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Hole burning and higher-order photon effects in attosecond light-atom interaction
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We have performed calculations of attosecond laser-atom interactions for laser intensities where interesting
two- and three-photon effects become relevant. In particular, we examine the case of “hole burning” in the initial
orbital. Hole burning is present when the laser-pulse duration is shorter than the classical radial period because
the electron preferentially absorbs the photon near the nucleus. We also examine how the three-photon Raman
process can lead to a time delay in the outgoing electron for the energy near one-photon absorption. For excitation
out of the hydrogen 2s state, an intensity of 2.2 × 1016 W/cm2 leads to a 6-as delay of the outgoing electron. We
argue that this delay is due to the hole burning in the initial state.
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I. INTRODUCTION

The past several decades have witnessed an increase in the
speed of lasers as tracked by the duration of a laser pulse. In
recent years, experimental groups have been able to decrease
this duration into the attosecond regime [1]. With each decrease
in duration of the laser pulse, it is possible to probe quantum
systems on shorter time scales. For example, there have been
many recent measurements and calculations of the delay in the
photoionization of electrons from atoms [2–5]. This example
is interesting in that the delay is only of order 10 as but
can be measured using a streaking infrared field and in that
measurements and calculations differ in the expected delay;
the reason for the difference is not clarified. One of the results
we discuss below is that delays in electron ejection naturally
occur at higher laser intensities.

Although both the laser frequency and duration determine
what types of systems and phenomena are best investigated,
there are types of processes whose similarities extend from
the attosecond to the picosecond regime. One of the processes
that spans a broad regime is that in which a short laser
pulse can burn a hole in a wave function. The reason is
that photoabsorption is often highly position dependent. For
example, stationary phase considerations lead to the realization
that photoionization occurs near the nucleus within a region
r ∼ √

(� + 1)/ω, with ω being the angular frequency of the
laser [6,7]. Thus, a laser pulse that is shorter than the radial
period of the electron can deplete the wave function in the
neighborhood of the nucleus [8].

Figure 1 is a schematic of two-photon processes. The gray
bands are meant to indicate the spread in energy for the
processes that arise from the short duration of the laser. The
dark arrow is the one-photon excitation step. The narrow solid
arrows are the two-photon absorption (for increasing energy)
and the Raman process (for decreasing energy). The Raman
process back to � = 0 gives the hole burning of the initial
wave function. The dashed arrows indicate the three-photon
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process that can interfere with the one-photon absorption; the
three-photon processes can modify both the energy distribution
and the ejection time of the electron.

Hole burning was investigated in Rydberg states where the
radial period can be in the picosecond regime [9,10]. For a
state with energy E = −1/2ν2, the radial period is given by
TRyd = 2πν3 a.u., which is TRyd = 1.52 × 10−4ν3 ps. Thus,
states with ν > 18.7 have periods longer than 1 ps. One of
the manifestations of hole burning is that of Raman transitions
to nearby states with the same �. One way to think of this
connection is that the wave function with the hole, ψh, is
projected onto the eigenstates with the laser off. Since the ψh

mostly resembles the initial state and has the same angular
momentum, the projection onto the initial state and states with
small change in ν and no change in � will be emphasized [8].
The size of the hole in space increases with the duration of
the laser pulse because the depleted part of the wave function
moves to larger r and the wave function at larger r moves
to smaller r where it can be depleted by the laser; Fig. 3 of
Ref. [9] shows that short pulses only deplete the wave function
at small r while a laser pulse longer than the Rydberg period
depletes the wave function uniformly at all r . Thus, a short
laser pulse will lead to a wider energy range of final states.
An equivalent statement in the frequency domain is that short
pulses have a large bandwidth, supporting Raman transfer to
neighboring states.

