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Magic-wavelength optical traps for Rydberg atoms
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We propose blue-detuned optical traps that are suitable for trapping of both ground-state and Rydberg excited
atoms. The addition of a background compensation field or a suitable choice of the trap geometry provides a magic
trapping condition for ground-state and Rydberg atoms at the trap center. Deviations from the magic condition at
finite temperature are calculated. Designs that achieve less than 200-kHz differential trap shift between Cs ground
states and 125s Rydberg states for 10 μK Cs atoms are presented. Consideration of the trapping potential and
photoionization rates suggests that these traps will be useful for quantum-information experiments with atomic
qubits.
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I. INTRODUCTION

While ground-state neutral atoms interact only weakly due
to small van der Waals and magnetostatic dipolar interactions
several recent experiments have shown that Rydberg excitation
can be used to turn on strong interactions suitable for
quantum gates and entanglement generation [1–3]. Following
these developments Rydberg-mediated quantum gates [4] are
currently being studied intensively as a route to scalable
quantum-information processing [5].

Recent quantum gate experiments have used Rb atoms
that are laser cooled and then transferred into red-detuned
far-off resonance optical traps (FORTs). Red-detuned traps
are adequate for ground-state atoms but they present several
difficulties for experiments that rely on Rydberg excitation.
The trapping light photoionizes Rydberg atoms with typical
photoionization rates for few mK deep traps that can be
faster than radiative decay rates [6–8], and so photoionization
presents a limit to the usable Rydberg lifetime. Furthermore
the differential light shift of the Rydberg and ground states
results in a position dependent Rydberg excitation energy,
unless the atoms are cooled to the motional ground-state
of the trapping potential. Variations in the excitation energy
impact the detuning of pulses used for gate operations and thus
degrade gate fidelity. To get around these limits the trap light is
turned off during the gate sequence and then turned on again
afterward. Provided the atoms are sufficiently cold, and the
Rydberg gate lasts only a few μs, turning the trap on and off
does not lead to appreciable heating or atom loss out of the trap.

In a multiqubit experiment we envision an array of optical
traps, each holding a neutral atom. In most implementations
using lattices, or trap arrays generated with diffractive optics,
it is not possible to control the trap intensity on a site-by-site
basis. It would therefore be necessary to turn off all traps
whenever any atom is Rydberg excited. This is problematic for
implementations with many qubits and it is therefore of interest
to find traps that work for both ground-state and Rydberg-state
atoms. Since the Rydberg polarizability is that of a free electron
and is negative, a stable trap must be a dark region surrounded
by light, and the trap wavelength should be chosen so the
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ground-state polarizability also is negative. In the alkali-metal
atoms this implies tuning to the blue of one or both of the
first resonance lines [6]. Although a blue-detuned trap can be
attractive for both ground-state and Rydberg atoms, trap depth
matching is still an issue due to state-dependent differences
in the magnitude of the polarizability and due to the different
spatial extent of the Rydberg wave function compared to the
ground-state atom. For high-fidelity quantum gates we expect
to access Rydberg levels with principal quantum number n >

100 [5] and it is therefore necessary to consider the local
trapping potential averaged over the Rydberg electron wave
function [9] which may extend to more than 1 μm away from
the nucleus.

Several authors have considered low-frequency electro-
magnetic trap designs for ground-state and Rydberg atoms
[10]. In this paper we show that optical frequency traps can be
used for both ground-state and Rydberg-state atoms and that
position-dependent differential light shifts can be minimized in
what we refer to as “quasimagic” trap geometries. In Sec. II we
present three alternative designs for blue-detuned optical traps.
In Sec. III we calculate the Rydberg trapping potential and
identify magic trapping conditions. Representative numbers
are given for Cs atoms. Photoionization rates are calculated in
Sec. V and we conclude in Sec. VI.

II. BOTTLE BEAM OPTICAL TRAPS

Wavelength regions where the ground-state and Rydberg-
state polarizabilities are the same sign are to the blue of the
first resonance lines in alkali atoms. Calculated polarizability
curves for the heavy alkali-metal atoms Rb and Cs are shown
in Fig. 1. The curves for the 50d Rydberg state are within
a few percent of the value found from the free electron
polarizability αe = − e2

meω2 , except near the resonance with the
first excited p level. We see that for both elements there is
a matching wavelength to the red of the second resonance
lines at approximately 430 nm for Rb and 470 nm for Cs.
The ground-state vector polarizabilities are also very small
at this wavelength, which implies small rates for hyperfine
or Zeeman state changing Raman transitions. Although these
wavelengths might therefore appear attractive for trapping
ground states and Rydberg states, they are not useful due
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FIG. 1. (Color online) Scalar polarizability of ground states and
Rydberg states of Rb and Cs (solid lines) and vector polarizability of
the ground-state (dashed lines).

to the need to account for the different spatial extent of the
ground-state and Rydberg-state wave functions. As we will
see in Sec. III it is preferable to work at longer wavelengths
for which the ground-state and Rydberg-state polarizabilities
are both negative, but the ground-state polarizability is much
larger in magnitude than that of the Rydberg state.

