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Effect of random positions for coherent dipole transport
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We calculate the effect of two kinds of randomness on the coherent motion of an exciton whose transport
is governed by the dipole-dipole interaction. As our example, we use the idealized case of stationary Rydberg
atoms on a lattice. We present calculations for how fast the excitation can move away from its starting position
for different dimensional lattices and for different levels of randomness. We also examine the asymptotic in time
final position of the excitation to determine whether or not the excitation can be localized. The one-dimensional
system is an example of Anderson localization where the randomness is in the off-diagonal elements although the
long-range nature of the interaction leads to nonexponential decay with distance. The two-dimensional square
lattice shows a mixture of extended and localized states for large randomness, while there is no visible sign of
localized states for weak randomness. The three-dimensional cubic lattice has few localized states even for strong
randomness.
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I. INTRODUCTION

The interaction of many atoms and/or molecules can lead
to a rich variety of processes. There has been recent interest
in the physics of many atoms interacting with each other
through the dipole-dipole potential. This interest is spurred
by the developments in experiments and calculations of cold
gases. There have been studies of amorphous systems where
the atoms (molecules) have a random placement as well as
theoretical studies of atoms (molecules) placed on perfect
lattices. The purpose of this paper is to present results of
a system with the atoms placed in a lattice but with some
randomness in the placement. In particular, we investigate
how the randomness affects the motion of an exciton whose
coherent motion is only determined by the dipole-dipole
interaction while the atoms remain fixed.

The system discussed in this paper is a lattice of idealized
Rydberg atoms with dipole-dipole interactions. This system is
a more regular arrangement of atoms but is otherwise similar
in spirit to the original experiments on Rydberg gases [1,2].
In these experiments, a dense Rydberg gas was achieved by
exciting many atoms to a Rydberg state and the subsequent
dipole-dipole interactions between atoms caused the state to
change; the new states could then coherently move through the
sea of unchanged states. We will treat an idealized case of a
lattice of Rydberg atoms where every atom except one is in a
highly excited s state and the exception is a p state. Because of
the dipole-dipole interaction, the p state can coherently move
from atom to atom. Our simplifications are to ignore terms
higher than dipole-dipole in the interaction, to fix the atoms in
space, and to ignore radiative decay.

The dipole-dipole interaction can lead to a wide variety
of effects which have implications for exciton transport. For
examples of this situation, we will look to recent results on
Rydberg gases, since we will treat an ideal case of this system.
Possibly the most important effect arises because the diagonal
term in the Hamiltonian is the same for all states, while
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the off-diagonal term depends on the separation. Since the
interaction strongly depends on separation, two atoms that
are somewhat closer together than average will appear to
be two states with shifted energies. Reference [3] described
calculations that showed the strongly interacting Rydberg
atoms could shift the energy of the pair out of resonance,
which provides a blockade to further excitation. Reference [4]
provided experimental evidence for this effect by showing
the number of Rydberg atoms excited in a dense gas did
not scale linearly with the laser power. Extreme examples
of this effect were described in Ref. [5], where more than
1000 atoms were blockaded, and in Refs. [6,7], where the
blockade effect was demonstrated between two individual
atoms. Reference [8] provided spectroscopic evidence for
the dipole-dipole interaction between cold Rydberg atoms.
As a final example of basic phenomena, Ref. [9] gave
experimental and theoretical evidence for spatially resolved
observation of the effect of dipole-dipole interaction between
Rydberg states.

In this paper, we don’t address how the atoms could be
placed in a lattice but note that there have been several
investigations concerned with creation of a Rydberg gas on a
lattice. Reference [10] has successfully trapped Rydberg atoms
in an optical lattice, but this situation could also be created by
taking ground-state atoms trapped in an optical lattice and
exciting them to a Rydberg state. Reference [11] gave results
of calculations that showed an optimal choice in the laser
parameters could lead to the Rydberg atoms being in a regular
spatial array, even though the ground-state atoms are randomly
distributed in a gas. Again, by detuning the laser excitation of
the Rydberg atoms, Ref. [12] gave experimental evidence for
an antiblockade. Although they do not use Rydberg atoms as
the element in the dipole-dipole interaction, Ref. [13] uses
polar molecules confined in an optical lattice to investigate the
time evolution of coherently excited dipoles.