In this paper, we examine the phenomenon of hole burning
in the regime of attosecond laser pulses. Since hole burning
is at least a two-photon process, the intensity regime will be
higher than what is currently experimentally achieved but not
so high that experiments are unthinkable. While the basic
phenomenon of hole burning should be the same, there are
differences due to the shorter time scale and hence the lower
states involved. One difference is that for Rydberg states
and picosecond lasers the hole burning leads to population
at both higher and lower energies (the principle quantum
number can both increase or decrease) while for attosecond
lasers the initial state is usually the ground state so population
can only transfer to higher energies. Another difference is
that the experiments on Rydberg state hole burning did not
investigate when the ejected electron is modified by the hole
burning. In attosecond physics, the time delay of the ejected
electron [2–5] is often one of the more interesting parts of the
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FIG. 1. A schematic drawing of the energy levels and transitions
described in the paper.

measurement but also used to define the “zero” time delay
in pump-probe experiments. We give calculations for this
process and show that the hole burning leads to a delay in the
ejection of the electron. This effect arises from the interference
between one-photon absorption and a three-photon process
(two absorptions and one emission). Since the time delay from
hole burning requires higher intensity, we do not think it is
an explanation of the discrepancy between the measured and
calculated delays [2–5].

The term “hole” is used in many different contexts. Unless
we clearly state otherwise, the term “hole” will mean that the
wave function has a region in space where |ψ |2 is smaller
than for the original wave function (Fig. 5 of Ref. [8]). For the
process discussed in this paper, the laser makes a hole in the
wave function at small r if the laser duration is much shorter
than the period associated with that state. Thus, defining ψ0

to be the wave function just before the laser interacts with
the atom and ψ(r,t) to be the wave function just after the
laser interacts with the atom, the quantity |ψ0(r)|2 − |ψ(r,t)|2
would be nonzero and positive only for r small compared to
the < ψ0|r|ψ0(r) >.

We use atomic units unless the International System of units
is explicitly given.

II. NUMERICAL METHOD

We solved the time dependent Schrödinger equation by
representing the wave function on a grid of radial points and
an angular momentum basis. A more extensive discussion of
the technique can be found in Ref. [11]. In our calculations, we
used linearly polarized light which leads to a wave function
that can be represented by the summation

�(�r) =
∑

�

[R�(r,t)]Y�m(�), (1)

where the radial functions, R�, contain all of the useful
information about the wave function. The maximum � in the
sum is determined by the duration, strength, and frequency
of the laser and was chosen so that less than 10−9 of the

population was in �max. For ease in solving the time dependent
Schrödinger equation, we consider the Hamiltonian for this
calculation as the sum of two terms:

H = H1 + H2 = Hatom + Hfield, (2)

where H1 is the atomic Hamiltonian which contains the
kinetic-energy operator and the spherical potential from the
electron-ion interaction and the H2 is the laser-electron
interaction. For hydrogen, the electron-ion potential is simply
−1/r . For the other atoms presented in this paper, a model
potential can be used.

The Hamiltonian for the laser field was taken to be in the
length gauge. We do not need to worry about the increasing
size of the laser potential with r because the laser duration is so
short the electron does not travel far before the laser intensity
returns to zero. We chose H2 = zE(t) where E(t) = −dA/dt

with

A(t) = F (t)
1

ω0
sin(ω0t + φ). (3)

The φ is the carrier envelope phase and F (t) is a smooth
function giving the envelope. We chose this to be a Gaussian
F (t) = Fmax exp(−t2/t2

w) with Fmax being the maximum
electric field when the carrier envelope phase is zero.

We used a split operator method with a Crank-Nicolson
approximation to step the wave function by δt . The approxi-
mation is

�(t + δt/2) = U2(t,δt/2)U1(δt)U2(t,δt/2)�(t − δt/2), (4)

where

Uj (t,δt) = [1 − iHj (t)δt/2][1 + iHj (t)δt/2]−1 (5)

gives O(δt3) accuracy for one time step. In the propagator,
we only need to perform the U2 when |t | < 6tw because H2

is approximately zero outside of that range. Both the H1 and
H2 operators can be represented as tridiagonal matrices. For
the electric field, the operator H2 only couples � to � ± 1.
We used two approximations for H1, both of which give a
tridiagonal representation, as a test of convergence. In the
simplest approximation, we used equally spaced points in r

(i.e., rj = jδr) and a three point difference for the radial
kinetic energy. The more complicated approximation used
a square-root mesh and a Numerov approximation as in
Ref. [12]. In all calculations, we checked convergence with
respect to the number of radial points, the number of angular
momenta, and the number of time steps. For the calculations
presented here, we used 3000 radial points in a square-root
mesh with rmax = 350 a.u., �max = 13, and dt = 0.01π/ω0

(i.e., 1/200 of the laser period), although most calculations are
fully converged with less stringent choices.