Several methods have been used to produce bottle beam
traps (BBTs) that have an intensity null surrounded by light in
all directions [11–13]. We have investigated in detail the three
configurations shown in Fig. 2. The Gaussian interference
BBT in Fig. 2(a) makes use of the interference of two TEM00

Gaussian beams with different waist sizes, w1 and w2 [13].
The crossed vortex BBT [12] in Fig. 2(b) is formed by two
Laguerre-Gaussian L1

0 beams with orthogonal polarizations
that cross with an angle of 2θ . We have recently demonstrated
trapping of single ground-state Cs atoms in both of these
BBTs [14].

The third dipole trap, Fig. 2(c), is created by four parallel
tightly focused TEM00 Gaussian beams. The four beams with
waist size w are spaced on a square with sides d. Each
beam has the same polarization as its diagonal neighbor and
has orthogonal polarization to that of its nearest neighbors.
This polarization configuration minimizes the effects of
interference. Both the waist size w and the beam spacing d

are on the μm scale. The overlap of the four beams forms a
potential barrier around the center of the square in the x-y
plane. Diffractive spreading of the Gaussians also creates
a trapping potential along z, thus forming a 3D BBT. This
latter configuration is of particular interest for forming tightly
packed BBT arrays.
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FIG. 2. (Color online) Setup of blue-detuned dipole traps:
(a) Gaussian interference BBT [13], (b) crossed vortex BBT [12],
and (c) Gaussian lattice.

For each trapping geometry, atom localization near the
trap center can be quantified by an expansion of the potential
U (r) = − 1

2ε0c
αI (r) near the trap center. Here α is the scalar

polarizability and I is the intensity at position r. The intensity
distributions for the different trap configurations are calculated
in the Appendix. For the Gaussian interference BBT we find
near the origin

U (x,0,0) = −αP1
(
w2

1 − w2
2

)2

πε0cw
6
1w

4
2

x4 + O(x6), (1a)

U (0,0,z) = −αλ2P1
(
w2

1 − w2
2

)2

π3ε0cw
6
1w

4
2

z2 + O(z4), (1b)

where α is the scalar polarizability of the atom, λ is the trapping
wavelength, and P1,P2 = (w2/w1)2P1 are the powers of the
beams with waists w1 and w2, respectively. The trapping
potential is axially symmetric and quartic in the x-y plane
and quadratic along z. The total trap power used in Fig. 2 is
P = P1 + P2.

For the crossed vortex BBT an expansion about the origin
yields

U (x,0,0) = −2αP cos2 θ

πε0cw4
x2 + O(x4), (2a)

U (0,y,0) = − 2αP

πε0cw4
y2 + O(y4), (2b)

U (0,0,z) = −2αP sin2 θ

πε0cw4
z2 + O(z4), (2c)
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FIG. 3. (Color online) Trapping depth of blue-detuned dipole
traps in the x-y (left column) and x-z (right column) planes for
Cs 6s, λ = 780 nm, α = −235 × 10−24 cm3, power P = 50 mW for
(a) Gaussian interference BBT, w1 = 2 μm and w2 = 3.78 μm; (b)
crossed vortex BBT, w = 3 μm and θ = 8.6◦; and (c) Gaussian lattice
trap, w = 1.5 μm and d = 4 μm.

where P is the total power of the two beams and w is the
focused waist size. This trap is quadratic in all directions.

For the Gaussian array BBTs the expansion along x and z

is

U (x,0,0) = −U0e
− d2

w2

(
1 − 2w2 − d2

w4
x2

)
+ O(x4), (3a)

U (0,0,z) = −U0e
− d2

w2

[
1 − λ2(w2 − d2)

π2w6
z2

]
+ O(z4), (3b)

with U0 = 8αP
πε0cw2 . Here P is the power of each beam in

Fig. 2(c). In an array implementation each beam is shared

between four neighboring trapping sites, so a total power of
only P per site is required (this neglects a small correction due
to the rows at the edge of the array).