Finally, the present work only treats the case of a single
exciton moving through a lattice. There have been many
studies of the many exciton case for Rydberg gases (e.g., see
Refs. [14–19]), but the behavior of many excitons is beyond
the scope of this paper.
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This paper explores the role of randomness in the coherent
motion of a Rydberg excitation of one type through a sea
of Rydberg atoms. Although we only consider the case of a
simple excitation, it is possible that more complicated cases
(e.g., like the dressed atom case of Ref. [20]) would also be
possible. We investigate the case of having the atoms placed on
a lattice of sites with a specified amount of randomness either
in the displacement of the atoms or the fraction of sites with
missing atoms. Within investigations using Rydberg atoms,
Refs. [21,22] have addressed randomness within a lattice of
atoms, up to six sites in Ref. [21] and two sites in Ref. [22].
Also, Refs. [23,24] investigated how an exciton hops through a
completely random Rydberg gas. Lastly, Refs. [25,26] treated
the case of exciton motion with “heavy-tailed disorder” in the
diagonal elements of the Hamiltonian.

In this paper, we have calculated the distribution of
distances through which the excitation moved as a function of
time for one-, two-, and three-dimensional lattices with varying
amounts of disorder. We also investigate the unphysical
t → ∞ limit of the distribution of distances as a way
to determine whether the motion was only slowed by the
randomness or whether the excitation was localized.

The question of randomness in this system allows us to
connect to Anderson localization [27,28], which has been
observed in many systems including light traveling in a di-
electric [29]. For short-range Hamiltonians, one-dimensional
lattices have all eigenstates localized even for small amounts
of disorder. We find that the motion of the excitation due to the
dipole-dipole interaction also has every state localized. How-
ever, the distribution of distances has a stretched exponential
decay for small to intermediate distances and a power-law
decay for larger distances. For two and three dimensions, we
find that almost no states are localized for weak randomness.
Even for strong randomness, only a small fraction of states
are localized. This result matches the finding of the authors of
Ref. [30], who found an absence of Anderson localization of
light moving through random point scatterers; the Hamiltonian
for their case is similar to that in this paper except that the
dipole-dipole interaction includes retardation effects. Finally,
we note that the dipole-dipole interaction has the same form for
magnetic and electric dipoles. Thus, although the details may
differ, our results are also applicable to atoms with magnetic
dipoles trapped in an optical lattice.

Atomic units are used unless explicit SI units are given.

II. COMPUTATIONAL METHOD

To obtain specific results, we solved for a particular case of
dipole motion through a Rydberg gas. We treat the case where
one atom is a p state and all of the other atoms are s states. The
two states should have similar principle quantum number so
that the dipole coupling between states is as large as possible.
For the cases treated in this paper, we chose the 30s and 30p

states of Rb.

A. Hamiltonian

This special case (p-state coherent motion through a sea of
s states) is treated as Eq. (6) in Ref. [21]. The basis states can
be labeled as |i,m〉 meaning the p state is at site i with angular

momentum projection m. In this special case, the nonzero
matrix elements reduce to

Vim,i ′m′ = −
√

8π

3

(
dna1,nb0

)2

R3

× (−1)m
′
(

1 1 2
m −m′ m′ − m

)
Y2,m′−m(R̂),

(1)

where the dna1,nb0 is the reduced matrix element between the
p state with principle quantum number na and the s state with
principle quantum number nb, (. . .) is the usual 3j coefficient,
and �R = �ri − �ri ′ is the displacement vector between sites i

and i ′.
For the general case, the nonzero matrix elements are

complex. In order to treat the largest number of atoms, we
further restricted the p state to have m = 0. This can be
accomplished experimentally by having an external field so
that the m = 0,1, − 1 states are sufficiently separated in energy
so that the motion does not mix m. Now the basis state can be
designated solely by the site i and the nonzero matrix elements
reduce to