Before the laser turns on, the wave function is in an
eigenstate. We find the eigenstate by diagonalizing H1 in a
finite region r < rmax. The rmax is chosen to be large enough
that the wave function cannot reach that distance while the
laser is on. We also used the eigenstates of H1 to compute the
energy distribution of the final state. The eigenstates go to zero
at rmax, which leads to a discretized continuum. The energy
distribution is defined so that P (E)dE is the probability for
the electron to be within the energy range E and E + dE. The
energy distribution with angular momentum � is approximated
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by

P�(Ē) = |〈a + 1,�|�〉|2 + |〈a,�|�〉|2
2(Ea+1,� − Ea,�)

, (6)

where Ea,� is the energy of the ath eigenstate with angular
momentum �, Ē = (Ea+1,� + Ea,�)/2 is the average of the two
energies, and < a,�|� > is the projection of that eigenstate
on the wave function. This form is chosen because the
probability for the electron to have energy between Ea,� and
Ea+1,� is approximately P�(Ē)�E � (| < a + 1,�|� > |2
+ | < a,�|� > |2)/2 where �E = Ea+1,� − Ea,�. We also use
this definition for negative-energy states, which allows us to
treat both positive and negative energy on the same curve. This
has the disadvantage that it is not clear what is the population
in an individual state, which is a measurable quantity.

III. TWO-PHOTON PROCESSES

In this section, we present results on two-photon ioniza-
tion and on one-photon absorption followed by one-photon
emission (and vice versa). We investigate the latter process in
more detail because it is the mechanism that leads to “hole
burning” of the initial orbital [9]. It is important to remember
that even a weak laser pulse whose time width is shorter than
the Rydberg period will burn a hole in the wave function.
The depth of the hole increases with laser intensity and, for
weak fields, the result of the hole burning will scale with the
square of the intensity [8]. However, the states described in
this section are not populated by other mechanisms and, thus,
can be distinguished even for weak lasers.

Figure 2 shows the energy distribution in atomic units for
the two-photon processes when starting from the 2s state of
H. For the presentation of the energy distribution, we set the
population in the 2s to zero when using Eq. (6) because we

FIG. 2. (Color online) The energy distribution in atomic units
of electrons for � = 0 (solid line) and � = 2 (dashed line). In this
calculation, we set ω = 1, Fmax = 0.05 a.u., and tw = 6.0 a.u. In the
energy distribution formula, we set the population of the 2s state to
zero. The peak just below 2 a.u. is from two-photon absorption; the
vertical line marks the position where a narrow-band laser would have
the two-photon ATI peak. The Raman feature is from approximately
−0.2 to 0.8 a.u. The � = 2 Raman transition is very weak and is
hardly visible on the graph. The � = 0 Raman structure is associated
with hole burning in the initial state.

want a plot of what states gained population; this choice leads
to an artificial dip in the Raman process. The solid line is
the energy distribution where the electron has � = 0 and the
dashed curve is for � = 2. In this calculation, we set ω = 1
(equal to 27.2 eV, λ = 45.6 nm), Fmax = 0.05 a.u., and tw =
6.0 a.u. The full width at half maximum (FWHM) of the
laser intensity is tFWHM = √

2 ln 2tw, which corresponds to
170 as in this calculation. The electric field corresponds to a
maximum laser intensity of 8.8 × 1013 W/cm2, which is in
the perturbative regime. Doubling the intensity increases the
scale of Fig. 2 by a factor of 4. For this laser width, the state
with the most population is the 1s state; this is not obvious in
Fig. 2 due to the large energy difference between the 1s and
2s states which gives a large denominator in Eq. (6).