Trapping potentials of the three dipole trap configurations
for the ground-state of Cs are plotted in Fig. 3 and the trap
oscillation frequencies along different axes are listed in Table I.
We see that all three designs provide transverse oscillation
frequencies of a few tens of kHz and longitudinal oscillation
frequencies of a few kHz. The vortex and Gaussian lattice
traps result in quite similar frequencies and trapping depths.
The Gaussian interference BBT is about 3× shallower for the
same optical power and has the poorest axial confinement.

III. PONDEROMOTIVE POTENTIAL
OF TRAPPED RYDBERG ATOMS

High-n Rydberg atoms with n > 100 have electron wave
functions that are comparable in spatial extent to the trap
potentials shown in Fig. 3. The ac Stark shift of Rydberg atoms
can therefore no longer be approximated by U = − 1

2ε0c
αI ,

with I being the local intensity at the nucleus. We need
to consider the ponderomotive energy of Rydberg atoms
in a field of varying intensity. The ponderomotive shift is
the time-averaged kinetic energy of a free electron in an
oscillating electric field. For a field of the form E cos(ωt),
the ponderomotive energy is

UP = e2|E|2
4meω2

,

where −e and me are the electron charge and mass, respec-
tively. Using I = ε0c

2 |E|2, where c is the speed of light, we can
write the ponderomotive energy of a free electron as

UP = e2

2ε0cmeω2
I.

Then the Hamiltonian of a Rydberg atom in an oscillating
electromagnetic field can be written as

HF + UP ( �R + �r)ψ(�r; �R) = ER( �R)ψ(�r; �R),

where �R is the center-of-mass coordinate of the atom and �r is
the coordinate of the electron relative to the center of mass.
Using first-order perturbation theory, and supposing there is
no degeneracy involved, the energy shift of a Rydberg atom in
state j is [9]

	ERj ( �R) =
∫

d3rUP ( �R + �r)|ψ0
j (�r; �R)|2

= e2

2ε0cmeω2

∫
d3rI ( �R + �r)|ψ0

j (�r; �R)|2. (4)

TABLE I. Oscillation frequencies and the trap potential at the lowest saddle point for the BBTs, each with the same total power of 50 mW,
with trap parameters from Fig. 3.

Design ωx/2π (kHz) ωy/2π (kHz) ωz/2π (kHz) U/kB (μK)

Gaussian interference 62.5a 62.5a 0.315 60
Crossed vortex 29.4 29.8 4.42 225
Gaussian lattice 15.4 15.4 2.79 256

aThe Gaussian interference BBT is anharmonic in the radial direction. The vibration frequency was calculated by setting the particle energy to
1/10 of the trapping potential.

043408-3



S. ZHANG, F. ROBICHEAUX, AND M. SAFFMAN PHYSICAL REVIEW A 84, 043408 (2011)

0

0.05

0.1

0.15

0.2

U
/k

B  
(m

K
)

0

0.05

0.1

0.15

0.2

U
/k

B (
m

K
)

0 2 4 6
0

0.05

0.1

0.15

0.2

x  (μm)

U
/k

B (
m

K
)

0 10 20 30
(z μm)

ground

n=100

125

150

(a)

(b)

(c)

n=100

150

ground

ground

ground

ground

n=100
150

n=100

125

150

n=100

150

ground

150
n=100

FIG. 4. (Color online) Potential energy of Cs ground-state and ns

Rydberg states with n = 100, 125, 150 in (a) Gaussian interference
BBT, (b) vortex BBT, and (c) Gaussian lattice BBT. Trap parameters
the same as in Fig. 3.

This expression is valid provided the ponderomotive potential
varies over distance scales that are larger than the wavelength
of the Rydberg electron. This is well satisfied for the
potentials we consider. At n = 150 the electron wavelength
is about 50 nm which is less than 10% of the wavelength of
the light creating the trap. In addition it is necessary that
the ponderomotive shift is everywhere small compared to the
energy spacing of Rydberg levels. For the 150s state, which is
the highest we consider in the examples below, the closest state
is 146f7/2, which is 1.6 mK away. Looking at Fig. 4 the largest
ponderomotive energy seen by a 150s atom for the traps we
are considering is about 200 μK. The ratio of energy scales
would thus imply a higher-order correction of ∼0.12.