Hii ′ = Vii ′ = −2

3
P2(cos θii ′ )

(
dna1,nb0

)2

R3
, (2)

where P2(x) = (3x2 − 1)/2 is a Legendre polynomial and
cos θii ′ = (zi − zi ′)/R. This expression is only for i �= i ′; when
i = i ′, the matrix element is zero: Hii = 0. By choosing m = 0
for the p state, the Hamiltonian will be real, symmetric which
means the eigenvectors and eigenvalues will be real; this will
reduce the amount of computer memory and time needed
for the calculations. In all of the calculations, we use wrap
boundary conditions in order to get better estimates of infinite
size systems.

B. Randomness

We performed calculations for two kinds of randomness in
the system.

Positional randomness has an atom at every site but there is
a random shift of each atom. The x position of the ith atom is
shifted from the perfect placement by an amount (χ − 0.5)ηδx,
where χ is a random number with a flat distribution between
0 and 1 and δx is the spacing of atoms in the x direction.
There is a similar randomness introduced into the y position
for the two- and three-dimensional calculations. Finally, there
is a similar randomness introduced in the z position for
the three-dimensional calculation. The random shift for each
direction is independent. Thus the randomness is only in the
directions of the lattice position of the atom (in one dimension,
the randomness is only in the x placement, etc.). The parameter
η characterizes the amount of randomness. When η = 0, the
system is a perfect lattice. We performed calculations for
η = 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

Filling randomness has the atoms placed perfectly on a
lattice but each site may or may not be occupied. We did this
calculation by generating a random number for each site. If
the random number was greater than a parameter ζ , then the
site would be occupied. On average, the number of occupied
sites is 1 − ζ times the number of sites in the lattice, and,
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thus, ζ is the average fraction of missing sites. To compare
with calculations of positional randomness, we compare cases
where the lattice sizes are the same. We performed calculations
for ζ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

C. Distribution of translation distances

We were interested both in the time dependence of how
an excitation moves through an imperfect lattice and in the
asymptotic, t → ∞, distribution of sites the excitation can
reach. If we were only interested in the time dependence
of the motion, we could compute the distribution using
several different methods for solving the time-dependent
Schrodinger equation. However, the asymptotic distribution
can be found simply from the eigenvalues and eigenvectors
of the Hamiltonian; since we needed the eigenvalues and
eigenvectors for the asymptotic calculation, we also used them
for the time-dependent calculations.

The amplitude that an excitation starts at site i at t = 0 and
coherently moves to site j at time t can be found from the
eigenvalues and eigenvectors as

Aj←i(t) =
∑

α

Ujαe−iEαtU
†
αi, (3)

where the U and Eα are the eigenvectors and eigenvalues of
the Hamiltonian described in the previous section,∑

i

HjiUiα = UjαEα. (4)

The probability for the excitation to start at site i and move to
site j at time t is simply

Pj←i(t) = |Aj←i(t)|2, (5)

which is the standard definition for probability.
The asymptotic probability to start at site i and be at site j

can be defined as

Pj←i(∞) ≡ lim
t→∞

1

T

∫ t+T

t

Pj←i(t
′)dt ′, (6)

where T 
 �/	E with 	E the smallest energy difference in
the system. One can show that this is equivalent to

Pj←i(∞) =
∑

α

|Uiα|2|Ujα|2. (7)

Once we have the probability for an excitation starting at
a site i to be at a site j , the calculation of the distribution
of translation distance can be obtained by binning. The
probability to have moved to a site a distance between r

and r + δr is defined as D(r)δr . With this definition, the
distribution of translation distances is given as

D(kδr,t) = 1

Nδr

∑
i,j

Pj←i(t)
(rij − kδr), (8)

where k is a non-negative integer, rij = |�ri − �rj | is the distance
between sites i and j , and 
(x) equals 1 for 0 < x < δr and is
zero otherwise. Of course, the algorithm we use to implement
this definition involves taking the integer part of rij /δr to find
k. In our calculations, we average the distribution of translation
distances over many different random configurations to obtain
our final results.

