussion for the phase difference),
and its large positive value is the main reason for the finite
minimum flux in Fig. 6. Another necessary condition is that the
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FIG. 8. (Color online) Interferences with a temporal-caustic bi-
furcation occurred, where Fm = 20 kV/cm, rf = 0.5 m, and θf =
π/3. (a) The electron arrival-time plot reproduced from Fig. 4(b) as a
reference. The corresponding semiclassical results (solid gray lines)
and quantum calculations (heavy solid and colored curves) are shown
in (b) and (c) for H− and F−, respectively. Quantum fluxes for H− and
F− are compared in (d) with their respective line shapes indicated in
the legend.

electron-wave amplitude from θi = π should be small enough
to guarantee the interference oscillations from the dashed
and the dot-dashed curves in Fig. 7 cannot offset the large
positive contribution from the two trajectories with θi = 0.
The physical picture for the small electron-wave amplitude
as indicated by the dashed curve in Fig. 7 is that the two
trajectories with θi = π initially propagate in a completely
opposite direction relative to another two trajectories with
θi = 0, and their neighboring trajectories finally turn out to
be more divergent.

The phase difference �S̃12 is also shown in Fig. 6(e) for
the two indicated trajectories in Fig. 6(a), which explains
why the oscillation frequency varies dramatically in the time
range shown in Fig. 6. For tf � 1.2 μs, the phase difference
�S̃12 almost changes monotonically with the time tf , giving
an approximate uniform oscillation for the electron flux. In
contrast, for tf � 1.2 μs, the phase difference between these
two trajectories hardly change with the different time tf .
Therefore, the electron flux contributed by the two trajectories
with θi = 0 oscillates slowly as in Fig. 6 and also the thin solid
curve in Fig. 7, and the oscillatory behavior observed in the
four-trajectory contributed region is mainly contributed by the
interferences between trajectories with different initial angles,
which is illustrated by the bold dot-dashed curve in Fig. 7. Es-
pecially, near its extremum at tf ∼ 1.5 μs, the phase difference
�S̃12 varies slowly around the value of 180 ∼ (56 + 3/2)π .

As a consequence, cos(��12) = cos(�S̃12 − π/2) ≈ −1 in
Eqs. (40) and (43), which explains the oscillation-amplitude
suppression observed near tf = 1.5 μs in Figs. 6(b)–6(d).

Figure 8 is a representative case for quantum interferences
with a temporal-caustic bifurcation, which corresponds to the
electron arrival-time plot in Fig. 4(b) with Fm = 20 kV/cm
and θf = π/3. By just observing the classical arrival-time
plot as in Fig. 8(a), it is similar to Fig. 6 in that both the
two-trajectory and four-trajectory contributed interferences
are involved, but the resulted electron flux still has several
different interesting features. Quantum fluxes for H− and F−
are compared in Fig. 8(d) between each other. It can also be
observed that the fluxes from H− and F− oscillate antiphase
in the four-trajectory contributed region while oscillating in
pace in the two-trajectory contributed region, which is similar
to those observations in Fig. 6(d). Nevertheless, there are two
new features appeared in Fig. 8(d): (a) The flux amplitude
for H− almost vanishes near the newly born caustic near
tf = 1.912 μs. This is because the initially generated outgoing
p wave from H− has a node near θi = π/2, and the electron
flux is therefore largely suppressed near tf = 1.912 μs with
its contributed trajectories having initial angles near θi = π/2
[Figs. 4(b) and 4(c)]. (b) The electron fluxes for H− and F− do
not coincide anymore in the two-trajectory contributed region,
which can be easily understood by realizing that initial angles
for the contributed trajectories are no longer the same as in
Fig. 6 for different time tf .