There are a few features worth noting in Fig. 2. The two-
photon absorption peak is at nearly the same energy for the
two angular momenta. However, this energy, 1.78 a.u., is not
at the expected energy for two-photon absorption, which is
−1/8 + 2 = 1.875 a.u.; the expected energy is marked by a
vertical line in the graph. The peak is shifted down in energy
because the two-photon absorption amplitude is a decreasing
function of energy; the product of the decreasing absorption
amplitude and the Gaussian centered at 1.875 a.u. gives the
approximately 0.09-a.u. shift. Using a longer laser pulse leads
to this feature becoming narrower in energy with the peak
shifting toward the expected value of 1.875 a.u. For example,
the peak shifts to 1.83 a.u. when tw is increased to 8 a.u. In
contrast to the Raman process discussed below, the two-photon
absorption has nearly equal population in � = 0 and 2.

In the � = 0 energy distribution, plotted in Fig. 2, there
is large population corresponding to the two-photon process
where one photon is absorbed and one photon is emitted. This
process is approximately 100 times smaller for � = 2. This
disparity might be surprising considering that the two-photon
absorption probability is comparable. The suppression of
the � = 2 population could be because the absorption and
emission take place at r � 1 a.u.; at this radius, the � = 2
channel is in the classically forbidden region which reduces
the matrix element for this transition. We attribute the � = 0
population to hole burning of the initial orbital. The coherent
superposition of these Raman states with the initial state leads
to a “hole” in the initial state at small r . Figure 3 shows
the total probability (� = 0) in the Raman transition and in
the two-photon absorption as the pulse duration is increased
keeping all other parameters fixed; the data in this figure come
from integrating the energy distribution up to E = 0.875 for
the Raman transition and above E = 0.875 for the two-photon
absorption [13]. The dependence of the two-photon absorption
on tw in Fig. 3 is the simplest to understand. The probability
is approximately proportional to the duration because the
ionization continues while the pulse is on. The behavior of
the Raman population is more interesting, showing a slow
increase followed by a decrease. The Raman population starts
decreasing when tw is comparable to half the classical period;
more specifically we find tw ∼ √

8 ln 2n3. This condition is
when the energy FWHM of the laser field equals 1/n3, i.e., the
energy spacing of the atom. This fits with the interpretation of
the Raman process with �� = 0 as equivalent to hole burning.
When the laser is on for a time comparable to or longer than
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FIG. 3. (Color online) The total probability to be in the � =
0 Raman structure (dash-dotted line) or the � = 0 two-photon
absorption peak (dotted line). All laser parameters are as in Fig. 2
except for the pulse width, tw , which is varied. The two-photon
absorption is approximately proportional to the duration of the laser
pulse. The probability for Raman transition is not proportional to the
pulse duration even for small tw and begins to decrease when the
bandwidth of the laser is too small to reach the 3s, 4s, . . . ,n states.
As a point of comparison, 1/(E3s − E2s) � 14 a.u. For pulses longer
than τ2s the bandwidth becomes insufficient to reach the 3s state in a
two-photon Raman process.

the radial period for the hole in the wave function, then there
should not be any hole burning.

Figure 4 shows how the energy distribution for the � = 0
Raman transition changes as the pulse duration is increased
keeping all other parameters fixed. One can see that the energy
width is decreasing while the peak is increasing for longer
tw. However, the longest times have almost no increase in
the peak while the width continues to decrease. At even
larger tw, the Raman population at all energies decreases
until becoming approximately zero when the bandwidth of
the laser is too narrow to allow any change in energy. As

FIG. 4. (Color online) Same as Fig. 2 but only for � = 0 and
allowing tw to vary as in Fig. 3: tw = 6 a.u. (solid line), 10 a.u.
(dotted line), 15 a.u. (dashed line), 20 a.u. (dash-dotted line), 25 a.u.
(dash-dot-dot-dotted line), and 30 a.u. (long-dashed line). The longer
duration gives a narrower energy distribution. The probability to be
in the states nearest n = 2 increases with increasing duration until
the bandwidth of the laser becomes too narrow to reach those states.

