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Spectral linewidth broadening in Rydberg gases, a phenomenon previously attributed to the many-body
effect, was observed experimentally almost a decade ago. The observed linewidth was typically 80–100 times
larger than the average interaction strength predicted from a binary interaction. The interpretation of such a
phenomenon is usually based on the so-called diffusion model, where the linewidth broadening mostly origi-
nates from the diffusion of excitations. We present a model calculation to show that diffusion is not the main
mechanism of the linewidth broadening. We find that the rare pair fluctuation at small separation is the
dominant factor contributing to this broadening. Our results give a width of about 20–30 times larger than the
average interaction strength. More importantly, by turning off the diffusion process, we do not observe an
order-of-magnitude change in the spectral linewidth.
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Rydberg gases have attracted renewed interest in recent
years due to the unprecedented advancement in laser cooling
and trapping �1–9�. Rydberg atoms, possessing a large dipole
moment and long lifetime, can interact with each other co-
herently for relatively long times, which make them a
potential candidate for quantum information processing
�10,11�. There have been many experiments exploring the
quantum many-body effects in Rydberg gases—e.g., spectral
linewidth broadening �1–3�, number correlation �6,12,13�,
and collective excitation �8�. Many experimental results can
be understood from the well-known dipole blockade effect:
when two Rydberg atoms are close enough, the dipolar inter-
action will shift them out of resonance with the external driv-
ing laser; thus, double excitation is greatly suppressed.

In this paper, we are interested in the unusual linewidth
broadening which was observed in experiments �1,2�. To be
specific, we will consider the following two cases. �I� The
main process is �np�+ �np�↔ �ns�+ ��n+1�s� for experiment
�1�, where the principal quantum number n is 23 and the
maximal gas density is around 1010 cm−3. np, ns, and
�n+1�s are abbreviated as p, s, and s�, respectively. �II� The
main process is ��n+1�s�+ �n�s�↔ �np�+ ��n�+1�p� for ex-
periment �2�, where the principal quantum numbers n and n�
are 24 and 33, respectively, and the maximal gas density is
around 109 cm−3 for each of the s states. �n+1�s, n�s, np,
and �n�+1�p are abbreviated as s, s�, p, and p�, respectively.
For both cases, they express the creation process; e.g., in
case �I�, one atom makes a downward transition from the
Rydberg state �p� to �s�, and the other atom makes an upward
transition from �s�� to �p�—that is to say, creating ss� from a
pp pair. The detuning between �pp� and �ss�� is controlled by
a static electric field, and the transition is allowed with domi-
nant dipole moments �ps and �ps�. Here ��� denotes the
transition dipole moment between states ��� and ���. Similar
notations will apply to case �II�. In addition to the above
creation processes, there also exist the exchange process—
e.g., �p�+ �s�↔ �s�+ �p�. Different from the creation process,
the exchange process is always resonant and it describes the
hopping of excitation in the whole gas. For this reason, we
will also call it a diffusion process.

A rough estimate from the binary interaction will give a
linewidth of the order of the average interaction strength,

V̄1=�ps�ps�n or V̄2=�ps�p�s�n for the two cases, respec-
tively, with n the average density of the gas. However, the

experimentally observed linewidths are typically �100V̄1 for

the first case and are �80V̄2 for the second case. Previous
explanations are based on a diffusion model, where resonant
processes like �p�+ �s�↔ �s�+ �p� form a diffusion band and
play a dominant role in the broadening. In this model, even
at large detuning, there are still some pairs of atoms close
enough to perform the creation process. Because the hopping
of excitation can happen in the whole gas, the diffusion
evacuates the excitations so that each pair of close atoms can
react several times, analogous to autocatalytic processes in
chemistry. As pointed out in Ref. �1�, the band formed by the
diffusion of �ss�� is coupled to the state �ss�� and the exis-
tence of this band broadens this population transfer �1,14�,
which shows that the broadening should be a result of the
many-body effect. However, we believe that it is mostly a
two-body effect arising from the density fluctuation, as we
will show below by simple theoretical reasoning and numeri-
cal simulations.

To better understand the diffusion process, we consider a
toy model for the process �s�+ �p�↔ �p�+ �s�. The Hamil-
tonian is

H = �
j,k

Vdip�r� j − r�k� , �1�

which is purely a diffusion process under the dipolar inter-
action

Vdip�r�� = cd
1 − 3 cos2 �

r3 . �2�

r�=r�1−r�2, cos �= ẑ · r̂, and cd=�sp
2 . The energy scale is chosen

to be V̄=�sp
2 n, the inverse of which sets up the time scale. To

ease our discussion, we consider only one s atom and a
bunch of p atoms with zero magnetic moment—i.e., mag-
netic quantum number m=0. In Fig. 1, we show the prob-
ability of finding an s state on the initial s atom as a function
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of time—i.e., P= �	��t� ���t=0���2, where ���t�� is the many-
body wave function at time t. We can see that the probability
decays smoothly and saturates to a finite value. At t�0.2,
there is about a 50% chance that the s state has drifted away.
So the characteristic time of diffusion is on the order of
1 /10. In addition, we show the histogram of the eigenenergy
in the inset of Fig. 1 by directly diagonalizing the Hamil-
tonian �1�. We find that the width of this diffusion band is
roughly 5, corresponding to 1 / t. This poses questions on the
original explanation of the band diffusion model. Since for