By comparing the semiclassical flux and the quantum flux
in Figs. 8(b) and 8(c) for H− and F−, respectively, only a
good agreement can be found in the four-trajectory contributed
region. Near the two temporal caustics, the semiclassical
flux diverges as usual, and the divergent property of the
semiclassical amplitude for H− is suppressed by the factor
cos(θi) as in Eq. (43) with the initial angle θi tends to π/2
when the final time tf approaches the caustic near tf = 1.912
μs. In the classically forbidden region with tf � 1.912 μs, an
interference oscillation can still be observed as the quantum-
tunneling effect from the two extrema near tf = 1.912 μs. In
the two-trajectory contributed region, the oscillation phase is
almost the same between the quantum flux and semiclassical
calculations, but an obvious discrepancy exists for the flux
amplitude, which can also be attributed to a quantum tunneling
effect of the electron wave near the temporal caustic at
tf = 2.058 μs. This quantum tunneling wave interferes with
the two wave parts contributed by the two classical trajectories,
resulting in two observable effects in Figs. 8(b) and 8(c): (a) the
semiclassical-flux amplitude associated with the two classical
trajectories (gray curves) is modulated peak by peak as shown
by the heavy sold curves, and (b) the amplitude modulation
caused by this quantum-tunneling wave is antiphase for H−
and F− as those interferences in the four-trajectory contributed
region.

At the end of this discussion, we would like to point out that
all the observed structures above could also be observable in
the angle-resolved electron energy spectrum according to an
equivalence expressed in Eq. (C6). In a real experiment, one
may need to determine whether the time-dependent electron
flux or the angle-resolved energy spectrum can be easily
measured with a satisfying resolution. One more important
feature related to the temporal-caustic bifurcation is that
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the earliest time tf for the electron flux to be detected is
approximately determined by the newly born temporal caustic
like tf = 1.912 μs in Figs. 4(b) and 8, which is fixed and does
not change for different field amplitudes Fm, indicated by the
dot-dashed green line in Fig. 4(d) and given by rf sin(θf )/k0

at a specific angle θf . Accordingly, a maximum energy value
of k2

0 csc2(θf )/2 exists in the angle-resolved energy spectrum
no matter how strong the applied driving pulse field is, as long
as the temporal caustic experiences a bifurcation.

In addition, for all the above analysis and discussions, we
assumed the weak laser field applied for initiating the electron
wave is linearly polarized, and the initially outgoing wave
generated from H− has a zero angular-momentum component
on the z direction of the laser polarization. However, if a
circularly polarized laser light is used, an electron outgoing
wave with m = 1 can be generated. In contrast with the
current situation we considered with m = 0, the electron
can rotate around the z axis during its interaction with a
single-cycle driving pulse, therefore more interesting effects
can be expected, which should also be an interesting direction
in the future investigations.

V. CONCLUSION

Inspired by the recent availability of a single-cycle pulse in
experiments (see, e.g., Ref. [3]), we demonstrated a possible
application of a single-cycle driving pulse in modulating and
controlling the photodetachment dynamics of negative ions.
The involved electron dynamics for different pulse amplitudes
can be classified and examined by different topological
geometries in the corresponding momentum space. A universal
temporal-caustic bifurcation has been observed when the
observing angle deviates away from the field-polarization
direction. Combining with the electron arrival-time plot
together, we found that the electron can follow two or more
classical trajectories to arrive at a detector simultaneously,
thereby giving an oscillatory electron flux in the real-time
domain as a result of quantum interferences. By comparing
the electron fluxes for H− and F−, both the in-phase and
antiphase oscillations have been observed, depending on the
pulse amplitude and the observing angle.

With the detector far away from the photodetachment zone,
the number of interference oscillations does not change, which
has been already determined in the temporal-spatial volume
for interacting with the short driving pulse. In contrast, the
oscillation period increases with the detecting distance, which
makes the interference pattern much easier to be resolved at a
larger distance. However, the electron signal will be weaker by
increasing the observing distance. As a consequence, there is a
balance between the detector sensitivity in an experiment and
increasing the detecting distance for a higher resolution. In our
calculations, we assumed the detecting distance to be 0.5 m
as in traditional photodetachment microscopy. A macroscopic
distance less than this value should also be feasible, especially
for the electron flux at θf = 0 with a sufficiently strong driving
pulse, unless a higher accuracy was desired.