FIG. 5. Same as Fig. 4 but fixing tw = 18 a.u. and allowing ω

to vary. The integrals of the curves have been fixed to be the same
value. The curves are ω = 0.33 a.u. (solid line), 0.67 a.u. (dotted
line), 1.0 a.u. (dashed line), 1.33 a.u. (dash-dotted line), 1.67 a.u.
(dash-dot-dot-dotted line), and 2.0 a.u. (long-dashed line). The lines
are hardly distinguishable even though the total Raman probability
decreases by more than four orders of magnitude from ω = 0.33 to
2.0 a.u. This shows that the shape of the energy distribution mainly
depends on the laser duration and, hence, the shape of the hole does
not strongly depend on the laser frequency. Inset: The total population
in the � = 0 Raman transition vs the laser frequency.

with Fig. 2, populations in individual states are hard to
visualize. The population in the 1s state for each of the
curves (tw = 6–30 a.u.) is 1.46 × 10−7, 3.95 × 10−8, 1.08 ×
10−9, 4.35 × 10−12, 1.87 × 10−15, and 1.87 × 10−19 while
the population in the 3s state is 1.67 × 10−8, 4.02 × 10−8,
7.62 × 10−8, 1.09 × 10−7, 1.30 × 10−7, and 1.34 × 10−7.

Figure 5 shows how the energy distribution for the � = 0
Raman transition changes as the frequency changes keeping
the pulse duration at tw = 18 a.u. The shape of the energy
distribution is nearly the same for all frequencies shown
even though there is a difference of more than five orders
of magnitude in the total population. This fits with the
interpretation of “hole burning” since the shape of the hole
will mainly depend on the duration of the pulse and only
weakly on the laser frequency; the Raman transitions arise
from the projection of the hole in the initial wave function
onto neighboring states. We note that the central energy of the
two-photon absorption peak shifts by ∼10/3 a.u. for the same
range of frequencies shown in Fig. 5 because the energy of the
two-photon peak is at �Eg + 2ω.

Figure 6 shows that the Raman transition is related to the
duration of the pulse but is not directly related to the bandwidth
of the laser pulse. This figure shows two different two-
photon processes (two-photon absorption and Raman) with
the resulting energy distribution. There are three calculations
with parameters chosen to disentangle the effect of laser
bandwidth from laser duration. To do this, we performed a
calculation with a laser chirp. We modified Eq. (3) so that
the sin term becomes sin(ω0t + φ + ηt2/t2

w) where η is a
measure of the laser chirp. Two pulses will have the same
bandwidth if

√
1 + η2/tw are the same. In Fig. 6, the dotted

curve has tw = 6,η = 0; the dashed curve has tw = 30,η = 0;
and the solid curve has tw = 30,η = √

24. Thus, the solid
curve corresponds to a laser with the same duration of the
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FIG. 6. (Color online) The � = 0 energy distribution for ω =
1 a.u. and Fmax = 0.05 a.u. The dotted line is for an unchirped
tw = 6 a.u. pulse; the dashed line is for an unchirped tw = 30 a.u.
pulse with the height scaled by a factor of 0.2 to account for the 5×
greater fluence. The solid line is for a tw = 30-a.u. pulse chirped with
η = √

24. This chirp gives the same spectral width as the tw = 6-a.u.
pulse (i.e., converting the chirped pulse to a Fourier-transformed
limited pulse would give the 6-a.u. pulse). The height of the chirped
pulse is multiplied by 0.214 to match the two-photon absorption of
the unchirped 6-a.u. pulse.

dashed curve but it has the bandwidth of the dotted curve.
Note that the two-photon absorption for the chirped pulse
almost perfectly overlaps the two-photon absorption of the
unchirped 6-a.u. pulse, showing that the two-photon absorption
depends on the bandwidth while the Raman transition for the
chirped pulse almost perfectly overlaps the Raman transition
for the unchirped 30-a.u. pulse, showing the Raman transition
depends on the duration.

The results in Fig. 6 are directly predicted from hole burning
in the initial state. A possible way of understanding how this
might result is to examine the difference in two-photon absorp-
tion versus photon absorption followed by photon emission.
For one-photon absorption, the time dependent term in the
Hamiltonian looks like exp[−(t/tw)2 + i(ω0t + φ + ηt2/t2

w)].
The emission term is the complex conjugate of the absorption
term. For two-photon absorption, the time dependent phases
add, which will lead to a central energy at Eg + ω0 + ω0 with
a bandwidth twice that of one-photon absorption. For photon
absorption and photon emission, the time dependent phases
cancel, which will lead to a central energy at Eg + ω0 − ω0 =
Eg with a bandwidth only determined by the duration tw.

