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Electron-impact ionization of Li2 using a time-dependent close-coupling method
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The time-dependent close-coupling method is applied to calculate the electron-impact ionization of a diatomic
molecule with interior closed subshells. The ionization of the outer 2sσ subshell of Li2(1sσ 22pσ 22sσ 2) is carried
out using a standard core orthogonalization method. At the peak of the Li2 cross section, the nonperturbative
time-dependent close-coupling cross sections are found to be lower than perturbative distorted-wave cross
sections. The reductions due to electron correlation effects are in keeping with previous reductions of peak cross
sections seen in the electron-impact ionization of neutral atoms.
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I. INTRODUCTION

Studies of the electron-impact ionization of diatomic
molecules at low incident energies probe the quantal dynamics
of two continuum electrons moving in the nonspherical
Coulomb field of the molecular core. To date, nonperturbative
theoretical methods which treat correlation effects for the two
slow-moving continuum electrons have been limited to the
ionization of H2

+ and H2. The R-matrix-with-pseudostates
method has produced total cross sections for the electron-
impact ionization of H2 [1] that are in good agreement
with H2 experiments [2,3] in the near threshold region. The
time-dependent close-coupling method has produced total
cross sections for the electron-impact ionization of H2

+ [4] and
H2 [5] that are in good agreement with H2

+ experiments [6]
and H2 experiments [2,3] over a wide energy range. More
recently [7,8], the time-dependent close-coupling method
has been used to calculate energy and angle differential
cross sections for the electron-impact ionization of H2 and
compared with three-body distorted-wave calculations and
experiment.

To perform time-dependent close-coupling calculations for
the electron-impact ionization of diatomic molecules beyond
H2

+ and H2, we need a method that prevents overoccu-
pation of filled subshells during the time evolution of the
close-coupled equations. In this article, we apply a stan-
dard core-orthogonalization method to allow time-dependent
close-coupling calculations to be carried out for the electron-
impact ionization of any diatomic molecule. Our first ap-
plication is to the electron-impact ionization of the 2sσ

subshell of Li2(1sσ 22pσ 22sσ 2). To check the time-dependent
close-coupling results for Li2, we adapt a previously developed
configuration-average distorted-wave method [9] to make
calculations using the same ionized subshell orbital and core
scattering potential as used in the time-dependent close-
coupling calculations.

The rest of the article is organized as follows: Formula-
tions of the time-dependent close-coupling and configuration-
average distorted-wave methods are given in Sec. II, electron-
impact ionization cross sections for Li2 are presented in Sec.
III, and a brief summary is given in Sec. IV. Unless otherwise
stated, all quantities are given in atomic units.

II. THEORY

A. Time-dependent close-coupling (TDCC) method

The time-dependent Schrödinger equation for electron
scattering from one active electron in a homonuclear diatomic
molecule is given by

i
∂�(�r1,�r2,t)

∂t
= H (�r1,�r2)�(�r1,�r2,t), (1)

where the nonrelativistic Hamiltonian is given by

H (�r1,�r2) =
2∑

i=1

(
− 1

2
∇2

i −
∑
±

Z√
r2
i + 1

4R2 ± riR cos θi

+VHX(ri,θi)

)
+ 1

|�r1 − �r2| , (2)

where Z is the charge on each nucleus, R is the internuclear
distance, and VHX(r,θ ) is a Hartree with local exchange
potential. Expanding the total wave function in products of
rotational functions and substitution into Eq. (1) yields a
set of time-dependent close-coupled equations for each MS

symmetry given by [10]

i
∂P MS

l1l2
(r1,θ1,r2,θ2,t)

∂t

= Tm1m2 (r1,θ1,r2,θ2)P MS
m1m2

(r1,θ1,r2,θ2,t)

+
∑

m′
1,m

′
2

V M
m1m2,m

′
1m

′
2
(r1,θ1,r2,θ2)P MS

m′
1m

′
2
(r1,θ1,r2,θ2,t).

