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Simulations of prompt many-body ionization in a frozen Rydberg gas
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The results of a theoretical investigation of prompt many-body ionization are reported. Our calculations
address an experiment that reported ionization in Rydberg gases for densities two orders of magnitude less than
expected from ionization between pairs of atoms. The authors argued that the results were due to the simultaneous
interaction between many atoms. We performed classical calculations for many interacting Rydberg atoms with
the ions fixed in space and have found that the many-atom interaction does allow ionization at lower densities
than estimates from two-atom interactions. However, we found that the density fluctuations in a gas play a larger
role. These two effects are an order of magnitude too small to account for the experimental results suggesting at
least one other mechanism strongly affects ionization.
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I. INTRODUCTION

Most low-density gases (e.g., 1010 cm−3) consist of nearly
independent atoms or molecules that interact through random
binary collisions. Gases consisting of Rydberg atoms can
violate this picture strongly. Even though the sizes of the atoms
are small compared to the spacing between the atoms, the large
dipole moments that can be formed allow for a large interaction
between atoms. There have been many recent experiments
where the atoms have been separated by 10’s of μm, but still
showed strong interaction. The strong interaction between the
atoms and the controllability inherent in exciting specific states
has led to the possibility of using Rydberg gases as examples
of many-body systems.

A recent experiment [1] found that ionization in a frozen
Rydberg gas occurred at much lower densities than expected
from calculations of pairwise interactions [2]. The basic idea
behind the experiment was to study the ionization of a Rydberg
gas on a time scale so short that the atoms could be considered
to be frozen in space and the only relevant interaction is the
long-range interaction between electrons on different atoms.
By varying the density of Rydberg atoms, they could change
the strength of the Rydberg-Rydberg interaction. A relevant
observable was the fraction of atoms that rapidly ionized
as a function of Rydberg atom density. The time scale of
the ionization was short enough to rule out cascade-type
ionization observed in other experiments (i.e., ionization that
occurred through a sequence of processes could be ruled
out). Because they observed prompt ionization at densities
much less than expected from the pairwise interaction, they
explained their results using the concept of a many-atom
system where several atoms simultaneously interact through
long-range electron-electron interactions: “The many-atom
system rapidly evolves from its initial state through a series of
near-resonant, dipole-dipole coupled states, which results in
the diffusion of the atomic population over a band of energies,
including the ionization continuum.”

*robichf@purdue.edu

We can get a sense of the relevant scales from Ref. [2].
In this calculation, it was found that 90% of the trajectories
led to ionization when a pair of atoms were at a separation of
∼ 2.1 × 2n2 a0. In Ref. [1], they used

ρ = 1

(4π/3)(4n2 a0)3
= 3

256πn6 a3
0

(1)

as the reference density; this density corresponds to one atom
within a sphere of radius 4n2a0. For a Rb 45d state, n �
43.7 and the reference density is ∼ 4 × 1012 cm−3. In the
experiment [1], they excite the atoms to the 45d state, wait
10 ns, and then ramp an electric field to measure the ions and
atoms. The details of the measurement mean that they measure
the ionization approximately “100 ns after laser excitation of
the frozen Rydberg gas.” The moniker “frozen Rydberg gas”
is applicable because the Rb atoms have a temperature of
300 μK giving a rms speed of ∼0.3 m/s. Thus, during 100 ns,
the atoms move ∼30 nm which is much smaller than the size
of the atoms, ∼200 nm, and is much, much smaller than the
spacing between atoms ∼ 1/ρ

1/3
exp ∼ 3000 nm. Because the

atoms travel such a small distance, they do not ionize through
collisional processes.

At a density of 5 × 1010 cm−3, they measured substantial
ionization at early times. The surprisingly large amount of
ionization was attributed to many-body interactions since the
ionization occurs at densities roughly two orders of magnitude
less than the base density needed for ionization between pairs
of atoms [Eq. (1)]. There have been several other experimental
studies of ionization in a Rydberg gas or the conversion of the
Rydberg gas to a plasma (e.g., see Refs. [3–12]). However,
these studies are fundamentally different from Ref. [1] in
that the time scale of the ionization is much longer and the
atoms move a substantial fraction of their spacing. There
was a quantum calculation of the autoionization from pairs of
Rydberg atoms [13], but the authors found that this quantum
effect was negligible for the situation of Ref. [1].