In fact this naive estimate is overly pessimistic since the
coupling between ns and (n − 4)f is strongly suppressed by
the trap geometry. The dipole traps in Fig. 2 all have spatial
reflection symmetry so that the coupling matrix elements
between the ns and (n − 4)f Rydberg states are exactly zero
when the atom is at the origin. For the low atom temperatures
expected for Cs, the atom will be very near the center of
the trap and thus this coupling will be strongly suppressed.
The next closest states are in the (n − 4) degenerate manifold
(l = 4,5, . . .) and are separated from the 150s state by about
5 mK which is more than a factor of 25 larger than the light
shift. This will lead to a second-order perturbative correction
to the energy shift of approximately 1 part in 25. Since
the Rydberg level spacing scales as 1/n3, with n being the
principal quantum number, the error will be even smaller for
lower levels.

TABLE II. Parameters for the Cs model potential (5).

l 0 1 2 3 4+
α

(1)
l 3.496 25 3.738 01 3.450 92 3.435 92 3.435 92

α
(2)
l 9.574 99 9.566 64 9.522 85 9.542 85 9.542 85

α
(3)
l 1.414 09 1.340 16 1.581 47 1.621 47 1.621 47

We calculate the wave functions ψ0
j using a model pseu-

dopotential method. The potential form adopted here is [15]

Vl(r) = −Zl(r)

r
− αd

2r4
[1 − e−(r/rc)3

]2 + l(l + 1)

2r2
, (5)

where Zl(r) = 1 + 36e−α
(1)
l r + α

(2)
l reα

(3)
l r . αd = 15.81, rc = 2.0,

and all the other parameters are listed in Table II. To verify
our calculation of the wave functions, we reproduced the
plane-wave photoionization cross sections listed in Ref. [6].
The fine structure of Cs adds less than 0.1%; correction to
the ponderomotive energy shifts, so we ignore fine structure
corrections in this paper.

Figure 4 gives sample calculation results for ns Rydberg
levels with n = 100, 125, 150. We see that as n increases the
effective trapping potential gets smaller and smaller. This is
because the large electron wave function averages over the
intensity distribution of the trap according to Eq. (4) which
washes out the potential minimum. If the trap parameters are
not chosen correctly, as is the case in Fig. 4(b), the trap could
be repulsive for high n even though αe is negative. Even when
the trap is attractive for Rydberg states the ground to Rydberg
trap shift for an atom at �R = 0 is not negligible. This shift
increases with n and is proportional to the light intensity. In
an experiment with an array of traps this would imply that the
Rydberg excitation energy would vary from site to site due to
intensity variations across the array. To minimize this effect we
seek trap parameters for which the �R = 0 trap induced shift
vanishes. We refer to this in what follows as “quasimagic”
trapping. A quasimagic trap will give an intensity-independent
excitation shift for atoms at the trap center (or for atoms in
the motional ground-state with slightly different compensation
parameters) and only a small shift for sufficiently cold atoms.
We quantify the notion of small in the following section.

IV. MAGIC CONDITION FOR ZERO
TEMPERATURE ATOMS

Inspection of Fig. 1 shows that apart from wavelengths that
are very close to the second resonance lines the magnitude of
the ground-state polarizability is larger than that of the Rydberg
state. Conversely Fig. 4 shows that the trapping potential at
�R = 0 is larger for Rydberg states than for ground states. This

implies that we can balance the �R = 0 trap shifts by adding
a constant background intensity that will shift the ground-
state potentials more than the Rydberg-state potentials. With
the correct background intensity Im the differential shift will
vanish. This is the quasimagic trapping condition. Note that
if we were to use the wavelengths in Fig. 1 where the ground
and Rydberg polarizabilities are equal we would have to add
a relatively large background intensity. At λ = 780 nm the
ground-state polarizability α is about 5.4× larger than that of
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the Rydberg state αe which reduces the power requirement for
the background beam by this factor. It is possible to work even
closer to the first resonance line where α/αe is even larger,
but decoherence rates associated with photon scattering and
differential hyperfine shifts [6,16] increase correspondingly.
We have therefore chosen 780 nm for Cs as a viable working
wavelength.

Using the ground-state light shift

	Ug = − αg

2ε0c
[IBBT( �R) + Im( �R)]

and the Rydberg state shift

	UR = e2

2ε0cmeω2

∫
d3r[IBBT( �R + �r)

+ Im( �R + �r)]|ψ0
j (�r; �R)|2,

the quasimagic condition is simply 	Ug = 	UR. Figure 5
shows an example of such a magic condition for the crossed
vortex BBT.

