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Single and double ionization in C6+ + He collisions
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Single- and double-ionization processes in C6+ collisions with the He atom at an incident energy of
100 MeV/amu are studied by direct solution of the time-dependent Schrödinger equation. A time-dependent
close-coupling method based on an expansion of a one-electron three-dimensional wave function in the field of
He+ is used to calculate single-ionization cross sections. A time-dependent close-coupling method based on an
expansion of a two-electron six-dimensional wave function in the field of He2+ is used to calculate single- and
double-ionization cross sections. Electron energy and angle differential cross sections for single ionization are
presented for various projectile impact parameters. For relatively large impact parameters, the differential cross
sections are in qualitative agreement with ion-atom experiments. Electron energy and angle differential cross
sections for double ionization are also presented for a relatively large projectile impact parameter.
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I. INTRODUCTION

The collision of fast bare ions with atoms provides an
interesting probe of various electron ionization processes.
Under photon impact, the electrons feel a dipolar interaction
for a fixed intensity, while for a fast bare ion impact the
electrons feel a multipolar interaction that varies with ion-atom
impact distance. From a theoretical perspective, the single
and double ionization of atoms by fast bare ion impact are
challenging many-body quantal breakup problems.

In the past few years a nonperturbative time-dependent
close-coupling (TDCC) method has been developed and
applied to various ion-atom and ion-molecule collisions. For
single and double ionization in α + He collisions from 1.0 to
1.6 MeV/amu, the TDCC results [1] were found to be in good
agreement with basis-set coupled-channels calculations [2]
and experiments [3,4] for total cross sections. For single
and double ionization in p̄ + He collisions from 0.01 to
1.0 MeV/amu, the TDCC results [5] for total cross sections
were found to be in good agreement with time-dependent
flatland lattice calculations [6] and experiment [7] for single
ionization, as well as in good agreement with experiment
[7] for double ionization. For double ionization in p + He
collisions at 6.0 MeV/amu, the TDCC results [8] were found
to be in good relative agreement with experiment [9] for the
double-angle differential cross section. Finally, for single and
double ionization in p + H2 collisions at 1.0 MeV/amu, the
TDCC results [10] were found to be in good agreement with
experiments [11,12] for the double to single cross-section ratio.

In this article, we use the TDCC method to calculate the
single ionization in C6+ + He collisions at 100 MeV/amu
to compare with the pioneering experiments of Schulz et al.
[13], which measured differential cross sections in electron
energy, electron angle, and projectile angle. We first apply
a TDCC method based on an expansion of a one-electron
three-dimensional (3D) wave function in the field of He+ to
calculate electron energy and angle differential cross sections
for single ionization at various projectile impact parameters.
We then apply a TDCC method based on an expansion of a

two-electron six-dimensional (6D) wave function in the field
of He2+ to check our TDCC-3D single-ionization differential
cross-section results. Finally, we use the TDCC-6D method to
calculate electron energy and angle differential cross sections
for double ionization at a relatively large projectile impact
parameter to guide future C6+ + He collision experiments.

In the experiments of Schulz et al. [13], the “perturbation”
of the incoming projectile, related to the projectile charge
over the projectile velocity, is small and in such a perturbative
regime one expects that a first Born approximation should
be reasonable for all single-ionization cross sections. This
was found to be the case for the differential cross sections
in the coplanar geometry, where theory and experiment are in
very good agreement [14], but not for the perpendicular plane
geometry. In the perpendicular plane, differential cross-section
measurements found a double-hump structure, whereas first
Born and distorted-wave treatments found an almost flat
isotropic distribution. These findings initiated many sets of
theoretical studies. For example, later studies [15] showed that
an improved treatment of the electron-ion interactions had little
effect on the distorted-wave calculations, and it was shown that
the agreement between experiment and theory grew steadily
worse as one moves from the coplanar to the perpendicular
plane. A very recent study using an impact-parameter coupled-
pseudostate approximation [16] reported similar results to
the earlier distorted-wave calculations, which is in good
agreement with measurement in the coplanar geometry but
poor agreement in the perpendicular plane. Other studies have
asserted that the disagreement in the perpendicular plane is due
to issues with the experimental resolution [17], although this
explanation has been refuted [18]. Alternative explanations
for the differences between experiment and theory in terms of
elastic scattering of the projectile by the He nucleus have also
been put forward [19].