(3)

The total one-body operator is given by

Tm1m2 (r1,θ1,r2,θ2)

=
2∑

i=1

(
K(ri) + K̄(ri,θi) + m2

i

2r2
i sin2 θi

)

+
2∑

i=1

(
−

∑
±

Z√
r2
i + 1

4R2 ± riR cos θi

+ VHX(ri,θi)

)
,

(4)
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where K(r) and K̄(r,θ ) are kinetic energy operators. The two-body operator is given by

V M
m1m2,m

′
1m

′
2
(r1,θ1,r2,θ2) =

∑
λ

(r1,r2)λ<
(r1,r2)λ+1

>

∑
q

(λ − |q|)!
(λ + |q|)!P

|q|
λ (cos θ1)P |q|

λ (cos θ2)

×
∫ 2π

0
dφ1

∫ 2π

0
dφ2	m1 (φ1)	m2 (φ2)eiq(φ2−φ1)	m′

1
(φ1)	m′

2
(φ2), (5)

where P
|q|
λ (cos θ ) is an associated Legendre function and 	m(φ) = eimφ√

2π
is a rotational function.

The initial condition for the solution of the TDCC equations for the ionization of the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2) is
given by

P MS
m1m2

(r1,θ1,r2,θ2,t = 0) = P2s0(r1,θ1)Gk0l0M (r2,θ2)δm1,0δm2,M, (6)

where Pnlm(r,θ ) is a bound radial and angular orbital and Gk0l0m(r,θ ) is a Gaussian radial and angular wave packet with incident

energy k2
0
2 and incident angular momentum l0. Bound, Pnlm(r,θ ), and continuum, Pklm(r,θ ), radial and angular orbitals are obtained

by diagonalization of the Hamiltonian

H (r,θ ) = K(r) + K̄(r,θ ) + m2

2r2 sin2 θ
−

∑
±

Z√
r2 + 1

4R2 ± rR cos θ

+ VHX(r,θ ). (7)

A self-consistent field molecular structure code [11,12] is used to calculate the bound radial and angular orbitals of the next
higher ion stage needed to construct the VHX(r,θ ) potential.

To prevent collapse of the radial and angular wave functions, P MS
m1m2

(r1,θ1,r2,θ2,t), into closed inner subshells during time
propagation of the close-coupled equations, we use a standard core-orthogonalization method. For example, for electron-impact
ionization of the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2), the P

1�
00 (r1,θ1,r2,θ2,t) radial and angular wave function is orthogonalized

at each time step according to

P̄
1�
00 (r1,θ1,r2,θ2,t)

= P
1�
00 (r1,θ1,r2,θ2,t) − P1s0(r1,θ1)

∫
dr ′

1

∫
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1P1s0(r ′
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′
1)P

1�
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∫
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1

∫
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1,θ

′
1)P

1�
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2

∫
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2,θ

′
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2,θ

′
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∫
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2

∫
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′
2)P
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′
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∫
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1
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1
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2
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′
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′
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′
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′
2,θ

′
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∫
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2
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′
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2,θ
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∫
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2
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2P2p0(r ′
1,θ
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′
2)P
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′
1,r

′
2,θ

′
2,t)

+P2p0(r1,θ1)P2p0(r2,θ2)
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1
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dθ ′

1

∫
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2

∫
dθ ′

2P2p0(r ′
1,θ
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1)P2p0(r ′

2,θ
′
2)P

1�
00 (r ′

1,θ
′
1,r

′
2,θ

′
2,t). (8)

On the other hand, the P
1�
01 (r1,θ1,r2,θ2,t) radial and angular wave function is orthogonalized at each time step according to

P̄
1�
01 (r1,θ1,r2,θ2,t) = P

1�
01 (r1,θ1,r2,θ2,t) − P1s0(r1,θ1)

∫
dr ′

1

∫
dθ ′

1P1s0(r ′
1,θ

′
1)P

1�
01 (r ′

1,θ
′
1,r2,θ2,t)

−P2p0(r1,θ1)
∫

dr ′
1

∫
dθ ′

1P2p0(r ′
1,θ

′
1)P

1�
01 (r ′

1,θ
′
1,r2,θ2,t). (9)

We note that P MS
m1m2

(r1,θ1,r2,θ2,t) radial and angular wave
functions with m1 �= 0 and m2 �= 0 do not need to be
orthogonalized.