For one dimension, the D(r) will be a decreasing function
of r because the excitation will tend to be near its original
position. For higher dimension, the D(r) can exhibit a more
complicated dependence with r because there are more sites
between r and r + δr as r increases. In two dimensions, the
number of sites between r and r + δr increases linearly with
r , while in three dimensions it increases quadratically.

III. RESULTS

In all of our calculations, we use the 30s and 30p states of
Rb as our “sea” and “excitation” states, respectively. The size
of these states is less than 0.1 μm. The standard step distance
between atoms will be 10 μm. Thus the interactions higher
order than dipole-dipole should be negligible. These states
have dipole matrix element d30s,30p = 846 a.u.; this value was
obtained using the numerical method described in Ref. [31] but
based on the updated quantum defects in Ref. [32]. For the one-
and two-dimensional calculations, the atoms will be confined
in the xy plane, which means there is no angular dependence
to the matrix elements coupling different states. For the three-
dimensional calculation, there is an angular dependence due
to the cos2(θii ′) term in the matrix element.

A useful quantity is the energy scale of the matrix element
between nearest neighbors: Esc ∼ d2/R3 = 1.06 × 10−10 a.u.
We can convert this to a time scale by tsc = 2π/Esc = 5.93 ×
1010 a.u., which is 1.43 μs. This gives a sense of the time scale
needed for the p-state character to move from site to site.

A. One dimension

In this section, we present the results of our calculations for
a one-dimensional lattice. For the positional randomness, the
atoms are only shifted in the x direction.

1. Positional randomness

Figure 1 gives an indication of how the p state moves away
from the atom it starts on. This figure shows the distribution of
translation distances, Eq. (8), times the lattice spacing, 10 μm.
Thus the y axis is the probability to find the p state on a lattice
site a distance r from its initial position. The distribution for
times of 1, 2, 3, 4, and 5 μs are shown for different levels
of positional randomness. We do not show the calculations
for η = 0 (a perfect lattice) because it hardly differs from the
η = 0.1 case.

There are some clear trends worth noting. For the η = 0.1
case, the p state is an increasingly greater distance from the
initial position as time increases. Over this time scale, or
equivalently this translation distance, the small randomness
does not strongly affect the motion through the lattice. One
interesting feature is the time scale for motion. Although
the nearest-neighbor interaction energy gives a time scale of
1.43 μs, the p state has moved �14 lattice spacings in 5 μs
(approximately three scaled time units). Thus the motion is
somewhat faster than might be expected from a crude estimate
using the nearest-neighbor energy.

For larger randomness, the motion becomes increasingly
restricted. Comparing the η = 0.1 and η = 0.2 cases, it
appears that the farthest extent of the motion is approximately
the same (about 14 sites), but the probability to be in the
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FIG. 1. Probability for the p state to be a distance r from its
starting point averaged over a radial region equal to a lattice spacing.
All of these calculations are for one dimension and have positional
randomness with the top graph having η = 0.1 and the bottom graph
having η = 0.4. The solid line is at a time of 1 μs, the dotted line is
at 2 μs, the dashed line is at 3 μs, the dot-dash line is at 4 μs, and
the dash-dot-dot-dot line is at 5 μs. Since the perfect lattice spacing
is 10 μm, the graphs show the region within 20 lattice spacings.

furthest peak is ∼1/3 as much for the larger randomness. For
the η = 0.3 and 0.4 cases, it appears that the distribution hardly
evolves for later times which indicates the p state is restricted
to the region near where it started with the range decreasing
with increasing η. The η = 0.5 distributions are similar to
those shown for η = 0.4 but with the distance scale shrunk by
approximately 20%.