The rest of the article is organized as follows. In Sec. II A we
present a TDCC-3D method for calculating fully differential
cross sections for the single ionization of atoms with one
active electron, in Sec. II B we present a TDCC-6D method
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for calculating fully differential cross sections for the single
and double ionization of atoms with two active electrons,
and in Sec. II C we review the relation between projectile
impact parameter and projectile scattering angle. In Sec. III
we apply the TDCC-3D and TDCC-6D methods to calculate
fully differential cross sections for single and double ionization
in C6+ + He collisions at 100.0 MeV/amu to compare with
experiment. In Sec. IV, we conclude with a summary and an
outlook for future work. Unless otherwise stated, all quantities
are given in atomic units.

II. THEORY

A. 3D time-dependent close-coupling method

For single ionization in fast bare ion collisions with
atoms with one active electron, we solve the time-dependent
Schrödinger equation,

i
∂�(�r,t)

∂t
= Hsystem�(�r,t), (1)

where the nonrelativistic Hamiltonian is given by

Hsystem = −1

2
∇2 − Zt

r
+ V (r) − Zp

|�r − �R(t)| , (2)

where Zt is the target atomic number, V (r) is a Hartree-local
exchange potential for the atomic core, and Zp is the projectile
atomic number. For straight-line motion in the target frame
of reference, which ignores the projectile-target interaction,
the magnitude of the time-dependent projectile position is
given by

R(t) =
√

b2 + (d0 + vt)2, (3)

where b is an impact parameter, d0 is a starting distance, and
v is the projectile speed.

If we expand �(�r,t) in spherical harmonics,

�(�r,t) =
∑
l,m

Plm(r,t)

r
Ylm(θ,φ), (4)

the resulting close-coupled equations for the Plm(r,t) radial
expansion functions are given by

i
∂Plm(r,t)

∂t
= Tl(r)Plm(r,t) +

∑
l′,m′

Wlm,l′m′(r,R(t))Pl′m′(r,t),

(5)

where

Tl(r) = −1

2

∂2

∂r2
+ l(l + 1)

2r2
− Zt

r
+ Vl(r). (6)

The electron-projectile coupling operator is given by

Wlm,l′m′(r,R(t))

= −Zp

∑
λ

(r,R(t))λ
<

(r,R(t))λ+1
>

∑
q

Cλ∗
q (θp,φp)(−1)m

×
√

(2l + 1)(2l′ + 1)

(
l λ l′
0 0 0

) (
l λ l′

−m q m′

)
, (7)

where λ,q are multipole expansion coefficients. For projectile
motion in the xz plane with d0 along the z axis, the spherical
tensor is given by

Cλ
q (θp,φp) =

√
4π

2λ + 1
Yλq(θp,0), (8)

where sin θp = b/R(t) and cos θp = (d0 + vt)/R(t).
The initial condition for the solution of the TDCC-3D

equations for single ionization of the ground state of He is
given by

Plm(r,t = 0) = P1s(r)δl,0δm,0, (9)

where P1s(r) is a bound radial orbital obtained by diagonal-
ization of the Hamiltonian:

H (r) = −1

2

∂2

∂r2
− 2

r
+ Vl(r). (10)

Following the time propagation of the TDCC-3D equations,
momentum-space wave functions at various impact parameters
are calculated by

Plm(b,k) =
∫ ∞

0
drPkl(r)P̄lm(r,t → ∞), (11)

where

P̄lm(r,t → ∞) = Plm(r,t → ∞) − αP1s(r)δl,0δm,0, (12)

α =
∫ ∞

0
drP1s(r)P00(r,t → ∞), (13)

and Pkl(r) is a box normalized continuum distorted-wave. The
fully differential cross section for the single ionization of the
ground state of He is given by

d4σ

db dk dθ dφ
= 2

∣∣∣∣∣
∑
l,m

(−i)lei(σl+δl )Plm(b,k)Ylm(θ,φ)

∣∣∣∣∣
2

, (14)

where the factor of 2 is the occupation number of the 1s

subshell, σl is a Coulomb phase shift, and δl is a distorted-wave
phase shift due to the Vl(r) potential. The total cross section
is obtained by integration over electron scattering solid angle,
electron momentum, and projectile impact parameter given by

σ = 2π

∫ ∞

0
b db

∫ ∞

0
dk

∫ π

0
sin θ dθ

∫ 2π

0
dφ

d4σ

db dk dθ dφ
.