large detuning—e.g., �=40V̄1—in order to make a non-
negligible transfer from pp to ss�, the interaction strength
between them should be of the same order as �. In this case,
pp and ss� should be split by an amount of ��. That is to
say, the manifold of pp and ss� will be in a large detuning to
the band. Thus, the state ss� with a large detuning from the
band will not decay into it. Therefore, the explanation of
broadening from this diffusion band model is questionable.

We investigate the linewidth problem of cases �I� and �II�
by direct numerical simulations. To do this, we randomly put
several atoms in a cubic box and assume each atomic state
�p� or �p�� has no magnetic moment. The numerical schemes
are as follows. We first calculate the full dynamics with a
given detuning for each spatial configuration of atoms with a
fixed evolution time. We then average over spatial configu-
rations to obtain the excitation probability as a function of
detuning from which we can extract the linewidth. In order
to minimize the finite-size effect, we adopt wrap boundary
conditions.

We first focus on case �I� and discuss case �II� subse-
quently. The energy and time scale are the same as those in
the toy model. In case �I�, each atom can be in the state p, s,
or s�. The Hamiltonian is found to be

H = �
jk

�Vjke
−i�t�pjpk�	sjsk�� + Vjk� �pjsk�	sjpk� + Vjk� �pjsk��	sj�pk��

+ H.c.,

describing the processes

p + p → s + s�, �3�

p + s → s + p , �4�

p + s� → s� + p , �5�

where process �3� is not always resonant and its detuning �
is controlled by an electric field, while processes �4� and �5�
are always resonant. Vjk, Vjk� , and Vjk� all take the form of
Vdip�r� j −r�k� with corresponding cd=�sp�sp�, �sp

2 , and �sp�
2 for

processes �3�–�5�, respectively. Initially all of the atoms are
in the state p, and they evolve under the dipolar interaction
for a fixed time T. We are interested in the yield of the s atom
�fs� as a function of detuning, from which we can extract the
linewidth.

We perform calculations with up to N=10 atoms and av-
erage over the initially random atom positions many times.
Under wrap boundary conditions, our results already show
convergent behavior for N=8 atoms. Extrapolation to N=�
will give about a 15% difference from that of N=10. As we
will see later, this difference is not crucial to our conclusion
as we are interested in the order-of-magnitude difference.
Our results are shown as solid lines in Fig. 2. For the marked
solid line, we include all three processes, while for the un-
marked solid line, we only consider process �3�; i.e., we ef-
fectively turn off the diffusion process. The extracted line-
widths are about 35 and 25 for the two cases, respectively.
This shows that process �3� already gives a width an order of
magnitude larger than the average interaction strength and
the diffusion process further broadens the linewidth by
roughly 50%. So the unusual linewidth broadening mostly
comes from process �3�.

In real experiments, the density is not uniform. Therefore,
we need to take into account the density profile of the atomic
cloud. We assume it as a Gaussian form with a width �, so
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FIG. 1. �Color online� The probability of finding an s state on
the initial s atom as a function of time. The inset shows the histo-
gram of the eigenenergy. The simulation is carried out with 256

atoms and over 1000 spatial configurations. Energy is in units of V̄

and time is in units of 1 / V̄ �see text�.
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FIG. 2. �Color online� fs and fs,G as a function of � for N=10
atoms averaged over 1000 spatial configurations. Results with
marked �unmarked� lines include �exclude� diffusion. Solid and
dash dotted lines are for the case of homogeneous and Gaussian
convolution, respectively. Parameters used: T=3.4, �=500,
�sp=1.02, and �sp�=0.98. The results are insensitive to �. � is in

units of V̄1 �see text�.
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the density is written as n�r�=2
2n̄e−r2/�2
, where n̄ is the

average density. Accordingly, the excitation fraction with a
Gaussian convolution �fs,G� is given by

fs,G =
�fs��/V̄ 	 V̄/V�r��n�r�r2dr

�n�r�r2dr

=
�fs��/V̄ 	 er2/�2

/2
2�e−r2/�2
r2dr

�e−r2/�2
r2dr

. �6�

Here we assume that the density varies slowly on the length
scale we considered. The results for N=10 atoms are shown
as the dash-dotted lines in Fig. 2. The marked dash-dotted
line is the result including all three processes, while the un-
marked dash-dotted line is the result only including process
�3�. The extracted linewidth with diffusion is about 30, which
is a few times smaller than the results in Ref. �1�. The one
extracted from the calculation without diffusion is about 20,
again demonstrating that diffusion is not the main mecha-
nism in the broadening. We also note that the curves are not
perfectly symmetric around �=0 due to the anisotropy of the
dipolar interaction. However, this difference is too small to
be detected under current experimental conditions.