Although our current work was mainly about the photode-
tachment of atomic negative ions and a single-cycle driving
pulse, the involved general picture as well as its related
formulas developed here could be easily extended and applied

for other similar systems where the electron experiences an
interaction with an applied electric-field driving pulse. The
time-dependent electron flux investigated here has been estab-
lished as an equivalence of the angle-resolved electron energy
spectrum at large distances which is usually concerned in the
strong field and ultrafast physics [15–17,21,22]. Moreover,
the temporal-caustic bifurcation as a universal phenomenon
should also have some interesting effects in other similar
systems. On the other hand, the present idea could also be
directly applied for neutral atoms instead of negative ions here,
by including the long-range Coulomb potential, which can be
seen as an extension of traditional photoionization microscopy
in the time domain.
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APPENDIX A: SOLVING THE CLASSICAL
ELECTRON-ORBIT EQUATION

First, the integrals of A(t) and A2(t) can be analytically
written out as follows:∫ t2

t1

A(t)dt = −Fmt2
w

2

√
πe

2

[
erf

(
t2

tw

)
− erf

(
t1

tw

)]
(A1)

and∫ t2

t1

A2(t)dt = F 2
mt3

we

4

√
π

2

[
erf

(√
2t2

tw

)
− erf

(√
2t1

tw

)]
,

(A2)

in terms of the standard error function erf(x). These two
integrals will be involved in this Appendix and next one,
respectively. From Eq. (A1), the field-induced displacement
�̃z(ti) has the following form:

�̃z(ti) = −Fmt2
w

2

√
πe

2

[
1 − erf

(
ti

tw

)]
. (A3)

Combining Eqs. (10) and (14), a quadratic equation can be
obtained for τ = t − ti ,

ã(t − ti)
2 + b̃(t − ti) + c̃ = 0, (A4)

with

ã = A2(ti) − k2
0, (A5)

b̃ = 2A(ti)[rf cos(θf ) − �̃z(ti)], (A6)

c̃ = r2
f + [�̃z(ti)]

2 − 2rf cos(θf )�̃z(ti), (A7)

where z(tf ) = rf cos(θf ) is used and c̃ is always positive.
For −A(ti) < k0, ã < 0, and Eq. (A4) has and only has

one positive solution satisfying the physical requirement, for
which the arrival-time modulator μ(ξ,ζ,θf ) in Eq. (15) can be
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solved as

μ(ξ,ζ,θf ) = � − √
�

ξ 2 − 1
, ξ < 1, (A8)

with ξ = −A(ti)/k0 and ζ = �̃z(ti)/rf as defined below
Eq. (15), and

� = ξ [cos(θf ) − ζ ], (A9)

� = [1 + ζ 2 − 2ζ cos(θf )] − ξ 2 sin2(θf ). (A10)

When θf = 0 and θf = π , respectively, Eq. (A8) can be further
simplified as

μ(ξ,ζ,θf = 0) = k0

k0 + [−A(ti)]

[
1 − �̃z(ti)

rf

]
(A11)

and

μ(ξ,ζ,θf = π ) = k0

k0 − [−A(ti)]

[
1 + �̃z(ti)

rf

]
, (A12)

where k0 + [−A(ti)] and k0 − [−A(ti)] are actually the elec-
tron final momenta kf in each case after interacting with the
applied pulse field.

For −A(ti) > k0, ã > 0 and b̃ < 0. The existence of
solutions is determined by the following discriminant:

� = b̃2 − 4ãc̃ � 0, (A13)

which gives a maximum angle θm
f the electron can finally reach

on a spherical detector located at a distance rf from the source
region,

θm
f = arccos

{
1

ξ 2
[ζ +

√
(1 − ξ 2)(ζ 2 − ξ 2)]

}
. (A14)

There are two solutions for θf < θm
f ,

μ<(ξ,ζ,θf ) = � − √
�

ξ 2 − 1
, (A15)

μ>(ξ,ζ,θf ) = � + √
�

ξ 2 − 1
, ξ > 1. (A16)

Where the subscripts of μ indicate that μ< is smaller than μ>.
When θf = θm

f , � = 0 and

μ<

(
ξ,ζ,θm

f

) = μ>

(
ξ,ζ,θm

f

) = ξ
[

cos
(
θm
f

) − ζ
]