(15)

As for all differential cross sections, the units are area divided
by the units of all the differential quantities. The differential
cross section of Eq. (14) has the units of area divided by length
squared for 2πb db times momentum for dk times solid angle
for sin θ dθ dφ. In addition, we multiply our differential cross
sections by 2.8 × 107 such that the total cross sections are in
barns (1.0 × 10−24 cm2).

B. 6D time-dependent close-coupling method

For single and double ionization in fast bare ion colli-
sions with atoms with two active electrons, we solve the
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time-dependent Schrödinger equation,

i
∂�(�r1,�r2,t)

∂t
= Hsystem�(�r1,�r2,t), (16)

where the nonrelativistic Hamiltonian is given by

Hsystem =
∑
i=1,2

(
−1

2
∇2

i − Zt

ri

+ V (ri)

)

+ 1

|�r1 − �r2| −
∑
i=1,2

Zp

|�ri − �R(t)| . (17)

If we expand �(�r1,�r2,t) in coupled spherical harmonics,

�(�r1,�r2,t) =
∑
l1,l2

P LM
l1l2

(r1,r2,t)

r1r2

∑
m1,m2

C
l1l2L
m1m2M

×Yl1m1 (θ1,φ1)Yl2m2 (θ2,φ2), (18)

the resulting close-coupled equations for the P LM
l1l2

(r1,r2,t)
radial expansion functions are given by [1]

i
∂P LM

l1l2
(r1,r2,t)

∂t

= Tl1l2 (r1,r2)P LM
l1l2

(r1,r2,t)

+
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1,r2)P LM

l′1l
′
2

(r1,r2,t)

+
∑
L′,M ′

∑
l′1,l

′
2

W
LM,L′M ′
l1l2,l

′
1l

′
2

(r1,R(t))P L′M ′
l′1l

′
2

(r1,r2,t)

+
∑
L′,M ′

∑
l′1,l

′
2

W
LM,L′M ′
l1l2,l

′
1l

′
2

(r2,R(t))P L′M ′
l′1l

′
2

(r1,r2,t), (19)

where

Tl1l2 (r1,r2) =
∑
i=1,2

(
−1

2

∂2

∂r2
i

+ li(li + 1)

2r2
i

− Zt

ri

+ Vli (ri)

)
.

(20)

The electron-electron coupling operator is given by

V L
l1l2,l

′
1l

′
2
(r1,r2)

= (−1)L+l2+l′2
√

(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
∑

λ

(r1,r2)λ<
(r1,r2)λ+1

>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

){
L l′2 l′1
λ l1 l2

}
.

(21)

The electron-projectile coupling operators are given by

W
LM,L′M ′
l1l2,l

′
1l

′
2

(r1,R(t))

= −Zpδl2,l
′
2
(−1)l2+L+L′−M

×
√

(2l1 +1)(2l′1 +1)(2L+1)(2L′ +1)

×
∑

λ

(−1)λ
(r1,R(t))λ

<

(r1,R(t))λ+1
>

(
l1 λ l′1
0 0 0

)

×
∑

q

Cλ∗
q (θp,φp)

(
L λ L′

−M q M ′

) {
l1 l2 L

L′ λ l′1

}
, (22)

and

W
LM,L′M ′
l1l2,l

′
1l

′
2

(r2,R(t))

= −Zpδl1,l
′
1
(−1)l1+l2+l′2−M

×
√

(2l2 +1)(2l′2 +1)(2L+1)(2L′ +1)

×
∑

λ

(−1)λ
(r2,R(t))λ

<

(r2,R(t))λ+1
>

(
l2 λ l′2
0 0 0

)

×
∑

q

Cλ∗
q (θp,φp)

(
L λ L′

−M q M ′

) {
l1 l2 L

λ L′ l′2

}
. (23)

The initial condition for the solution of the TDCC-6D
equations for single and double ionization of the ground state
of He is given by

P LM
l1l2

(r1,r2,t = 0) =
∑

l

P̂ 00
ll (r1,r2)δl1,lδl2,lδL,0δM,0, (24)

where the radial wave functions, P̂ 00
ll (r1,r2), are obtained

by relaxation of the TDCC-6D equations with no electron-
projectile coupling operators in imaginary time.