Although the additional power required for matching is
small for a single site, the additional light requirement becomes
substantial if we consider a 100 × 100 or 1000 × 1000 μm2

array. The Gaussian lattice design presents an interesting
alternative since the light intensity is naturally not zero at
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Gaussian lattice trap with λ = 780 nm, d = 4 μm, w = 1.57 μm,
and P = 50 mW.
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FIG. 7. (Color online) Average transition shift between ground
states and 125s states of Cs in Gaussian lattice trap with d = 4 μm,
w = 1.57 μm, P = 50 mW, and Utrap = kB × 300 μK.

the trap center. The �R = 0 intensity changes as we vary the
waist size or separation of the beams, and by judicious choice
of parameters we can achieve the matching condition without
adding any additional plane wave. Note that the compensating
intensity is in this case not uniform but is spatially varying.
Figure 6 shows such a self-magic condition for n = 125.

For a ground-state atom with a low temperature, we can
estimate the average trap induced shift between ground states
and Rydberg states by 〈dU 〉 = 1

2

∑
i=x,y,z dUii(0,0,0)〈r2

i 〉,
where the mean square position of the atom found from the
Virial theorem is 〈r2

i 〉 = kBT
2∂iiUg

, dUii = ∂ii(UR − Ug), and Ug

and UR are the ground- and Rydberg-state trapping potentials.
Figure 7 shows that the transition shift decreases nearly linearly
with decreasing atom temperature. This shift would be below
0.2 MHz for an atom temperature of 10 μK, which is readily
achieved using polarization gradient cooling of Cs.

V. PHOTOIONIZATION RATE

In this section we calculate the photoionization rate of Ryd-
berg atoms in a BBT. Since the Rydberg electron is not exposed
to a uniform intensity field the photoionization calculation
must be modified accordingly. The local photoionization rate
R scales as R = σ I

h̄ω
, with ω being the photon frequency. The

cross section is [17]

σ = 2π2 h̄2

m2
ec

2α

dfif

dE
,

α is the fine structure constant, and the derivative of the
oscillator strength with respect to the energy is

dfif

dE
= 2h̄

mω

1

2li + 1

∑
mi

∑
lf ,mf

|〈f | �A · �p|i〉|2, (6)

where the initial state |i〉 = |ni,li ,mi〉 is a Rydberg state,
with principle quantum number ni , and the final state |f 〉 =
|Ef ,lf ,mf 〉 is a continuum state with energy Ef = Eω + ER ,
with Eω = h̄ω being the photon energy. The magnitude of
�A is normalized to unit peak intensity. Even though kr ∼
kn2a0 � 1 is large for our parameters we may ignore high
powers of r in the expansion of �A when calculating the matrix
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element since, even though the electron’s wave function is
comparable in size to the photon’s wavelength, the photon
absorption takes place near the nucleus [18]. The quadrupole
term is included due to the small electric dipole transition rate
for s-state atoms near the center of a dark trap. We tested the
matrix element calculation using the full multipole operator
and verified that only the dipole and quadrupole terms gave a
substantial contribution.

For a plane-wave field polarized in the x direction �A =
ei�k·�r x̂, and Eq. (6) can be approximated by

dfif

dE
≈ 2h̄

mω

1

2li + 1

×
∑
mi

∑
lf ,mf

|〈f |px + ikxxpx + ikyypx + ikzzpx |i〉|2.

(7)

Using the following relations

xpx = im

2h̄
(Hxx − xxH ) + 1

2
ih̄,

ypx = im

2h̄
(Hxy − xyH ) − 1

2
lz,

zpx = im

2h̄
(Hxz − xzH ) + 1

2
ly,

and dropping the magnetic dipole terms, which give no
contribution to the photoionization rate, Eq. (7) becomes

dfif

dE
≈ 2mω

h̄

1

2li + 1

×
∑
mi

∑
lf ,mf

∣∣∣∣〈f |x + ikx

2
x2 + iky

2
xy + ikz

2
xz|i〉

∣∣∣∣
2

.

For a spatially inhomogeneous field like the Gaussian lattice
BBT we decompose into plane waves as

A(�r) = 1

(2π )3

∫
d3�k g�ke

i�k·�r ,

g�k =
∫

d3�r A(�r)e−i�k·�r .

The oscillator strength derivative can then be written as

dfif

dE
≈ 2mω

(2π )6h̄

1

2li + 1

∑
mi

∑
lf ,mf

×
∣∣∣∣
∫

d3�k g�k

(
〈x〉+ ikx

2
〈xx〉+ iky

2
〈xy〉+ ikz

2
〈xz〉

)∣∣∣∣
2

.