ξ 2 − 1
. (A17)

At θf = 0,

μ<(ξ,ζ,θf = 0) = k0

[−A(ti)] + k0

[
1 − �̃z(ti)

rf

]
(A18)

corresponds to θi = 0, and

μ>(ξ,ζ,θf = 0) = k0

[−A(ti)] − k0

[
1 − �̃z(ti)

rf

]
(A19)

corresponds to θi = π . There is no corresponding classical
trajectory for θf > θm

f .
For −A(ti) = k0, ã = 0 in Eq. (A4), and the requirement

of a positive value of t − ti gives a classical boundary

θm
f = arccos

[
�̃z(ti)

rf

]
(A20)

for the electron final angle on the spherical detector placed
at a distance rf . For θf < θm

f , the arrival-time modulator
μ(ξ,ζ,θf ) in Eq. (15) turns out to be

μ(ξ,ζ,θf ) = 1 − ζ 2

2[cos(θf ) − ζ ]
− ζ, ξ = 1, (A21)

which goes to +∞ when θf = θm
f . For θf = 0, the above

expression can be simplified as

μ(ξ,ζ,θf = 0) = 1

2

[
1 − �̃z(ti)

rf

]
, (A22)

which is a continuation of Eqs. (A11) and (A18) at A(ti) = k0.

APPENDIX B: SEMICLASSICAL AMPLITUDE
AND PHASE ACCUMULATION

Quantitatively the semiclassical amplitude A is described
as

A(t) =
∣∣∣∣ J (τ = 0)

J (τ = t − ti)

∣∣∣∣1/2

(B1)

by the time-dependent Jacobian J (τ ) at the final point
compared with its initial value at the starting point. The
specific form of J (τ ) in the cylindrical coordinate can be
defined as

J (τ ) = ρ det

(
∂(ρ,z,t)

∂(ti ,θi,τ )

)
, (B2)

which can be further simplified as

J (τ ) = ρ

(
∂ρ

∂ti

)
θi ,t

(
∂z

∂θi

)
ρ,t

(B3)

by combining the reduction procedures in the Appendixes of
Refs. [20,23]. Note the derivative dr/dθ in Eqs. (B6) and (B7)
of Ref. [23] should be (∂r/∂θ )t , since the variable t was missed
in Eq. (B5) there.

For the initially outgoing spherical wave, one can readily
show that

J (τ = 0) = k0R
2 sin(θi). (B4)

For the electron propagation driven by a single-cycle pulse,
the partial derivative of ρ with respect to ti in Eq. (B3) can be
easily obtained from Eq. (10). The partial derivative of z with
respect to θi is given by the following relationship:(

∂z

∂θi

)
ρ,t

=
(

∂z

∂θi

)
ti ,t

+
(

∂z

∂ti

)
θi ,t

(
∂ti

∂θi

)
ρ,t

, (B5)

where all the partial derivatives on the right-hand side
can be already obtained analytically from Eq. (11). There-
fore, the final expression as in Eq. (28) can be derived
for the semiclassical amplitude, by combining the above
equations and using the partial derivatives from Eqs. (10)
and (11).

Similar to the standard definition in the usual phase space,
the classical action S in the augmented phase space is given
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by the following integral along all the canonical variables:

S =
∫

pρdρ + pzdz + ptdt, (B6)

which turns out to be

S = 1

2

∫
p2

ρdt + 1

2

∫
p2

zdt −
∫

F (t)z(t)dt (B7)

following the generalized Hamiltonian in Eq. (26). The last
integral in the above equation can be separated as

−
∫

F (t)z(t)dt = z(t)�pz(t) −
∫

[�pz(t)]pz(t)dt (B8)

after integration by parts using the impulse momentum theo-
rem. Substituting Eq. (B8) into Eq. (B7) and using �pz(t) =
pz(t) − pz(ti), the classical action S can be explicitly written
as

S = E0(t − ti) + z(t)�pz(t) − 1

2

∫
[�pz(t)]

2dt, (B9)

with �pz(t) = A(t) − A(ti) as in Eq. (12), where the involved
integrals of A(t) and A2(t) are given by Eqs. (A1) and
(A2). By further including an initial phase of the generated
electron wave at ti as in Eq. (32), and using the formal
expression in Eq. (15) for the relationship between t and ti ,
the phase difference in Eq. (29) can be obtained after a simple
rearrangement.