Following the time propagation of the TDCC-6D equations
in real time, single-ionization momentum-space wave func-
tions at various impact parameters are calculated by

P LM
0L (b,k)

=
∫ ∞

0
dr1

∫ ∞

0
dr2P1s(r1)PkL(r2)P̄ LM

0L (r1,r2,t → ∞),

(25)

where

P̄ LM
0L (r1,r2,t → ∞)

= P LM
0L (r1,r2,t → ∞) − βP̂ 00

00 (r1,r2)δL,0δM,0, (26)

β =
∑

l

∫ ∞

0
dr1

∫ ∞

0
dr2P̂

00
ll (r1,r2)P 00

ll (r1,r2,t → ∞),

(27)

and Pkl(r) is a box-normalized continuum Coulomb wave. The
fully differential cross section for the single ionization of the
ground state of He is given by

d4σ

db dkdθ dφ
= 2

∣∣∣∣∣
∑
L,M

(−i)LeiσLP LM
0L (b,k)YLM (θ,φ)

∣∣∣∣∣
2

, (28)

where the factor of 2 comes from only projecting onto
1skl products. The total cross section is again obtained
by integration over electron scattering solid angle, electron
momentum, and projectile impact parameter.

Following the time propagation of the TDCC-6D equations
in real time, double-ionization momentum-space wave func-
tions at various impact parameters are given by

P LM
l1l2

(b,k1,k2)

=
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1 (r1)Pk2l2 (r2)P̄ LM

l1l2
(r1,r2,t → ∞),

(29)
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where

P̄ LM
l1l2

(r1,r2,t → ∞)

= P LM
l1l2

(r1,r2,t → ∞) − βP̂ 00
ll (r1,r2)δl1,lδl2,lδL,0δM,0. (30)

The fully differential cross section for the double ionization of
the ground state of He is given by

d7σ

db dk1 dk2 dθ1 dθ2 dφ1 dφ2

=
∣∣∣∣∣
∑
l1,l2

∑
L,M

(−i)l1+l2ei(σl1 +σl2 )P LM
l1l2

(b,k1,k2)

×
∑

m1,m2

C
l1l2L
m1m2M

Yl1m1 (θ1,φ1)Yl2m2 (θ2,φ2)

∣∣∣∣∣
2

. (31)

The total cross section is obtained by integration over both
electron scattering solid angles, both electron momenta, and
projectile impact parameter.

C. Projectile scattering angle

From classical Rutherford scattering theory, a small-angle
collision between a projectile ion with charge Zp and a target
ion with charge Zt results in a total momentum transfer to the
projectile given by

�p = 2ZpZt

vb
, (32)

where v is the projectile speed and b is the impact parameter.
A collision between a projectile ion with charge Zp and a
target atom with nuclear charge Zt results in a total momentum
transfer to the projectile given by

�p = Zp

∫ ∞

0
dt

Q(t)b

R(t)3
, (33)

where Q(t) is a time-dependent average charge. Using the
one-electron radial wave functions, Plm(r,t), from a TDCC-3D
calculation for He, the average charge is given by

Q(t) = Zt − 2.0
∑
l,m

∫ R(t)

0
dr|Plm(r,t)|2, (34)

where Zt = 2.0. Since Q(t) is calculated using all lm scatter-
ing channels it includes all elastic and inelastic processes. For
a specific inelastic process, the range of momentum transfer
to the projectile is approximately given by

�p = 2Zp(Zt − 1)

vb
± k̂, (35)

where k̂ is the momentum transferred to the electron by the
projectile. Finally, the projectile scattering angle is given by

� = �p

Mv
, (36)

where M is the projectile mass.

III. RESULTS

We first use the TDCC-3D method to calculate
single-ionization cross sections in C6+ + He collisions at
100 MeV/amu. We begin by diagonalizing the radial

Hamiltonian of Eq. (10), where our choice for the Hartree-local
exchange potential is given by

Vl(r) = J 0
1s(r) − cl

2

(
24ρ1s

π

) 1
3

, (37)

where J κ
nl(r) is the direct potential, ρnl is the probability den-

sity, and the 1s core wave function is the hydrogenic solution
for He+. On a 384-point uniform radial coordinate mesh with
�r = 0.10, a coefficient of c0 = 0.21 gives a binding energy
of −24.6 eV in agreement with experiment [20]. The P1s(r)
bound orbital from the diagonalization is used in the initial
condition of Eq. (9). Continuum orbitals are obtained by direct
integration of the radial Schrödinger equation given by

H (r)Pkl(r) = εPkl(r) (38)

for 300 box-normalized functions with a uniform spacing
of �k = 0.05 to span an electron energy, ε = k2

2 , up to
3 keV. The Pkl(r) continuum orbitals are used to obtain
momentum-space wave functions in Eq. (11).