In order to test the idea of many-body ionization, we
performed classical trajectory Monte Carlo calculations of
many interacting Rydberg atoms. Since the atoms are in highly

1050-2947/2014/90(2)/022712(6) 022712-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.022712


F. ROBICHEAUX, M. M. GOFORTH, AND M. A. PHILLIPS PHYSICAL REVIEW A 90, 022712 (2014)

excited states and the physics involves substantial averaging,
we expect that classical calculations will provide a good
approximation to the actual quantum physics. The advantage
of the classical calculation is that we can include all of the
electron-electron interactions without approximation. Thus,
the ionization process will be properly represented even if it
requires the interaction between many widely spaced atoms.

In a real gas, the atoms have a random spacing and the
distribution of spacing affects the amount of ionization. In
order to control for this, we performed calculations for the
unphysical situation where the atoms have a fixed spacing.
We performed calculations for particles on a line, on a square
array, and on a cubic grid. For these cases, any ionization
for separations larger than the maximum ionization for a pair
of atoms will necessarily be due to many-body interactions.
We compare these results to calculations for atoms randomly
distributed in space. We found that the character of ionization
substantially changed when going to a random distribution.
In our calculations, the density fluctuations play a larger role
in ionization than the many-body interactions. However, our
results could not reproduce the experimental results, which
suggests there is at least one other important mechanism for
ionization in a dense Rydberg gas.

II. NUMERICAL METHOD

Our calculations are purely classical where the electrons
obey Newton’s equations and the nuclei are fixed in space. We
solve the coupled first-order equations in �v,�r using an adaptive
step-size Runge-Kutta algorithm similar to that in Ref. [14].
The main change is in how we scale the variables with all
of the velocity components of the ith electron being scaled
by the speed of the ith electron and the position components
being scaled by the distance to the closest nucleus. The force
on each electron is calculated by summing the force from all
of the stationary nuclei and from all of the other electrons. For
each set of initial conditions, we checked the change in total
energy at the final time. If the energy drifted by more than
0.1%, the trajectory was rerun with the same initial conditions
but the error scale decreased by an order of magnitude. The
process was repeated until the energy drift was less than our set
value. We tested that our results were converged with respect
to the setting of our accuracy parameter.

We used a perfect Coulomb force for the electron-electron
interactions, but a soft-core force for the electron-nuclei
interactions. The potential energy between an electron and
nucleus was proportional to −1/

√
r2 + b2 where r is the

distance between the electron and nucleus and b is a constant.
Because of a nonzero b, the potential is not singular and the
force does not diverge as r → 0. The calculations run faster,
but the results are less relevant, with larger b. Defining a
principal quantum number from the electron’s launch energy
using −13.6 eV/n2, we chose b = 2(n/20)2a0 with a0 the
Bohr radius; this gives a screening length b that is ∼ 1

400
the size of the atom. We found that choosing b = a0 gave
similar results at the price of longer calculations. In all
of our calculations, one electron was launched from near
each nucleus. This simulates the photoexcitation step. For all
calculations, we launched the electrons with n = 60. Because
this classical system scales with n and we present all our results

in terms of ratios, the actual value of n chosen is not relevant.
At small enough n, quantum effects will become important but
that is beyond the scope of this paper.

We chose the initial position of each electron to be randomly
on a sphere of radius r0 = 2n2a0/100 centered on its nucleus;
the initial position was �r = (sin θ cos φ, sin θ sin φ, cos θ )r0

where φ was randomly chosen from a flat distribution between
0 and 2π and cos θ was randomly chosen from a flat
distribution between −1 and +1. The speed of the electron
is determined by its energy −13.6 eV/n2. The direction of
the velocity was chosen to be perpendicular to the radius
making r0 the perigee of the orbit for an isolated atom. The
direction of the velocity was random in the plane perpendicular
to r̂ with �v = [θ̂ cos(α) + φ̂ sin(α)]v where α was from a flat
distribution between 0 and 2π . In an experiment, the electrons
are not simultaneously excited to the Rydberg state but
randomly absorb photons proportional to the time-dependent
laser intensity. This duration will depend on the specific laser
and the effect will depend on the ratio of the duration to the
classical Rydberg period of the state being excited. Clearly, we
do not want to launch all electrons at the same time because
they will initially have the same phase in the classical orbit.
We did calculations where the time of each electron’s launch
was random with a flat distribution between 0 and 1 Rydberg
period or with a flat distribution between 0 and 100 Rydberg
periods. We found that the results quantitatively depended on
how we launched the electrons but the qualitative results we
were after did not depend on how the random times were
chosen.