We performed calculations for other single valence atoms
and found similar results. An exception is when the single-
photon transition is at a Cooper minimum. The single-photon
ionization is strongly suppressed in this situation while the
two-photon absorption is enhanced compared to the Raman
transition.

IV. ONE- and THREE-PHOTON IONIZATION

The “hole burning” can affect the one-photon absorption
process by changing the time when the electron is ionized
and by changing the energy distribution near the one-photon
absorption peak. Within a perturbative picture, these effects
result from the interference between one-photon absorption

FIG. 7. (Color online) Same as Fig. 2 but for � = 1 and allowing
Fmax to vary; the graph shows Fmax = 0.2 (solid line), 0.4 (dotted
line), and 0.8 a.u. (dashed line). The maximum value has been set to
1 for all curves. The energy distribution for the highest laser intensity
is narrower and is slightly shifted to higher energies. The vertical line
marks the energy Einit + ω where a narrow-band laser would give the
one-photon ionization.

and a three-photon process (absorb-emit-absorb). The effect
of “hole burning” should be to delay the photon absorption
because the wave function is being depleted near the nucleus,
which is where photoabsorption takes place; the photoabsorp-
tion is delayed for strong laser fields because the electron
probability near the nucleus needs to refill, which requires
time. Unlike the Raman process, which is present even for
weak laser fields, this effect should only become apparent at
higher laser intensity reflecting a substantial change in the
wave function.

For this section, we fixed the duration, tw = 6 a.u., and
frequency, ω = 1 a.u., of the laser pulse. In all calculations,
we started from the 2s state of hydrogen. The general trends
did not depend strongly on the type of atom or initial state.

Figure 7 shows the energy distribution for � = 1 near the
one-photon absorption peak for Fmax = 0.2, 0.4, and 0.8 a.u.
These fields correspond to intensities of 1.4 × 1015, 5.6 ×
1015, and 2.2 × 1016 W/cm2. The maxima have been scaled
to equal 1 for all Fmax. As with the two-photon absorption
peak in Fig. 2, the position of the peak, �0.8 a.u., is slightly
shifted to lower energy compared to the expected value: 1 −
1/8 = 0.875 a.u., which is marked by a vertical line. The
explanation of the shift is the same: the dipole transition matrix
element is a decreasing function of energy. While the smaller
Fmax have nearly the same shape, the energy distribution is
narrower and shifted slightly higher for the Fmax = 0.8-a.u.
case. This effect must be due to the interference between one-
photon absorption and a three-photon process (either emit-
absorb-absorb or absorb-emit-absorb or absorb-absorb-emit).
By scaling all curves to have a peak of 1, we are hiding the
fact that the energy distribution increases with laser intensity.
The ionization probability versus Fmax is not quadratic over
this range; the values for (Fmax,Pion) are (0.05, 3.76 × 10−4),
(0.1, 1.50 × 10−3), (0.2, 5.94 × 10−3), (0.4, 2.28 × 10−2), and
(0.8, 7.86 × 10−2). In Fig. 7, the ratio of scaling factors for the
highest and lowest intensities was 12 instead of 16, which is
expected from lowest-order perturbation theory.

033414-5



P. L. PRICE et al. PHYSICAL REVIEW A 89, 033414 (2014)

FIG. 8. (Color online) The electron current at r = 50 a.u. from
all angular momenta; the line types have the same meaning as Fig. 7.
All the times shown are after the laser field is off. Note that the current
at the highest intensity has slightly shifted to later times, which agrees
with the expectation of changes due to “hole burning”.