The TDCC-3D cross-section results are obtained by time
propagating Eq. (5) from d0 = −50 to dfinal = +421 at 30
different impact parameters. All 30 calculations used 16 lm

close-coupled channels. The total cross section was found to
be 1.49 × 10−17 cm2, in reasonable agreement with a first Born
approximation result of 1.29 × 10−17 cm2 and a distorted-
wave result of 1.44 × 10−17 cm2 [14].

A principal finding of this article is that the differential
cross section for single ionization in C6+ + He collisions at
100 MeV/amu dramatically evolves as a function of projectile
impact parameter. The weighted differential cross section b dσ

db

increases to a peak at b = 1.0 and then tails off at higher impact
parameters. As shown in Fig. 1, the shape of the φ = 0 in plane
differential cross section changes rapidly until about b = 1.0,
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FIG. 1. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an ejected-electron energy of ε = 6.67 eV, φ = 0,
and θ = 0–360. Solid curve, TDCC-3D calculation at b = 0.5; dotted
curve, TDCC-3D calculation at b = 1.0; dashed curve, TDCC-3D
calculation at b = 2.0; dot-dashed curve, TDCC-3D calculation
at b = 4.0 (m.a.u. = modified atomic units equal to 2.8 × 107

times atomic units such that the total cross section is in units of
1.0 × 10−24 cm2).
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FIG. 2. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an ejected electron energy of ε = 6.67 eV, φ = 90,
and θ = 0–360. Solid curve, TDCC-3D calculation at b = 0.5; dotted
curve, TDCC-3D calculation at b = 1.0; dashed curve, TDCC-3D
calculation at b = 2.0; dot-dashed curve, TDCC-3D calculation
at b = 4.0 (m.a.u. = modified atomic units equal to 2.8 × 107

times atomic units such that the total cross section is in units of
1.0 × 10−24 cm2).

then settles down into a double-peaked structure at θ = 90
and θ = 270 whose angle-integrated magnitude tails off at
higher impact parameters. As shown in Fig. 2, the shape of the
φ = 90 out of plane differential cross section changes rapidly
until about b = 2.0, then settles into a double-peaked structure
at θ = 90 and θ = 270 whose angle-integrated magnitude is
now quite small.

The differential cross section of Eq. (14) at b = 0.10 and
ε = 6.67 eV is shown as the dashed curve in Figs. 3 and 4
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FIG. 3. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 0.10, an ejected electron
energy of ε = 6.67 eV, φ = 0, and θ = 0–360. Dashed curve,
TDCC-3D calculation; solid curve, TDCC-6D calculation (m.a.u. =
modified atomic units equal to 2.8 × 107 times atomic units such that
the total cross section is in units of 1.0 × 10−24 cm2).
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FIG. 4. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 0.10, an ejected electron
energy of ε = 6.67 eV, φ = 90, and θ = 0–360. Dashed curve,
TDCC-3D calculation; solid curve, TDCC-6D calculation (m.a.u. =
modified atomic units equal to 2.8 × 107 times atomic units such that
the total cross section is in units of 1.0 × 10−24 cm2).

for φ = 0 and φ = 90, respectively. For projectile motion in
the xz plane as given by Eq. (8), φ = 0 is the xz plane (in
plane) and φ = 90 is the yz plane (out of plane). Both figures
have large peaks for θ = 0 and θ = 180 along the direction
of the projectile motion. Since the mean electron radius of
the He atom is 〈r〉 = 0.93, a projectile at b = 0.10 penetrates
deep enough to feel a bare ion total momentum transfer of
�p = 4.0 given by Eq. (32). For impact parameters inside the
atom cloud, electrons are ejected forward and backward in
regard to the projectile motion.