Probabilities, P(MSl0), for the electron-impact excitation
and ionization processes are obtained by time propagating

the close-coupled equations and then projecting the
P MS

m1m2
(r1,θ1,r2,θ2,t → ∞) radial and angular wave functions

onto fully antisymmetric spatial and spin wave functions
constructed from bound, Pnlm(r,θ ), and continuum, Pklm(r,θ ),
radial and angular orbitals. The probabilities are then used
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to obtain total, energy differential, and energy and angle
differential cross sections as a function of incident electron
energy and internuclear distance [10]. For example, the total
ionization cross section is given by

σion = πw

4k2
0

∑
M,S,l0

(2S + 1)P(MSl0), (10)

where w is the subshell occupation number.

B. Configuration-average distorted-wave (CADW) method

Distorted-wave continuum orbitals at energies ε = k2

2 are
found by solution of the single-particle Schrödinger equation
given by

[H (r,θ ) − ε]Pklm(r,θ ) = 0. (11)

We solve the distorted-wave equation, including S-matrix
boundary conditions, as a system of linear equations, Au = b

[9]. The configuration-average ionization cross section is given
by

σion =
∫ E

2

0
dεe

64

k3
i kekf

w

S(|m|)
∑
li ,|mi |

∑
le,|me|

∑
lf

(Md +Me−Mx),

(12)

where the total energy E = εnlm + εi = εe + εf , S(|m|) =
2(2 − δ|m|,0) is the statistical weight of the nlm bound valence
electron, and w is again the subshell occupation number. The
direct, Md , exchange, Me, and cross, Mx , terms are determined
using first-order perturbation theory and may be expressed
in terms of weighted sums over polar coordinate Coulomb
integrals [9].

III. RESULTS

Time-dependent close-coupling calculations, using the
core-orthogonalization method outlined in Sec. II, were carried
out for the electron-impact ionization of the 2sσ subshell of

Li2(1sσ 22pσ 22sσ 2) at incident energies near the peak of the
cross section. The Hartree with local exchange potential is
given by

VHX(r,θ ) =
∑

k=0,2,4

∫
dr ′

∫
dθ ′ rk

<

rk+1
>

P k
0 (cos θ )P k

0 (cos θ ′)

× [
2P 2

1s0(r ′,θ ′) + 2P 2
2p0(r ′,θ ′) + P 2

2s0(r ′,θ ′)
]

−α

2

(
24ρ(r,θ )

π

) 1
3

, (13)

where

ρ(r,θ ) =
[
2P 2

1s0(r,θ ) + 2P 2
2p0(r,θ ) + P 2

2s0(r,θ )
]

2πr2 sin θ
(14)

and the P1s0(r,θ ), P2p0(r,θ ), and P2s0(r,θ ) bound radial
and angular orbitals are found from a molecular structure
calculation [11,12] for Li2+(1sσ 22pσ 22sσ ) at the equilibrium
internuclear distance of R = 5.0 for Li2(1sσ 22pσ 22sσ 2).
Diagonalization of the m = 0 Hamiltonian of Eq. (7) with
α = 1.10, on a 240-point radial mesh with �r = 0.20 and a
32-point angular mesh with �θ = π

32 , yields an ionization
potential for the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2) of
5.11 eV, in agreement with experimental results [13].

Partial cross-section results at an incident energy of 10.0 eV,
obtained by propagating the P MS

m1m2
(r1,θ1,r2,θ2,t) radial and

angular wave functions using Eq. (3) on a (240 × 32)2

numerical lattice with �r1 = �r2 = 0.20 and �θ1 = �θ2 =
π
32 , are presented in column 3 of Table I . The number of m1m2

coupled channels was 5 for M = 0, 6 for M = 1, and 5 for
M = 2. The results presented in Table I are summed over the
cross sections for S = 0 and S = 1. Separate calculations are
required for each incident angular momentum l0 as found in
Eq. (6). Since partial cross sections for −M are assumed equal
to those for +M , the results presented in Table I for M �= 0
are twice the individual M result.