We defined ionization to be when any electron reaches a
distance more than 100 atom spacings from the central position
of the many-atom system. We chose 2000 Rydberg periods for
the final time of the calculation. This is long enough that
most of the trajectories that lead to ionization will have an
electron reach the final distance. But, it is not so long that we
waste computer time solving trajectories that will never lead
to ionization.

For the grid calculations, the nuclei were exactly on a grid
of points in one, two, or three dimensions. For the random
calculations, the x, y, and z positions were chosen from a flat
distribution between 0 and L. In Figs. 4–6, the separation D

is defined to be L divided by the number of atoms for one
dimension, L divided by the square root of the number of
atoms for two dimensions, and L divided by the cube root of
the number of atoms for three dimensions.

Of all the choices for initial conditions, our results most
strongly depended on our choice of r0. If instead we chose a
microcanonical ensemble as in Ref. [2], our ionization curves
shift to smaller atom separation by ∼ 10%. If we chose r0 to be
of the order of a0, then the results also depend on the choice of
the soft-core parameter b. It may be surprising that the results
do not strongly depend on the initial r0 because this defines
the initial angular momentum. We think the insensitivity is
due to the fact that the electron-electron interactions tend to
mix the angular momentum of each electron on a faster time
scale than energy exchange occurs; thus, whether the electron
starts with small or large angular momentum gets lost before
substantial energy exchange occurs. As with other choices
described above, the general trends and conclusions do not
depend on r0 with the differences being of order 10%.
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We did not perform a quantum calculation because it is
beyond current capabilities, but it is important to have an
idea of whether the classical results should be trusted. There
is an important difference between classical and quantum
calculations of ionization for a pair of Rydberg atoms. In
the quantum calculation, there is a nonzero matrix element
from the dipole-dipole interaction which can cause one
electron to go to a more deeply bound state and the other
electron to be ionized. Since the ionized electron is in the
continuum, this is the analog of autoionization [13]. Thus,
for large separations R, the quantum decay rate decreases
like 1/R6 since the matrix element is proportional to 1/R3.
In contrast, the classical ionization probability becomes 0
outside of a separation not much larger than 3.5× the atom
size. The classical ionization probability drops exactly to 0
because as one electron gains energy (thus decreasing its
Rydberg frequency), the other electron loses energy (thus
increasing its Rydberg frequency). This is analogous to driving
a pendulum exactly on resonance for small-angle oscillations
(if the coupling is weak, the oscillator gains energy until the
oscillation frequency changes enough to put it out of phase
with the drive). The energy of each atom oscillates around the
average energy with a spread that decreases as the separation
of atoms increases. This important difference in ionization at
large separation is not relevant for the calculations in this paper
because we are interested in delimiting the densities where the
ionization is fast from those where it is slow. We expect this
set of parameter space to be accurately treated by classical
mechanics because the system has large quantum numbers in
all degrees of freedom, the transition is classically allowed, and
a substantial averaging occurs because we are interested in a
total rate which averages over the distribution of all unobserved
parameters. Using similar types of calculations as a guide
(for example, electron impact ionization of hydrogen atoms),
the error from performing a classical calculation, instead of
a quantum calculation, is probably much less than the error
due to choosing r0 and the soft-core parameter b instead of the
actual potential for Rb.

III. RESULTS

We performed two styles of calculations to try to cleanly
show the effect of many-body ionization. In one set of
calculations, we have the nuclei on equally spaced points in one
dimension, on a square lattice in two dimensions, or on a cubic
lattice in three dimensions. For these cases, there is a limit on
the atoms’ smallest separation and, thus, any increase over
independent pairs is an indication of many-body ionization.
As might be expected, the many-body effect is more apparent
with increasing dimension.

The other set of calculations is to randomly place atoms on a
line, within a square, or within a cube. Aside from many-body
ionization, now there can be pairs of atoms that are randomly
close enough to quickly ionize. This second effect leads to
substantially more ionization compared to a grid of nuclei.

All plots show the probability for ionization as a function
of atom spacing. The probability for ionization is the same
as the fraction of atoms that ionized averaged over all of the
calculations with different initial conditions.

FIG. 1. The probability for an atom to be ionized as a function
of the atom separation for atoms in a line. The different line types
correspond to different number of atoms: 2 atoms (solid line), 4 atoms
(dotted line), 8 atoms (dashed line), and 16 atoms (dashed-dotted
line).