The differential cross section of Eq. (14) at b = 2.4 and ε =
6.67 eV is shown as the dashed curve in Figs. 5 and 6 for φ = 0
and φ = 90, respectively. Both figures have large peaks for θ =
90 and θ = 270 along the direction of the projectile momentum
transfer to the atom. We note that we use a spherical polar angle
for θ , which is opposite in direction to the polar coordinate used
in experiment [13]. Since the projectile at b = 2.4 is outside the
atom cloud, it feels a much reduced total momentum transfer of
�p < 0.01 given by Eq. (33). For impact parameters outside
the atom cloud, electrons are ejected forward and backward
in regard to the projectile momentum transfer to the atom. We
note that for large impact parameters that the cross-section
peaks for φ = 0 in plane are an order of magnitude larger than
the cross-section peaks for φ = 90 out of plane.

We next use the TDCC-6D method to calculate single-
and double-ionization cross sections in C6+ + He collisions
at 100 MeV/amu. On a 384 × 384-point uniform radial
coordinate mesh with �r1 = �r2 = 0.10, relaxation of the
TDCC-6D equations with no electron-projectile operators
yields a total energy of −78.2 eV in reasonable agreement
with experiment [20]. The P̂ 00

ll (r1,r2) radial wave functions
obtained by relaxation are used in the initial condition of
Eq. (24). After setting Vl(r) = 0 in Eq. (10), bound orbitals
are obtained by diagonalizing the radial Hamiltonian, and
continuum orbitals are obtained by direct integration of the
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FIG. 5. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 2.40, an ejected electron
energy of ε = 6.67 eV, φ = 0, and θ = 0–360. Dashed curve, TDCC-
3D calculation; solid curve, TDCC-6D calculation; solid circles,
in-plane experiment scaled to theory (m.a.u. = modified atomic units
equal to 2.8 × 107 times atomic units such that the total cross section
is in units of 1.0 × 10−24cm2).

radial Schrödinger equation for 300 box-normalized functions
with a uniform spacing of �k = 0.05. The bound and
continuum orbitals are used to obtain momentum-space wave
functions in Eqs. (25) and (29).

The TDCC-6D cross-section results are obtained by time
propagating Eq. (19) from d0 = −50 to dfinal = +421 at two
different impact parameters. Both calculations used 34 l1l2LM

close-coupled channels. The differential cross sections of
Eq. (28) for single ionization at b = 0.10 and ε = 6.67 eV
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FIG. 6. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 2.40, an ejected electron
energy of ε = 6.67 eV, φ = 90, and θ = 0–360. Dashed curve,
TDCC-3D calculation; solid curve, TDCC-6D calculation; solid
circles, out-of-plane experiment scaled to theory (m.a.u. = modified
atomic units equal to 2.8 × 107 times atomic units such that the total
cross section is in units of 1.0 × 10−24 cm2).

are shown as the solid curve in Figs. 3 and 4. Differential cross
sections at b = 2.4 and ε = 6.67 eV are also shown as the
solid curves in Figs. 5 and 6. The overall agreement between
the TDCC-3D and TDCC-6D calculations for the single
ionization differential cross sections is found to be reasonable
for the general features, confirming our use of the much less
computational-intensive TDCC-3D method for general trends.