Configuration-average distorted-wave calculations [9] were
carried out for the electron-impact ionization of the 2sσ

TABLE I. Partial ionization cross sections (Mb) for the electron-impact ionization of the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2) at an incident
energy of 10.0 eV (1.0 Mb = 1.0 × 10−18 cm2).

TDCC CADW CADW
M l0 (�r = 0.20,�θ = π

32 ) (�r = 0.20,�θ = π

32 ) (�r = 0.10,�θ = π

64 )

0 0 18.7 24.5 23.6
0 1 9.1 24.2 24.4
0 2 11.7 17.4 17.7
0 3 22.3 31.0 30.9
0 4 16.9 21.4 19.4
0 5 11.5 13.2 11.1
1 1 28.5 41.6 41.7
1 2 32.1 45.8 49.8
1 3 32.2 40.7 40.1
1 4 30.6 39.0 35.8
1 5 23.0 25.5 22.5
2 2 26.4 33.8 34.5
2 3 33.4 48.9 47.8
2 4 27.4 34.0 30.5
2 5 22.3 24.9 21.7
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subshell of Li2(1sσ 22pσ 22sσ 2) at an incident energy of
10.0 eV. We used the same Hartree with local exchange
potential found in Eq. (13) on the same �r = 0.20 radial and
�θ = π

32 angular mesh to generate the P2s0(r,θ ) bound orbital
and all the Pklm(r,θ ) distorted waves. The CADW partial cross
sections are presented in column 4 of Table I. As found in
Table I, the TDCC partial cross sections are lower than the
CADW partial cross sections. The reduction due to electron
correlation effects is in keeping with previous reductions seen
in the electron-impact ionization of neutral atoms [10].

CADW calculations were also carried out for the electron-
impact ionization of the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2)
at an incident energy of 10.0 eV using a �r = 0.10 radial
and �θ = π

64 angular mesh. Diagonalization of the m = 0
Hamiltonian of Eq. (7) with α = 0.63 yields an ionization
potential for the 2sσ subshell of Li2(1sσ 22pσ 22sσ 2) of again
5.11 eV. CADW partial cross sections for the new radial and
angular mesh are presented in column 5 of Table I. Overall,
the agreement between the CADW partial cross sections on
the two different meshes is reasonably good. The largest
disagreements are at the larger values of M and l0, where
the finer radial and angular mesh should better represent the
Pklm(r,θ ) distorted waves.

Additional CADW calculations on both radial and angular
meshes were carried out for M = 3–4 and l0 = 6–9 and
extrapolated to higher M and l0 using appropriate fitting
functions [9]. The CADW total cross section at 10.0 eV on
the �r = 0.20 radial and �θ = π

32 angular mesh is 953 Mb,
while the CADW total cross section on the �r = 0.10 radial
and �θ = π

64 angular mesh is 907 Mb. A TDCC total cross
section is obtained by using the CADW partial cross sections
on a �r = 0.20 radial and �θ = π

32 angular mesh for M � 3
and l0 � 6. The resulting TDCC total cross section at 10.0 eV
is found to be 836 Mb. A TDCC total cross section is also
obtained by using the CADW partial cross sections on a
�r = 0.10 radial and �θ = π

64 angular mesh for M � 3 and
l0 � 6. The resulting TDCC total cross section at 10.0 eV is
found to be 798 Mb.

TDCC total ionization cross sections at incident energies
of 10.0, 15.0, and 20.0 eV are presented in Fig. 1 . The
TDCC total cross sections are “topped up” with CADW partial
cross sections on a �r = 0.20 and �θ = π

32 mesh and on a
�r = 0.10 and �θ = π

64 mesh. CADW total ionization cross
sections on both radial and angular meshes at 10 incident
energies between 6.0 and 25.0 eV are also presented in Fig. 1.
The differences between the TDCC and CADW total cross
sections are due to electron correlation effects. The differences
between the CADW total cross sections are due to a better
representation of large values of M and l0.