APPENDIX C: NUMERICAL VERIFICATION ON THE
ACCURACY OF EQ. (56)

The simple form in Eq. (56) for the flux calculation
benefits from the stationary-phase approximation used for the
integration in Eq. (54). Here we first demonstrate that the
simple expression in Eq. (56) is quite accurate by directly
doing the numerical integration in Eq. (54), and then a general
argument will be presented for the simple relationship between
the time-dependent electron flux and the angle-resolved energy
spectrum.

For convenience, we first define two integrals as follows:

I 0
lt =

∫
Aεl√

k
eiϑεl e−it(

√
ε−√

ε̄)2
dε, (C1)

I 1
lt =

∫ √
kAεle

iϑεl e−it(
√

ε−√
ε̄)2

dε, (C2)

which allows us to write down the electron flux as

jr = 1

2πr2

∑
ll′

Re
(
I 0
lt

∗
I 1
l′t

)
Yl0(θ,φ)Yl′0(θ,φ) (C3)

after Eq. (54), where Re means the real part of its variable. The
two integrands in Eqs. (C1) and (C2) are highly oscillatory
when the energy is slightly deviating away from the stationary
point ε̄ = r2/(2t2), because the final time t is on the scale of
microsecond, which is an extremely large number in atomic
units. In order to handle this integration, a Gaussian-shape
window function W (ε) = exp{−[(ε − ε̄)/�ε]2} is multiplied
to the integrand in our practical numerical integration, which
provides an accurate and well-convergent result for the
integration as long as the window is sufficiently wide to
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FIG. 9. (Color online) Numerical verification on the accuracy of
the simple expression in Eq. (56). The solid curve is calculated after
Eq. (56) for H− with Fm = 2 kV/cm, rf = 0.5 m, and θf = 0. The
dashed curve is given by Eq. (C3) by directly doing the numerical
integrations in Eqs. (C1) and (C2).

cover enough number of oscillation cycles in the concerned
integrand.

Assuming t(
√

ε − √
ε̄)2 = π , we get an estimation for a

reference energy-width �ε0 as

�ε0 =
√

16πε̄/t (C4)

during which the integrand experiences one full cycle approx-
imately. In practice we use �ε = 10�ε0, with �ε0 given
by Eq. (C4) at the earliest electron arrival time. For the
demonstrated case in Fig. 9, t = 1.95 μs is used in Eq. (C4)
to determine the reference width �ε0. The actual numerical
integration can be made from ε̄ − 6�ε to ε̄ + 6�ε for each
final time t . Figure 8 shows a comparison between electron
fluxes obtained, respectively, from Eq. (56) and the directly
numerical integration as in Eqs. (C1)–(C3). The almost perfect
coincidence between the two calculations in Fig. 9 indicates
that the stationary-phase approximation works very well at
least for our current case, and the simple expression in Eq. (56)
is accurate enough.

To understand why the time-dependent electron flux is
simply related to the angle-resolved energy spectrum as in
Eq. (56), one can imagine that the total photodetachment
probability P should be the same whether you calculate it
by integrating the electron flux or the energy spectrum, that is

P =
∫

jrr
2 sin θdθdφdt

=
∫ (

dP

sin θdθdφdε

)
sin θdθdφdε. (C5)

For any driving pulses, if the observing distance r is much
larger than the spatial range of the electron-field interaction,
and the interaction duration is also much shorter than the final
time t for the electron to arrive at the detector, then the electron
velocity can be given by r/t quite accurately, and accordingly
ε = r2/(2t2) holds in atomic units, which is just the stationary-
phase point for the integration in Eq. (54). Following this line,
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we get dε = −r2dt/t3 which gives us

jr = 1

t3

(
dP

sin θdθdφdε

)
(C6)

by substituting into Eq. (C5). Therefore, in this sense, our
studied time-dependent electron flux are equivalent to the
angle-resolved energy spectrum.
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