A. Atoms on a regular grid

In Fig. 1, we plot the fraction of atoms ionized versus the
separation of atoms for different number of atoms. The solid
line is for a pair of atoms. We can compare this result to that
reported in Ref. [2] by multiplying the curve in Fig. 1 by
a factor of 2 because the fraction of trajectories leading to
ionization is just two times the fraction of atoms ionized for
calculations with a pair of atoms. The present result slightly
differs from that reported in [2] in that 90% or more of the
trajectories lead to ionization for scaled separations of 2.3 in
Fig. 1 while the value was 2.1 in Ref. [2]. This difference is
due to the choice made for the initial electron conditions as
discussed in Sec. II.

The results for the two-atom case have the simplest
explanation. As the separation decreases, the probability that
at least one atom will ionize rises to nearly one. There is a
rapid drop in ionization probability between 2.5 and 3.0 which
reflects the decreased coupling between the atoms and the
destruction of the resonance condition as energy is exchanged
between atoms. As one atom gains energy, its Rydberg period
increases while the Rydberg period for the atom that loses
energy decreases. When atoms are widely separated, this
destruction of the resonance condition prevents ionization.

There is a large change in the ionization probability when
going from two to four atoms. For small separation, there is a
decrease in the fraction of atoms ionized. This is because the
atoms might not ionize in ordered pairs. For example, atoms 2
and 3 might quickly ionize in the 4-atom case leaving atoms 1
and 4 far away from atoms that they can strongly interact with.
This only needs to occur in approximately 20% of the runs to
obtain the effect seen in Fig. 1. For larger separation, there is an
increase in the ionization fraction due to many-body ionization
as discussed in Ref. [1]. Compared to the two-atom case, the
atoms have more near neighbors. There is a greater chance
for exchanging energy. Also, the destruction of the resonance
condition for the two-atom case does not necessarily hold for
more atoms. For example, atom 2 could gain energy from atom
1 while atom 3 gains energy from atom 4; this will leave atoms
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FIG. 2. The probability for ionization as a function of the atom
separation for atoms in a square lattice. The different line types
correspond to different number of atoms: 22 atoms (solid line), 32

atoms (dotted line), 42 atoms (dashed line), and 52 atoms (dashed-
dotted line).

2 and 3 in (near) resonance and they can continue the exchange
of energy until one of them ionizes.

Note that the 8-atom and 16-atom results are nearly
identical. This shows that the one-dimensional case quickly
converges with respect to the number of atoms. There are only
two atoms at the edge of the grid and, thus, the effect of finite
atom number is small.

We also calculated the fraction of configurations that led
to at least one ionization. This is not directly related to an
experimental observable, but lends itself to an easy test of
many-body ionization. As an example, the four-atom case has
three pairs of atoms with a separation R. The probability for
at least one ionization if each pair independently ionizes is
one minus the probability for all pairs to not ionize. Even
for this case, we found that there is more ionization than
can be accounted for simply by the increased number of
pairs of atoms. Thus, there must be some cooperativity in
the ionization process which can be counted as many-body
ionization. However, we found that a large part of the increase
is simply due to the increase in number of atom pairs.

Figure 2 shows the fraction of ionized atoms in a square
array versus their separation for different number of atoms.
Note there is a slightly larger x range in Fig. 2 compared
to Fig. 1. Unlike the one-dimensional case, the fraction of
atoms ionized increases with the number of atoms for the
full range of separations shown. Also, there does not seem
to be convergence with respect to the number of atoms in a
simulation. This is partly due to the larger fraction of atoms
on the surface of the grid. Even the case with 52 atoms has
more surface atoms than interior atoms: 4 corner atoms, 12
edge atoms, and 9 interior atoms.

As expected, there is more ionization for the two-
dimensional case compared to one dimension because each
atom has more neighbors that are close. This leads to a net
stronger interaction and, thus, a larger fraction of atoms ionize.
To quantify the increase of ionization, we note that approx-
imately 10% of the atoms ionize for the one-dimensional
case with 16 atoms at a separation D = 3.2 compared to the
two-dimensional case with 25 atoms at a separation D = 3.6.

FIG. 3. The probability for ionization as a function of the atom
separation for atoms in a cubic array. The different line types
correspond to different number of atoms: 23 atoms (solid line) and 33

atoms (dotted line).

Due to the lack of convergence with respect to atom number,
we do not have a firm prediction of the large-atom limit of the
fraction of ionized atoms.