In previous work [14], we reported CADW calculations for
the electron-impact ionization of Li2. The calculations were
carried out on a �r = 0.10–0.30 variable radial and �θ = π

64
angular mesh. The P2s0(r,θ ) radial and angular orbital for
ionization was found from a molecular structure calculation
[11,12] for Li2(1sσ 22pσ 22sσ 2). The P1s0(r,0), P2p0(r,0), and
P2s0(r,0) radial and angular orbitals needed for the calculation
of the Hartree with local exchange potential of Eq. (13)
were found from a molecular structure calculation [11,12]
for Li2+(1sσ 22pσ 22sσ ). All of the Pklm(r,θ ) distorted waves
were generated using a Hartree with local exchange potential
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FIG. 1. (Color online) Electron-impact ionization of Li2. Solid
(red) squares, TDCC calculations “topped up” with CADW calcula-
tions on a �r = 0.20 and �θ = π

32 mesh; solid (blue) line, CADW
calculations on a �r = 0.20 and �θ = π

32 mesh; hatched (red)
squares, TDCC calculations “topped up” with CADW calculations
on a �r = 0.10 and �θ = π

64 mesh; dashed (blue) line, CADW
calculations on a �r = 0.10 and �θ = π

64 mesh (1.0 Mb = 1.0 ×
10−18 cm2).

with α = 1.0. A total cross section around 700 Mb was found
at an incident energy of 10.0 eV. We attribute the lower cross
section, in comparison to the CADW results reported in this
article, as due to the use of a different P2s0(r,θ ) radial and
angular orbital in the first-order ionization matrix elements.
The P2s0(r,θ ) radial and angular orbital from diagonalization
of the Hamiltonian of Eq. (7) on a �r = 0.20 radial and
�θ = π

32 angular mesh has a mean radius 〈r〉 = 4.26, while
the P2s0(r,θ ) radial and angular orbital from diagonalization of
the Hamiltonian of Eq. (7) on a �r = 0.10 radial and �θ = π

64
angular mesh has a mean radius 〈r〉 = 4.29. On the other hand,
the P2s0(r,θ ) radial and angular orbital taken directly from
a molecular structure calculation [11,12] interpolated onto a
�r = 0.10–0.30 variable radial and �θ = π

64 angular mesh
has a mean radius 〈r〉 = 3.89, making it somewhat harder
to ionize. We note that the binary encounter Bethe results
reported in previous work [14] had a peak cross section of
920 Mb around an incident energy of 20.0 eV.

IV. SUMMARY

In conclusion, a standard core-orthogonalization method
has allowed the TDCC method to be applied to calculate the
electron-impact ionization of a diatomic molecule with interior
closed subshells. For the electron-impact ionization of Li2, the
nonperturbative TDCC results at the peak of the cross section
were found to be lower than perturbative CADW results, in
keeping with previous electron correlation effect reductions
seen in the electron-impact ionization of atoms.

Although Li2 is an ideal system to study due to its
tight 1sσ 22pσ 2 inner core, the CADW cross sections are
found to be sensitive to the choice of the valence or-
bital for the 2sσ subshell. Due to the absence of ex-
periment, we plan further nonperturbative TDCC calcu-
lations with different valence orbitals in pursuit of a
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truly benchmark electron-impact ionization cross section
for Li2.

In the future, we also plan to apply the TDCC method to the
calculation of the electron-impact ionization of other diatomic
molecules, like C2 and CO. Besides total cross sections,
energy and angle differential cross sections can be extracted
using the fully propagated P MS

m1m2
(r1,θ1,r2,θ2,t → ∞) radial

and angular wave functions. We also note that the use of
a core-orthogonalization method allows the electron-impact

ionization of the inner subshells of both atoms and molecules
that possess outer closed subshells.
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