To evaluate the matrix elements the wave functions are
calculated with the same method as in Sec. III. The radial
part of the continuum state is normalized to

φEf ,lf →
√

2m

πh̄2ke

sin(ker + δ), as r → ∞,

where ke is the wave number of the free electron and δ is the
continuum-state phase shift.

Figure 8 shows the photoionization rate for a 125s-state Cs
atom in a Gaussian lattice trap which satisfies the self-magic
condition of Fig. 6. The quadrupole term gives less than 3%;
correction to the final result shown in the plot due to the
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FIG. 8. (Color online) Photoionization rate for 125s Cs in a
780-nm self-magic Gaussian lattice dipole trap, w = 1.57 μm,
d = 4 μm, P = 50 mW, and Utrap = kB × 300 μK.

nonzero light intensity at the trap center. The photoionization
rate is also substantially smaller than the room temperature
radiative decay rate of the same Rydberg state which is about
1800 s−1. Nevertheless the room temperature photoionization
rate of the 125s state is dominated by blackbody radiation
which gives a rate of about [19] 20 s−1 at 300 K. Only at
cryogenic temperatures less than 10 K does the trap light
induced rate at the trap center seen in Fig. 8 dominate over
the blackbody rate.

VI. DISCUSSION AND CONCLUSIONS

In summary we have presented three designs for blue-
detuned dipole traps that are capable of trapping both
ground- and Rydberg-state atoms. Using visible or near-
infrared trapping wavelengths, and alkali-metal atoms with
temperatures <100 μK, these traps are capable of μm scale
atomic localization in three dimensions. We have calculated
the ponderomotive potential energy of trapped Rydberg atoms,
the importance of which has been demonstrated in recent
experiments [20] and shown that it is possible to match the
ground- and Rydberg-state trap shifts for atoms at the center
of the trap.

One attractive feature of these optical traps is that they can
be replicated easily in two dimensions with a diffractive beam
splitter. In this way the traps could be used in experiments
that require control over individual sites of a closely spaced
two-dimensional atomic array as in Ref. [21]. This type of
holographically replicated and projected array has the inter-
esting feature, compared to more traditional optical lattices,
that the position of each trapping site does not depend on a
relative phase between two interfering beams. This suggests
the potential for better long-term stability compared to optical
lattice implementations.

A particular feature of the Gaussian array BBTs [Fig. 2(c)]
is that a periodic array of Gaussian beams creates an array
of dark traps with the same periodicity, without any extra
confining walls. This approach would enable quasimagic
trapping of 125s atoms on a lattice with 4-μm periodicity
as detailed in Sec. IV. Conversely the Gaussian interference
and crossed vortex BBTs [Figs. 2(a) and 2(b)] have a confining
wall around each trap site so that there would be two confining
walls between each site in a replicated array. This implies an
approximately 50%; larger trap period for quasimagic trapping
of 125s atoms, which would reduce the number of sites per
unit area by more than a factor of 2.
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As we have shown in Sec. IV quasimagic ground-state–
Rydberg-state trap shift matching can be achieved either by
adding a uniform background field to the trap designs that
have zero intensity at the trap center [Figs. 2(a) and 2(b)] or
by careful choice of the trap parameters of the Gaussian lattice
trap [Fig. 2(c)] which has a finite intensity at the trap center.
These quasimagic traps have no intensity-dependent shift for
atoms at the trap center (or in the motional ground-state),
but do show shifts at finite temperature. We have shown in
Sec. IV that the finite temperature shifts can be limited to
∼200 kHz for 10 μK Cs atoms and would be even less
for colder atoms. Trap shift matching is important for high-
fidelity Rydberg-mediated quantum gates [5]; furthermore this
method may also be relevant for high-accuracy control of
blackbody radiation shifts [22] in optical transition atomic
clocks. In principle it may be possible to improve upon our
results by designing a compensating field with the correct
spatial shape such that not only the differential shift at trap
center but also higher spatial derivatives of the differential
shift are canceled. We leave this as a challenge for future
work.

ACKNOWLEDGMENTS

SZ and MS received support from the IARPA MQCO
program through ARO Contract No. W911NF-10-1-0347,
DARPA, and NSF Grant Nos. PHY-1005550 and PHY-
0969883. FR was supported by the NSF under Grant No.
0969530.