An interesting question is whether the motion of the p state
is actually restricted or whether its movement is only slowed
down. To address this, we can use Fig. 2 to show that the
range is restricted. This figure shows the asymptotic in time
probabilities for different amounts of positional randomness
[the asymptotic probability to move from site i to site j is given
in Eq. (7)]. All of the distributions have two kinds of decays.
The initial, fast decrease (to probabilities of ∼10−6) has the
form of a stretched exponential. We fit these distributions using
a simple function of the form C exp(−[r/rc]α) down to the
values of the probability of 10−10 or out to distances of 104 μm
which is 1000 sites. We found that α = 0.57 ± 0.02 for all
cases; the +’s in Fig. 2 show the fits to the data to give an idea
of the accuracy. The “localization length scale,” rc, decreases
with increasing randomness approximately as 1/η2, although
this trend should be considered qualitative only because the
“best” value for rc depends on the choice of α. Our fit values for
α,rc are (0.59, 210 μm) for η = 0.1, (0.55, 45 μm) for η = 0.2,
(0.58, 22.8 μm) for η = 0.3, (0.58, 12.3 μm) for η = 0.4, and
(0.58, 8.4 μm) for η = 0.5. The slow decay seems to be a
power law although the power could not be accurately found

FIG. 2. Asymptotic in time probability for the p state to be a
distance r from its starting point averaged over a distance region equal
to a lattice spacing. All of these calculations are for one dimension
and have positional randomness with solid line corresponding to
η = 0.1, the dotted line to η = 0.2, the dashed line to η = 0.3, the
dash-dot line to η = 0.4, and the dash-dot-dot-dot line corresponding
to η = 0.5. These distributions are fit by the stretched exponential
decay exp(−[r/rc]α) with α = 0.57 ± 0.02 and rc decreasing with
increasing randomness. The +’s are the fits to the calculations with
parameters given in the text.

by fitting because the data was noisy at these low probabilities.
A decrease like 1/r6 or 1/r7 is consistent with the data. The
fact that the data has a power-law decrease at large r is due to
the long-range nature of the interaction between the different
basis functions.

For the η = 0.1 case, we performed a calculation with
16 000 sites. If there is one extended state, then the small-
est probability for the asymptotic distribution would be
∼2/16 0002 ∼ 8 × 10−9. In our calculation, the smallest prob-
ability was ∼10−12. This means there are no extended states
for this level of randomness; thus all states have a restricted
range as would be expected for Anderson localization.

2. Filling randomness

Figure 3 shows how the p state moves away from its initial
position for different fractions of randomly missing atoms.
As with Fig. 1, the plots show the distribution of translation
distances, Eq. (8), times the lattice spacing, 10 μm, at different
times; the different lines correspond to different durations
(1, 2, 3, 4, and 5 μs).

There is a similar behavior to that in Fig. 1. The case
of least randomness has the maximum extent of the motion
(approximately 14 sites) nearly the same as the case of
no randomness. However, there is less probability to reach
the furthest extent. As with Fig. 1, the motion becomes
increasingly restricted with increasing randomness. Also, the
p state seems to have reached the limit of its range by ∼5 μs
for the most random cases. Comparing the results from the two
types of randomness and setting η = ζ , it appears that missing
sites have a larger effect on the motion. For example, having
1/10 of the atoms missing (i.e., ζ = 0.1) has a larger effect
than having all of the atoms randomly moved by a distance of
δx/10 (i.e., η = 0.1).