Figure 3 shows the fraction of ionized atoms in a cubic
array versus their separation for different number of atoms.
Note there is a slightly larger x range in Fig. 3 compared to
Figs. 1 and 2. We only have two examples of a cubic array
because the number of atoms increases very rapidly in three
dimensions and the computer time scales approximately with
the third power of the number of atoms. Because there is such
a large change between the 23 and 33 cases, we can not predict
how large an increase in ionization would be present for a large
number of atoms.

Even though the three-dimensional case is not converged, it
is clear that there is more ionization than in the one- and two-
dimensional cases. Approximately 10% of the atoms ionize
for the three-dimensional case with 27 atoms at a separation
D = 3.8. If we compare to the one-dimensional case with two
atoms (D = 3.0), the increase in separation does not appear to
be very large (i.e., approximately 25%). However, converting
to a change in density by cubing the ratio gives a factor of 2.

One of the signs of many-body ionization is the ionization
that occurs for larger separation. The ionization fraction for
a pair of ions is less than 1% for separations larger than
3.5 × 2n2a0. However, for more atoms and higher dimensions,
there can be substantial ionization for separations larger than
this value. In fact, the ionization fraction is approximately
20% for the three-dimensional case with 33 atoms and this
separation. This highlights the cooperativity that can occur
during ionization.

B. Randomly placed atoms

In this section, we present results when the atoms are
randomly placed in a d-dimensional region. The position of the
ions are from a flat random distribution between 0 and L in each
dimension. The separation D is defined to be D = L/N1/d

where N is the number of atoms.
In Fig. 4, we plot the fraction of atoms ionized versus

the separation of atoms randomly placed on a line. There is
an order-of-magnitude difference in the range of separation
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FIG. 4. The probability for ionization for atoms randomly placed
on a line with the linear density 1/D. The different line types
correspond to different number of atoms: 2 atoms (solid line), 4 atoms
(dotted line), and 8 atoms (dashed line). Note the vastly different range
for D compared to Fig. 1.

compared to Fig. 1. This difference reflects the qualitative
change in ionization when the atoms are randomly placed.
Even for large separation, there can randomly be pairs of atoms
that are close enough to ionize. If this interpretation is correct,
the ionized fraction should be proportional to 1/D for large
separation. In fact, the simple function 2/(D + 1) is a good
approximation to the fraction of ionized atoms for D � 5.

For one dimension, there is an enormous effect from the
random placement, but there is also some effect from the many-
body interactions. This is reflected in the increase of ionization
with number of atoms. For example, there is 10% ionization at
D � 11 for two atoms, at D � 17 for four atoms, and D � 19
for eight atoms.

We plot the fraction of atoms ionized versus the separation
of atoms randomly placed inside a square in Fig. 5. Again, there
is a large increase in the range of D shown compared to Fig. 2.
As with the results in Fig. 4, we can attribute this difference to
the random placement of atoms and the possibility that random
pairs of atoms can be close enough to ionize. If this is the major

FIG. 5. The probability for ionization for atoms randomly placed
within a square with the surface density 1/D2. The different line
types correspond to different number of atoms: 22 atoms (solid line),
32 atoms (dotted line), 42 atoms (dashed line), and 52 atoms (dashed-
dotted line). Note the vastly different range for D compared to Fig. 2.

FIG. 6. The probability for ionization for atoms randomly placed
within a cube with a density 1/D3. The different line types correspond
to different number of atoms: 23 atoms (solid line) and 33 atoms
(dotted line). Note the vastly different range for D compared to Fig. 3.

effect, the ionized fraction should be proportional to 1/D2. We
found that the function 11/(D + 1)2 is a good approximation
to the fraction of atoms ionized for D � 5.

We plot the fraction of atoms ionized versus the separation
of atoms randomly placed inside a cube in Fig. 6. Again,
there is a large increase in the range of D shown compared
to Fig. 2. As with the one- and two-dimensional cases, the
density fluctuation appears to be the largest effect. We found
that the function 38/(D + 0.6)3 is a good approximation to the
fraction of atoms that are ionized. There appears to be some
effect from many-body ionization but it is difficult to discern
when the smaller calculation already has eight atoms.