APPENDIX: CALCULATION OF TRAP
INTENSITY DISTRIBUTIONS

In this Appendix we document the calculation steps used to
derive the intensity distributions leading to the trapping poten-
tials of Eqs. (1)–(3) for the Gaussian beam interference BBT,
crossed vortex BBT, and Gaussian array BBT, respectively.

1. Gaussian interference BBT

The two Gaussian beams have a phase difference of π after
the Mach-Zehnder interferometer, and the on-axis intensities
are set equal by putting P1/w

2
1 = P2/w

2
2, with P1,2 being the

power and w1,2 being the beam waist. The combined intensity
of the BBT is

I (ρ,z) = 2P1

πw2
1

∣∣∣∣ w1

w1(z)
e
− ρ2

w2
1 (z) e

i[kz+k
ρ2

2R1(z) −η1(z)]

− w2

w2(z)
e
− ρ2

w2
2 (z) e

i[kz+k
ρ2

2R2(z) −η2(z)]
∣∣∣∣
2

,

where from the properties of TEM00 Gaussian beams
zR1,2 = πw2

1,2/λ, w1,2(z) = w1,2

√
1 + ( z

zR1,2
)2, R1,2(z) = z +

z2
R1,2

z
, η1,2(z) = arctan( z

zR1,2
), and ρ2 = x2 + y2. Multiplying

by the polarizability to convert to energy units and Taylor
expanding about the origin gives Eqs. (1).

2. Crossed vortex BBT

The intensity of a Laguerre-Gaussian beam can be written
as

Il,p(ρ,z) = I0

(
Clpw0

w(z)

)2( 2r2

w2(z)

)|l|
e
− 2ρ2

w2(z)

[
L|l|

p

(
2ρ2

w2(z)

)]2

,

where I0 = P

w2
0
, Clp =

√
2p!

π(l+p)! , w(z) = w0

√
1 + ( z

zR
)2, and

zR = πw2
0

λ
. For the crossed vortex BBT we are using l = 1 and

p = 0.
The BBT is created by passing two orthogonally polarized

beams with separation d through a lens of focal length f .
After the focusing lens, the two beams are rotated by ±θ =
± arctan( d

2f
) in the x-z plane. For not too large angles such

that we can neglect local polarization changes due to the beam
focusing the BBT intensity is given by

I (x,y,z) = I1,0(ρ+,z+) + I1,0(ρ−,z−),

with ρ± =
√

y2 + (x cos θ ± z sin θ )2 and z± = z cos θ ∓
x sin θ . Multiplying by the polarizability and Taylor expanding
about the origin gives Eqs. (2).

3. Gaussian lattice

Each unit cell of the Gaussian beam lattice has the same
polarization on the upper-right and lower-left corners and an
opposite polarization on the lower-right and upper-left corners
as shown in Fig. 2(c). We therefore add the fields from the
beams centered at opposite corners and then add the two
intensities. This can be written as

I (x,y,z)

= 2P

πw2
0

[|E(x− d/2,y− d/2,z)−E(x+ d/2,y+ d/2,z)|2

+ |E(x + d/2,y − d/2,z) + E(x − d/2,y + d/2,z)|2],

where each side of the unit cell has length d, P is the power of
each beam, and the unity normalized field distribution of each
beam is

E(x,y,z) = w0

w(z)
e
− x2+y2

w2(z) e
i[kz+k

x2+y2

2R(z) −η(z)]
.

Taylor expanding the potential about the center of the unit cell
at x = y = 0 gives Eqs. (3).

[1] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

[2] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,
T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett.
104, 010503 (2010).

043408-7

http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1103/PhysRevLett.104.010503


S. ZHANG, F. ROBICHEAUX, AND M. SAFFMAN PHYSICAL REVIEW A 84, 043408 (2011)

[3] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and
M. Saffman, Phys. Rev. A 82, 030306(R) (2010).

[4] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D.
Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901
(2001).

[5] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).

[6] M. Saffman and T. G. Walker, Phys. Rev. A 72, 022347
(2005).

[7] R. M. Potvliege and C. S. Adams, New J. Phys. 8, 163 (2006).
[8] J. Tallant, D. Booth, and J. P. Shaffer, Phys. Rev. A 82, 063406

(2010).
[9] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-Flannigan, and

G. Raithel, Phys. Rev. Lett. 85, 5551 (2000).
[10] J. H. Choi, B. Knuffman, T. C. Leibisch, A. Reinhard, and

G. Raithel, Adv. At. Mol. Opt. Phys. 54, 131 (2007); P. Hyafil,
J. Mozley, A. Perrin, J. Tailleur, G. Nogues, M. Brune, J. M.
Raimond, and S. Haroche, Phys. Rev. Lett. 93, 103001 (2004);
J. Mozley, P. Hyafil, G. Nogues, M. Brune, J.-M. Raimond,
and S. Haroche, Eur. Phys. J. D 35, 43 (2005); M. Mayle,
I. Lesanovsky, and P. Schmelcher, Phys. Rev. A 79, 041403(R)
(2009); 80, 053410 (2009).