As with Fig. 2, we can investigate whether the range
is actually restricted by examining the asymptotic in time
distribution. These results are shown in Fig. 4 and show a faster
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FIG. 3. Same as Fig. 1 but for filling randomness. The plots are
for different vacancy fractions ζ .

decrease with distance compared to Fig. 2. The distribution
becomes noisy for probabilities less than ∼10−7. As with
Fig. 2, there is a fast decrease followed by a more slowly
decreasing tail for probabilities less than ∼10−6. The more
slowly decreasing part of the distribution was more prominent
than for positional randomness so we were able to fit both the
fast and slow decay parts of the distribution. We again found
that the fast decay had the form of a stretched exponential
while the slow decay had the form of high power. Because the
slow decay was small there was a range of powers that seemed
to work nearly as well but a 1/r7 seemed to do best. The form

FIG. 4. Same as Fig. 2 but for filling randomness. The solid line
corresponds to ζ = 0.1, the dotted line to ζ = 0.2, the dashed line
to ζ = 0.3, the dash-dot line to ζ = 0.4, and the dash-dot-dot-dot
line corresponds to ζ = 0.5. These distributions are fit by the
stretched exponential decay exp(−[r/rc]α) plus a power law with
α = 0.78 ± 0.03 and rc decreasing with increasing randomness. The
+’s are the fit to the η = 2 result: 0.26 exp[−(r/35 μm)0.80] + 1.3 ×
10−4[1.5 mm/(r + 1.5 mm)]7.

we fit to was C exp(−[r/rc]α) + B/(r + 1.5 × 10−3 m)7. We
found that α = 0.78 worked best for all cases with a spread
of ±0.03; the +’s in Fig. 2 show the fit for the η = 0.2 case
to give an idea of the accuracy. Our fit values are 64 μm for
ζ = 0.1, 35 μm for ζ = 0.2, 26 μm for ζ = 0.3, 23 μm for
ζ = 0.4, and 21 μm for ζ = 0.5.

Comparing Figs. 2 and 4, it’s clear that the filling ran-
domness leads to a smaller range if we take ∼10−4 as the
condition. However, the localization lengths, which give the
1/e condition, can be smaller or larger depending on the
amount of randomness. The reason for the difference in
interpretation is the larger power in the stretched exponential
for filling randomness.

For the ζ = 0.1 case, we performed a calculation with 8000
sites. If there is one extended state, then the lowest probability
for the asymptotic distribution would be ∼2/80002 ∼ 3 ×
10−8. In our calculation, the smallest probability was ∼10−14.
This means there are no extended states for this level of
randomness; thus, as with the positional randomness, all states
have a restricted range as would be expected for Anderson
localization.

B. Two dimensions

In this section, we present the results of our calculations for
a two-dimensional, square lattice. For the positional random-
ness, the atoms are only shifted in the x and y directions. The
two-dimensional calculations are difficult to converge because
the number of atoms increases quadratically with the linear
lattice dimension. The time-dependent calculations shown in
Fig. 5 are converged with respect to the number of lattice
sites. None of the asymptotic distributions are converged with
respect to lattice size: even the calculations with the most
randomness have a large fraction of extended states that cover
the whole lattice.

For the two-dimensional case, we only show the result for
the positional randomness. While the randomness from miss-
ing sites gave different results compared to the randomness
from shifting position, we did not find a qualitative difference
worth reporting.

1. Positional randomness

Figure 5 shows the distribution of translation distances at
different times for four levels of randomness. As in Figs. 1
and 3, the least random case, η = 0.1, is very similar to the
no randomness case. The η = 0.1 and 0.2 cases qualitatively
differ from the same cases in one dimension (Fig. 1). For
Fig. 5, the peak in the distribution is at smaller r , but the
5 μs distribution noticeably differs from zero for a range more
than twice that in Fig. 1. These differences are a reflection
of the different band structure for two dimensions compared
to one dimension (Figs. 2 and 3 of Ref. [21]). The η = 0.3
and 0.4 cases do not appear to be qualitatively different from
the corresponding cases in Fig. 1. They both appear to have
reached their maximum extent by approximately 5 μs. The η =
0.3 case has a larger extent than the 0.4 case, which is expected
since larger randomness should more strongly confine the p

excitation.
As with Figs. 2 and 4, we can investigate whether the

motion is slowed by the disorder or is stopped by plotting
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FIG. 5. Same as Fig. 1 but for a two-dimensional lattice. The
results are for a 200 × 200 lattice; thus all of these results are
converged. Note the different shape of the distribution and the farther
extent compared to Fig. 1, which is the result of the p state having
more atoms to interact with.