We further consider the motional effect on linewidth
broadening. To do this, we give a constant speed vs for each
atom, but with random direction. For vs=0.05, the atom
moves 0.1 �average distance� at the end of the simulation,
which is still in the so-called “frozen” gas regime. Our re-
sults give an additional broadening of about 20%, so the
motional effect is not important as expected.

Following similar procedures, we investigate case �II�.
Now each atom can be in the state s, s�, p, or p�. The Hamil-
tonian is found to be

H = �
jk

�Vjke
−i�t�pjpk��	sjsk�� + Vjk� �pjsk�	sjpk� + Vjk� �pj�sk��	sj�pk���

+ H.c.,

describing the processes

s + s� → p + p�, �7�

p + s → s + p , �8�

p� + s� → s� + p�, �9�

with a dipolar interaction. Our numerical results are shown
in Fig. 3. In this case, the width with �without� diffusion is
found to be about 20 �10�. Therefore, the diffusion does not
cause an order-of-magnitude change in the linewidth broad-
ening.

So what causes the broadening? It is nothing unusual, but
the rare pair fluctuation at small distances. To see this point,
we calculate P�����, which is the probability distribution of
nearest-neighboring atoms with absolute interaction strength
not larger than the absolute detuning �see Fig. 4�. P����� can
be found with the help of

P����� = �
0

��� dP��V� 
 �����
d����

d���� . �10�

In a homogeneous system, according to the Erlang distri-
bution �15�, the nearest pair distribution is �e−4�r3/3 with unit
density. Therefore, for an isotropic interaction Viso=1 /r3

with cd=1 �e.g., V̄=1�, we have

dP��Viso� 
 ����
d���

=
4�

3���2
e−4�/3���, �11�

while for the while dipolar interaction Vdip with cd=1

�e.g., V̄=1�, we have

dP��Vdip� 
 ����
d���

=
4�

3���2�0

1

dx�1 − 3x2�e−�4�/3�����1−3x2�.

�12�

As ���→ +�, the asymptotic behaviors are �4� /3����−2

and �16� /9
3����−2 for isotropic and dipolar interactions,
respectively. As ���→0+, they approach 0 and 
3 / �4�� for
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FIG. 3. �Color online� fp and fp,G as a function of � for
N=20 atoms averaged over 1000 spatial configurations. Results
with marked �unmarked� lines include �exclude� diffusion. Solid
and dash-dotted lines are for the case of homogeneous and Gaussian
convolution, respectively. Parameters used: T=0.36, �=500,
�sp=2, and �s�p�=0.5. The results are insensitive to �. The initial

populations of s and s� are the same. � is in units of V̄2 �see text�.
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FIG. 4. �Color online� P����� as a function of ���. Blue dashed
lines are for the isotropic interaction, and red solid lines are for the

anisotropic interaction. � is in units of V̄ �see text�.
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isotropic and dipolar interactions, respectively. The remark-
able difference at ���→0+ is a signature of the dipolar inter-
action.

For ���=40, the probability of nearest atom pairs that
have an interaction energy larger than ��� is about 10%; i.e.,
those atom pairs will have a non-negligible contribution to
the dynamics. The calculated fs of case �I� at this detuning is
about 8%, close to the estimated value. Therefore, the rare
pair fluctuation is the main cause of the linewidth broadening
and the diffusion of excitation further increases this broad-
ening by roughly 50%.

For case �II�, we can also compute the linewidth �w�
for different ratios of s and s�—i.e., w as a function of
�n1−n2� / �n1+n2�, where n1 �n2� is the density of s �s��
atoms. Our numerical results are shown in Fig. 5. The largest
error in our simulation still comes from the finite atom effect,
which has been discussed for Figs. 2 and 3. This error does
not change much as we vary the ratio of s and s� atoms.
Other errors are negligible. We find that w increases as 
increases and saturates at = �1. The increasing behavior of
w with  is due to the imbalanced hopping of s and s� atoms
��sp=4�s�p��. The increased ratio in s atoms will thus show
a stronger diffusion effect. However, this increase in the line-
width is again not an order-of-magnitude change.

To conclude, we have reexamined the important role that
pair fluctuations play in the spectral linewidth broadening of
a frozen Rydberg gas. From direct numerical simulations, we
find that density fluctuations contribute to a width of roughly
20–30 times the average interaction strength. In addition, by
turning off the diffusion process, we did not find an order-

of-magnitude change in the linewidth. Therefore, the large
linewidth is primarily due to density fluctuations, and the
diffusion process is not overwhelmingly dominant as previ-
ously suggested. However, our numerical results are only in
qualitative agreement with experimental results. The even
larger linewidth observed in both cases and the double-peak
structure as observed in �I� cannot be explained from current
calculations, which encourages further investigations.
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3 except for different ratio of s and s� atoms.

B. SUN AND F. ROBICHEAUX PHYSICAL REVIEW A 78, 040701�R� �2008�

RAPID COMMUNICATIONS

040701-4