We next compare our TDCC results with experiment [13].
Experimental single-ionization differential cross sections for
C6+ + He collisions at 100 MeV/amu are reported at �p =
0.75 and ε = 6.5 eV for both φ = 0 in plane and φ = 90 out
of plane. Since projectile momentum is proportional to impact
parameter, scaled experimental differential cross sections in
projectile momentum transfer and electron emission energy
and solid angle are proportional to theoretical differential cross
sections in impact parameter and electron emission energy and
solid angle. A projectile momentum transfer of �p = 0.75
yields a range of impact parameters for a process involving
target ionization of b = 0.2 to b = 3.5 from Eq. (35), since
there is a range of momentum transferred to the electron
by the projectile which yields the specific ejected electron
momentum and energy. Choosing an impact parameter near the
middle of the range, the TDCC calculations for the differential
cross section at b = 2.4, ε = 6.67 eV, and φ = 0 in plane are
in reasonable agreement with the nonabsolute experimental
results scaled to theory as shown in Fig. 5. In addition, the
TDCC calculations for the differential cross section at b = 2.4,
ε = 6.67 eV, and φ = 90 out of plane are also in reasonable
agreement with the experimental results scaled to theory in
Fig. 6. However, if we use the same scaling factor between
theory and experiment as found in the in-plane case of Fig. 5,
the out-of-plane experimental results are a factor of 3 higher
than theory, as shown in Fig. 7. In other words, theory predicts a
much larger drop in the integrated magnitude of the differential
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FIG. 7. (Color online) The differential cross section for sin-
gle ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 2.40, an ejected electron
energy of ε = 6.67 eV, φ = 90, and θ = 0–360. Dashed curve,
TDCC-3D calculation; solid curve, TDCC-6D calculation; solid
circles, out-of-plane experiment scaled to theory multiplied by 3.0
(m.a.u. = modified atomic units equal to 2.8 × 107 times atomic
units such that the total cross section is in units of 1.0 × 10−24 cm2).
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FIG. 8. (Color online) The differential cross section for dou-
ble ionization in C6+ + He collisions at a projectile energy of
100 MeV/amu, an impact parameter of b = 2.40, ejected electron
energies of ε1 = ε2 = 6.67 eV, φ1 = φ2 = 0, θ1 = 180, and θ2 = 0–
360. Dashed curve, TDCC-6D (34 channel) calculation; solid curve,
TDCC-6D (101 channel) calculation (m.a.u. = modified atomic units
equal to 2.8 × 107 times atomic units such that the total cross section
is in units of 1.0 × 10−24 cm2).

cross section than experiment in going from the in-plane to
out-of-plane geometry. This may be partly explained by the
finite experimental resolution of the electron energies and
momenta. Convoluting over the experimental uncertainties
may increase the calculated cross section in this plane. We
note that our comparisons are qualitatively similar to previous
semiclassical calculations [21].

Finally, we present TDCC-6D results for the double ioniza-
tion in C6+ + He collisions at 100 MeV/amu. The differential
cross sections of Eq. (31) for double ionization at b = 2.4, ε1 =
ε2 = 6.67 eV, φ1 = φ2 = 0, and θ1 = 180 are shown in Fig. 8.
Calculations using both 34 l1l2LM coupled channels and 101
l1l2LM coupled channels find cross-section minimums for the
equal-energy ejected electrons when θ1 = θ2 = 180 and when
they are emitted back to back at θ1 = 180 and θ2 = 0. Although
we find no differences in the single-ionization differential cross
sections when using 34 or 101 coupled channels, there are
sizable differences in the double-ionization differential cross-
section peak heights. As found in the past for photon-impact
and electron-impact ionization of atoms, the differential cross
sections for two ejected electrons are relatively small and need
a large number of coupled channels to converge on the lattice.
Additional coupled channels will continue to lower the cross
sections at θ = 0 and θ = 180, but the height of the peaks near
θ = 30 and θ = 300 should not change that much.

IV. SUMMARY

In this article we have shown how the TDCC approach may
be used to calculate fully differential cross sections in ejected
electron energy and angle for single ionization of He by fast
projectile impact. We have described two formulations of the
TDCC approach, a 3D treatment of one active electron inter-
acting with the projectile and a 6D treatment of two active elec-
trons interacting with the projectile. Our 6D approach can also
be straightforwardly extended to calculate the differential cross
sections that arise from ion-impact double ionization of He.

For the single ionization of He by C6+ ions at
100 MeV/amu, the TDCC results are compared with
experiment [13]. We find that for projectile-impact parameters
outside the He atom charge cloud (b > 2.0) the TDCC results
are in good qualitative agreement with measurements. In
particular, we find an unequal “double-hump” shape for the
in-plane-geometry differential cross sections that is in good
qualitative agreement with experiment and other theories. We
also find an equal double-hump shape for the out-of-plane-
geometry differential cross sections that is in good qualitative
agreement with experiment. However, like other theories, the
TDCC results for the out-of-plane geometry case are much
smaller than experiment using the original in-plane scaling
factor.

In the future, we plan to develop a Fourier transform method
to extract fully differential cross sections from the TDCC
final time wave functions for single ionization in C6+ + He
collisions at 100 MeV/amu. The Fourier transform method
will make more precise the relative weight of the individual
impact-parameter-dependent differential cross sections for a
given momentum transfer to the projectile. We note that
the Fourier transform method also includes an additional
projectile-target ion phase factor [22]. We then plan to look at
other fast ion collisions with He using different projectile ions
and collision energies.
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