the asymptotic in time distribution of translation distances.
Figure 6 shows this for the five different levels of positional
randomness for a lattice of 200 × 200 atoms. Notice that
Fig. 6 has a linear y axis, whereas Figs. 2 and 4 have a
log scale. Unlike the one-dimensional cases in Figs. 2 and
4, the probability extends to the edge of the lattice for all
cases. Thus none of these curves are fully converged. The case
with the least randomness, η = 0.1, is nearly indistinguishable
from the no randomness calculation; the probability increases
linearly with distance because the number of sites between r

and r + 10 μm increases linearly with distance. This means

FIG. 6. Same as Fig. 1 but for a two-dimensional lattice. The
results are for a 200 × 200 lattice. Since the wrap condition starts at
1000 μm and all cases have probability out to that distance, none of
the calculations are converged. The linear increase with r for small η

is due to the linear increase in the number of lattice sites with r . The
peak at small r for larger η is from a fraction of localized states.

nearly all states for η = 0.1 extend for linear distance of over
100 lattice sites (i.e., nearly all states cover ∼104 or more
sites). Compare this with the η = 0.1 line in Fig. 2, which has
an order of magnitude decrease in probability over the same
range. The η = 0.2 case only slightly differs from the η = 0.0
case with slightly higher probability at smaller r and slightly
lower probability at larger r; in Fig. 2, the η = 0.2 case had a
decrease in probability of more than a factor of 100 over the
range shown.

The cases with large randomness show a peak at small
r which reflects the existence of localized states. Since the
localized states do not extend to the edge of the lattice, the small
r behavior is nearly converged for η � 0.3. Roughly, the region
of convergence is �50 μm for η = 0.3 and �400 μm for η =
0.5. As with the smaller randomness cases, the localization
region is much larger than that for the corresponding one-
dimensional cases.

A final difference between the one- and two-dimensional
calculation is how the results change with increasing ran-
domness. The one-dimensional case had a smooth change
in the asymptotic properties with increasing randomness.
The two-dimensional case has almost no localized states for
η = 0.1 and 0.2 with a big jump in number of localized states
when going from η = 0.2 to 0.3.

C. Three dimensions

In this section, we present the results of our calculations
for a three-dimensional, cubic lattice. The three-dimensional
calculations are the most difficult to converge because the

FIG. 7. Same as Fig. 1 but for a three-dimensional lattice. The
results are for a 40 × 40 × 40 lattice. Since the wrap condition starts
at 200 μm, any of the probability distributions that extend past this
are not converged. Note the different shape of the distribution and the
farther extent compared to Figs. 1 and 5, which is the result of the p

state having more atoms to interact with.
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FIG. 8. Same as Fig. 1 but for a three-dimensional lattice. The
results are for a 40 × 40 × 40 lattice. Since the wrap condition starts
at 200 μm and all cases have probability out to that distance, none
of the calculations are converged. The quadratic increase with r is
due to the quadratic increase in number of lattice sites with r out to
200 μm; the decrease for r > 200 μm is because the sphere extends
outside of the cube in our calculation. The peak at small r for larger
η is from a fraction of localized states.

number of atoms increase cubically with the linear lattice
dimension. The largest calculation we performed was for a
lattice of 40 × 40 × 40 atoms (i.e., 64 000 total). The wrap
boundary condition starts for atoms differing by 20 lattice
sites in any direction. This means only the distances less
than 200 μm do not depend on the wrap condition. The
time-dependent calculations shown in Fig. 7 are not converged
with respect to the number of lattice sites; the most nearly
converged is the η = 0.5 case since, for that case, there was
only a small probability to move more than 20 sites during
the time shown. None of the asymptotic distributions are
converged with respect to lattice size: even the calculations
with the most randomness mostly consist of extended states
that cover the whole lattice.