[11] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu,
and H. Sasada, Phys. Rev. Lett. 78, 4713 (1997); R. Ozeri,
L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750
(1999); 65, 069903(E) (2002); J. Arlt and M. J. Padgett, Opt.

Lett. 25, 191 (2000); S. Kulin, S. Aubin, S. Christe, B. Peker,
S. L. Rolston, and L. A. Orozco, J. Opt. B 3, 353 (2001);
D. Yelin, B. E. Bouma, and G. J. Tearney, Opt. Lett. 29, 661
(2004); P. Xu, X. He, J. Wang, and M. Zhan, ibid. 35, 2164
(2010).

[12] F. K. Fatemi, M. Bashkansky, and Z. Dutton, Opt. Express 15,
3589 (2007).

[13] L. Isenhower, W. Williams, A. Dally, and M. Saffman, Opt. Lett.
34, 1159 (2009).

[14] S. Zhang, G. Li, K. Maller, and M. Saffman (to be published).
[15] F. Robicheaux and J. Shaw, Phys. Rev. A 56, 278 (1997).
[16] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko,

A. Rauschenbeutel, and D. Meschede, Phys. Rev. A 72, 023406
(2005).

[17] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, UK, 1994).

[18] U. Fano, Phys. Rev. A 32, 617 (1985).
[19] I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, V. M. Entin,

A. Ekers, and N. N. Bezuglov, New J. Phys. 11, 013052 (2009).
[20] K. C. Younge, B. Knuffman, S. E. Anderson, and G. Raithel,

Phys. Rev. Lett. 104, 173001 (2010).
[21] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß,

T. Fukuhara, I. Bloch, and S. Kuhr, Nature (London) 471, 319
(2011).

[22] K. Beloy, U. I. Safronova, and A. Derevianko, Phys. Rev. Lett.
97, 040801 (2006).

043408-8

http://dx.doi.org/10.1103/PhysRevA.82.030306
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevA.72.022347
http://dx.doi.org/10.1103/PhysRevA.72.022347
http://dx.doi.org/10.1088/1367-2630/8/8/163
http://dx.doi.org/10.1103/PhysRevA.82.063406
http://dx.doi.org/10.1103/PhysRevA.82.063406
http://dx.doi.org/10.1103/PhysRevLett.85.5551
http://dx.doi.org/10.1016/S1049-250X(06)54003-0
http://dx.doi.org/10.1103/PhysRevLett.93.103001
http://dx.doi.org/10.1140/epjd/e2005-00184-7
http://dx.doi.org/10.1103/PhysRevA.79.041403
http://dx.doi.org/10.1103/PhysRevA.79.041403
http://dx.doi.org/10.1103/PhysRevA.80.053410
http://dx.doi.org/10.1103/PhysRevLett.78.4713
http://dx.doi.org/10.1103/PhysRevA.59.R1750
http://dx.doi.org/10.1103/PhysRevA.59.R1750
http://dx.doi.org/10.1103/PhysRevA.65.069903
http://dx.doi.org/10.1364/OL.25.000191
http://dx.doi.org/10.1364/OL.29.000661
http://dx.doi.org/10.1364/OL.29.000661
http://dx.doi.org/10.1364/OL.35.002164
http://dx.doi.org/10.1364/OL.35.002164
http://dx.doi.org/10.1364/OE.15.003589
http://dx.doi.org/10.1364/OE.15.003589
http://dx.doi.org/10.1364/OL.34.001159
http://dx.doi.org/10.1364/OL.34.001159
http://dx.doi.org/10.1103/PhysRevA.56.278
http://dx.doi.org/10.1103/PhysRevA.72.023406
http://dx.doi.org/10.1103/PhysRevA.72.023406
http://dx.doi.org/10.1103/PhysRevA.32.617
http://dx.doi.org/10.1088/1367-2630/11/1/013052
http://dx.doi.org/10.1103/PhysRevLett.104.173001
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1103/PhysRevLett.97.040801
http://dx.doi.org/10.1103/PhysRevLett.97.040801