As a point of comparison for the largest Fmax, we com-
pared other processes to that shown in Fig. 7. The p-wave
three-photon absorption is 240 times smaller. The f -wave
energy distribution is approximately 1000 times smaller for
three-photon absorption and 2000 times smaller for the
f -wave peak near 0.8 a.u. These small values might be
surprising compared to the large nonperturbative character for
the “one-photon” peak (e.g., the one-photon absorption was
approximately 25% too small at Fmax = 0.8 a.u.). However,
it must be remembered that the three-photon processes
can interfere with the one-photon process, which can lead
to a larger effect: the probability for an effect arising
from interference of one- and three-photon transitions is
P = |A1 + A3|2 = |A1|2 + (A1A

∗
3 + A∗

1A3) + |A3|2. The in-
terference term is proportional to the square of the laser
intensity while pure three-photon processes are proportional
to the cube of the laser intensity; an |A3| that is 10% |A1| gives
the approximate change to the “one-photon” absorption peak
and the approximate size of the three-photon absorption peak.
We note that the energy spread for the three-photon absorption
peak is ∼50% broader than the one-photon peak; the extra
broadness arises because the higher-order process depend on
higher powers of the intensity and, thus, they appear to be
effectively shorter in duration. A simplistic argument would
suggest that the one-photon peak would get broader at higher
intensity because of the addition of three-photon character. The
narrowing we actually observe must be due to interference.

Figure 8 shows the time dependent current at r = 50 a.u.
with the peak of the current scaled to be 1. A simple estimate of
when the current should peak is tpeak ∼ 50/

√
2E = 39.5 a.u. �

953 as. The actual peak is somewhat earlier in time because
the −1/r potential gives a higher radial speed to the electron;
a classical electron with energy 0.8 a.u. requires 907 as to
reach 50 a.u. The time required for the electron to reach r =
50 a.u. for the nonhole burning case has been discussed in many
different contexts; see Ref. [14] for a recent discussion of time
delays in attosecond experiments. As in Fig. 6, the smaller
intensities give similar results while the highest intensity gives
a clear change. Part of the change is the current due to two-
photon absorption, which leads to higher-energy electrons and

a peak at early times; in a similar vein, there is a slow decay
at the highest intensity due to the Raman process, which gives
low-energy electrons that reach r = 50 a.u. at later times. A
more interesting effect is that the one-photon peak is delayed
by �6 as. Quantum mechanically this effect is due to the
interference between one- and three-photon paths. Physically,
the effect is consistent with the expectation of a time delay due
to hole burning in the wave function.

We note that the interference between one- and two-
photon processes in a single attosecond absorption has been
discussed for both energy and angular distributions. Reference
[15] discussed the effect on electron asymmetries, Ref. [16]
discussed the effect on momentum and energy distributions,
and Ref. [17] gave an analysis based on perturbation theory.
In our Fig. 2, one can see that the one-photon absorption peak
which falls between the Raman and two-photon absorption
peak would overlap them in energy. This would lead to left
or right asymmetries in the electron angular distribution as
discussed in Ref. [15].

V. CONCLUSIONS

We have performed calculations of attosecond absorption
in one electron systems to explore some of the possible two-
and three-photon effects. Our calculations demonstrate that
one of the main two-photon effects is a Raman type process
that leads to a strong redistribution of population with the same
angular momentum as the initial state. We expect this process
to be common and related to “hole burning” of the initial wave
function. The calculations also show that the interference of
one- and three-photon paths can lead to changes substantially
larger than might be expected. We argued that the time delay
in the one-photon absorption with increasing laser intensity is
also due to “hole burning” of the wave function [9]. Because
the absorption mainly occurs near the nucleus, a hole there
will decrease the ionization rate and lead to a delay of the
photoabsorption.

In this paper, we focused on the hole burning in a one
electron system. There can be other types of hole burning in
two (or more) electron systems. An example involving a short-
range perturber coupled to a Rydberg series was investigated
using the Ba 6snd 1,3D2 states perturbed by the 5d7d 1D2 state
as the example [10,18]. As an example requiring attosecond
lasers, the Be ground state is nominally 2s2 in the valence
shell. Calculations that include correlation have found that
there is a large admixture of 2p2 in the ground-state wave
function. Typically, the photoionization is different from 2s

and 2p orbitals. This leads to the possibility of having a hole
burned in the radial coordinate (as described above) and a hole
burned in the correlation. This will lead to substantial Raman
transition to the nominally 2p2 autoionizing state. Thus, other
types of wave packets can be initiated using hole burning.
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