As with the two-dimensional case, we only show the posi-
tional randomness because the results of randomly removing
atoms from sites are similar in character.

1. Positional randomness

Figure 7 shows the time dependence of the distribution of
translation distance for four different levels of randomness.
For the later times, only the η = 0.4 case is converged.
The other calculations show a distinct change in slope at
r = 200 μm. This is the distance corresponding to the wrap
boundary condition and is an artifact. Despite the lack of
convergence, there is some useful information that can be
extracted. For example, it is clear that the p excitation moves
even further than the two-dimensional case, Fig. 5. Thus the
extra interactions that arise in higher dimension increase the
speed of the motion. Another example is the relatively small
effect that the randomness has. The η = 0.1 and η = 0.2

translation distributions are quite similar. Also, the η = 0.4
case still has a clearly evolving translation distribution at 5 μs,
unlike the one- and two-dimensional cases.

Figure 8 gives the asymptotic distribution of translation
distances for different η. The η = 0.1 and 0.2 cases hardly
differ from the no randomness case. These distributions simply
reflect the number of sites versus distance. For r � 200 μm, the
number of sites between r and r + δx increases quadratically
with r . For larger r the number of sites decreases because the
wrap cube is only filled out to 200 μm. For r � 400 μm there
are no sites. The η = 0.3, 0.4, and 0.5 cases have a small peak
at r = 10 μm, which arises from a small fraction of localized
states. If one counts the extra probability for r � 60 μm, there
is less than 10% of the states localized even for η = 0.5. Thus
we expect that almost all excitations will be delocalized in
three dimensions unless the randomness is even greater than
the cases we considered.

IV. CONCLUSIONS

We have performed calculations for how a p state moves
through a sea of s states due to the dipole-dipole interaction.
We focused on how the motion changes when the atoms
are positioned on a perfect lattice or have randomness. We
considered two kinds of randomness: (1) the atoms have a
slight, random shift from a position and (2) random atoms are
removed from a perfect lattice. The case of a one-dimensional
lattice gave the largest qualitative difference between the two
kinds of randomness.

Our one-dimensional calculations with randomness re-
sulted in all of the states being localized independent of the
type of randomness or the size of randomness. The distribution
of translation distances could be fit with a stretched exponential
whose exponent depended on the type of randomness but did
not depend on the size of the randomness. This suggests that
even miniscule randomness would lead to all states being
localized. It is not surprising that the one-dimensional cases
with randomness lead to localization even for small amounts
of randomness. However, the long-range interaction in the
Hamiltonian leads to a power-law decrease with translation
distance.

For two and three dimensions, it appears that the random-
ness slows down the motion but leads to localized states only
for large randomness. It appears that the number of localized
states goes to zero as the randomness decreases; the number
of localized states might be zero even for small, but nonzero,
randomness.
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M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[4] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang,
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[14] H. Weimer, R. Löw, T. Pfau, and H. P. Büchler, Phys. Rev. Lett.
101, 250601 (2008).

[15] S. Ji, C. Ates, and I. Lesanovsky, Phys. Rev. Lett. 107, 060406
(2011).

[16] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Phys.
Rev. Lett. 111, 113001 (2013).

[17] P. Schauss, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature
(London) 491, 87 (2012).

[18] D. Petrosyan, Phys. Rev. A 88, 043431 (2013).
[19] W. Zeller, M. Mayle, T. Bonato, G. Reinelt, and P. Schmelcher,

Phys. Rev. A 85, 063603 (2012).
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