To compare the effect of many-body ionization and of
fluctuation on the ionization, we can compare the separation
where 10% and 20% of the atoms are ionized for a pair of
atoms, a cubic grid of atoms, and atoms randomly placed in
a cube. This discussion is tentative because the cubic grid of
atoms does not appear to be converged and, thus, the separation
will be underestimated. For 10% ionization, two atoms need
a separation of 3.0 compared to 3.8 for the cubic grid and 6.9
for the atoms randomly placed in a cube. Taking this as the
measure, the many-body ionization allows a density decrease
by a factor of (3.8/3.0)3 � 2.0 while the fluctuations allow an
additional decrease by a factor of (6.9/3.8)3 � 6.0. For 20%
ionization, two atoms need a separation of 2.8 compared to 3.6
for the cubic grid, and 5.6 for the atoms randomly placed in
a cube. Taking this as the measure, the many-body ionization
allows a density decrease by a factor of (3.6/2.8)3 � 2.1 while
the fluctuations allow an additional decrease by a factor of
(5.6/3.6)3 � 3.8. By either measure, the random placement
has the larger effect on ionization although the many-body
interaction is not negligible.

C. Comparison with experiment

Reference [1] found substantial ionization for densities
much smaller than the base density defined in Eq. (1). We
can use the results of our calculation for atoms randomly
placed in a cube as a comparison. The experiment had different
amounts of ionization for somewhat different cases. We will
use the density at 10% ionization as our benchmark density;
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the answer does not qualitatively change if we use a somewhat
higher ionization fraction as the benchmark. We obtain a
density of

ρ10% ion = [(256π/3)/(2 × 6.9)3]ρ � 0.1ρ. (2)

Thus, we obtain substantial ionization for a density an order of
magnitude smaller than the base density whereas Ref. [1] had
substantial ionization for densities two orders of magnitude
smaller than the base density. While an absolute number for
the density is hard to obtain experimentally, it seems unlikely
to us that the measurement would be wrong by an order of
magnitude.

To decrease the density by an order of magnitude, we would
need to increase the separation from 6.9 to approximately 14.
For this separation, we obtain approximately 1% ionization.
We have considered two possible mechanisms, not in our
calculations, which could increase the fraction of ionized
atoms. The first is electron collisions. The ∼1% of promptly
ionized electrons could be bound by the space-charge effect
and then an ionization cascade as in Refs. [3–12] could occur.
An argument against this mechanism is that the ionization
cascade is typically a slow process compared to the time scales
in Ref. [1]. However, Refs. [3–12] required time to build up the
space charge. Perhaps, the prompt ionization in Ref. [1] allows
the ionization cascade to start almost instantly. The second
mechanism that might be possible is the formation of fast atoms
and ions during the ionization step. The calculation of Ref. [2]
and the experiment of Ref. [15] observed that a Penning
ionization led to fast Rydberg atoms with a kinetic energy
∼ 1

5 of the original binding energy of the cold Rydberg atoms.
These fast Rydberg atoms could collide with the much more
numerous cold Rydberg atoms causing additional Penning
ionization events. A somewhat more complicated variation
of this mechanism involves the fast ion undergoing a charge
exchange with a cold Rydberg atom which leads to a fast

Rydberg atom that can collide with other atoms giving Penning
ionization. Performing a realistic simulation of the ionization
cascade or the fast Rydberg collisions is beyond the scope of
this paper. Finally, Ref. [1] discussed the possibility that the
atoms are directly photoionized but argued that it is a negligible
effect because they do not observe any for low n and the
cross section decreases like n−3. If this process were present,
the resulting electrons would not contribute to the prompt
ionization because their energy is so high they quickly leave
the atomic cloud, and the electron-Rydberg ionization cross
section is small for electrons with order eV energy. Although
the positive ions left behind could contribute to ionization of
Rydberg atom, there would need to be substantial numbers of
ions which seem to be experimentally ruled out.

IV. CONCLUSIONS

We have performed classical calculations of prompt ioniza-
tion in a frozen Rydberg gas. Our calculation fixed the position
of the ions but allowed for the full motion of the electrons. The
calculations were inspired by the measurements in Ref. [1]
which showed substantial ionization for densities two orders
of magnitude smaller than a reasonable base density. They
attributed the increase in ionization to many-body ionization.

We performed calculations for atoms on a grid and atoms
randomly placed within the same volume. By comparing the
two calculations, we attribute a factor of ∼2 increase to many-
body ionization and a factor of ∼5 increase to fluctuation in
nearest-neighbor separations. We can not account for the extra
factor of ∼10 observed in Ref. [1], but we briefly discussed two
possible mechanisms that could increase the ionized fraction
of atoms.
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