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A configuration-average distorted-wave method is developed to calculate electron-impact excitation and
ionization cross sections for diatomic molecules and their ions. The method is based on the construction of
bound and continuum orbitals on a two-dimensional numerical lattice in �r ,�� center-of-mass polar coordi-
nates. Our first applications are the calculation of 1s�→2p� and 1s�→2p� excitation cross sections and
1s�→�l� ionization cross sections for H2

+. Comparisons are made with plane-wave Born, distorted-wave, and
R-matrix calculations, as well as experimental measurements.
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I. INTRODUCTION

Electron collisions with molecules and their ions are im-
portant in many different areas of physics and chemistry,
with a number of applications, including global climate stud-
ies, infrared and visible astrophysics, and studies of radiation
damage to biological systems. In particular, resonance elec-
tron collisions with H2, HD, and D2 are important in under-
standing divertor plasma dynamics in controlled fusion ex-
periments �1�. Over the years many theoretical and
computational methods have been developed to treat
electron-molecule collisions �2�. For example, in the last
year the R-matrix approach for electron-molecule scattering
has been extended to include continuum pseudostates �3� and
finite elements �4�. The molecular time-dependent close-
coupling method for double photoionization �5� is currently
being extended to include electron-molecule collision pro-
cesses. For these computationally intensive nonperturbative
methods, it is important to also develop perturbative
distorted-wave methods, so that a smooth transition can be
made from low to high angular momenta and from low to
high incident electron energies.

The semirelativistic configuration-average distorted-wave
method �6� was originally developed to calculate electron-
impact excitation, ionization, and recombination cross sec-
tions for complex atoms. In recent years, the configuration-
average distorted-wave predictions for direct and indirect
ionization cross sections along isonuclear sequences in heavy
atoms have been found to be reasonably accurate when com-
pared to crossed-beam experimental measurements �7–10�. A
fully relativistic configuration-average distorted-wave
method �11,12� was also developed to calculate electron-
impact excitation and ionization cross sections for highly
charged atomic ions. In general, the configuration-average
distorted-wave method provides a rapid means of obtaining a
fairly accurate estimate of electron-atom scattering cross sec-

tions and, as such, acts as a guide for more computationally
demanding level-resolved perturbative distorted-wave and
nonperturbative R-matrix calculations.

In this paper we develop a configuration-average
distorted-wave method to calculate electron-impact excita-
tion and ionization cross sections for diatomic molecules and
their ions. As such, it will act as a guide in the application of
the molecular time-dependent close-coupling method �5� to
electron-molecule scattering. The distorted-wave method is
based on the construction of bound and continuum orbitals
on a two-dimensional numerical lattice in �r ,�� center-of-
mass polar coordinates. In particular, the continuum orbitals
are found by numerical solution of a elliptic partial differen-
tial equation, similar to the equation solved earlier in studies
of electron-impact elastic scattering from H2 �13� and the
photoionization of H2

+ and H2 �14,15�. As a first test case,
we apply the configuration-average distorted-wave method
to the calculation of excitation and ionization cross sections
for H2

+. The inelastic cross sections are compared with
atomic distorted-wave �6�, molecular plane-wave Born �16�,
molecular distorted-wave �17�, and molecular R-matrix �18�
calculations, as well as experimental measurements �19,20�.
Section II formulates the configuration-average distorted-
wave method for diatomic molecules, Sec. III presents exci-
tation and ionization cross section results for H2

+, and a brief
summary is given in Sec. IV. Unless otherwise stated, we
will use atomic units.

II. THEORY

A. Configuration-average excitation

The most general excitation transition between configura-
tions of a diatomic molecule is of the form
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�n1l1�1�w1+1�n2l2�2�w2−1�ili�i → �n1l1�1�w1�n2l2�2�w2� flf� f ,

�1�

where n is the principal quantum number, l is the angular
quantum number, �= �m� is the absolute value of the mag-
netic quantum number, w is the occupation number, �i
=ki

2 /2 is the incident electron energy, and � f =kf
2 /2 is the

final electron energy. The configuration-average excitation
cross section is given by

�exc =
32�

ki
3kf

�w1 + 1��S��2� + 1 − w2�
S��1�S��2�

� �
li

�
�i

�
lf

�Md�f2;i1� + Mx�2f ;i1� − Mc�f2/2f ;i1�� ,

�2�

where S���=2�2−��,0� is the total statistical weight of the
�nl�� orbital and the continuum normalization is chosen as
one times a sine function. The scattering terms M are defined
in Sec. II C.

B. Configuration-average ionization

The most general ionization transition between configura-
tions of a diatomic molecule is of the form

�n1l1�1�w1+1�ili�i → �n1l1�1�w1�ele�e� flf� f , �3�

where �e=ke
2 /2 is the ejected electron energy. The

configuration-average ionization cross section is given by

�ion = �
0

E/2

d�e
64

ki
3kekf

�w1 + 1�
S��1�

� �
li

�
�i

�
le

�
�e

�
lf

�Md�fe;i1� + Mx�ef ;1i�

− Mc�fe/ef ;1i�� , �4�

where the total energy E=�1+�i=�e+� f and the continuum
normalization is again chosen as one times a sine function.
The scattering terms M are defined in Sec. II C.

C. Scattering terms

The direct scattering term in Eq. �2� is given by

Md�f2;i1� = �
m1

�
m2

�
mi

�
k

�
k�

�k − q�!
�k + q�!

�k� − q��!
�k� + q��!

� Rkq�� flf� f,n2l2�2;�ili�i,n1l1�1�

�Rk�q��� flf� f,n2l2�2;�ili�i,n1l1�1� , �5�

where q= �m2−m1��k and q�= �m2−m1��k�. The exchange
scattering term in Eq. �2� is given by

Mx�2f ;i1� = �
m1

�
m2

�
mi

�
k

�
k�

�k − q�!
�k + q�!

�k� − q��!
�k� + q��!

� Rkq�n2l2�2,� flf� f ;�ili�i,n1l1�1�

�Rk�q��n2l2�2,� flf� f ;�ili�i,n1l1�1� , �6�

where q= �mi−m2��k and q�= �mi−m2��k�. The cross-
scattering term in Eq. �2� is given by

Mc�f2/2f ;i1� = �
m1

�
m2

�
mi

�
k

�
k�

�k − q�!
�k + q�!

�k� − q��!
�k� + q��!

� Rkq�� flf� f,n2l2�2;�ili�i,n1l1�1�

�Rk�q��n2l2�2,� flf� f ;�ili�i,n1l1�1� , �7�

where q= �m2−m1��k and q�= �mi−m2��k�. In all three
scattering terms � f = �mi+m1−m2�� lf and the �r ,�� polar co-
ordinate integral is given by

Rkq�f2;i1� = �
0

	

dr1�
0

	

dr2
r


k

r�
k+1�

0

�

d�1�
0

�

d�2Pq
k�cos �1�

�Pq
k�cos �2�u�flf�f

�r1,�1�un2l2�2
�r2,�2�

�u�ili�i
�r1,�1�un1l1�1

�r2,�2� , �8�

where Pq
k�cos �� are associated Legendre functions, unl��r ,��

are bound reduced orbitals, and u�l��r ,�� are continuum re-
duced orbitals. The direct, exchange, and cross-scattering
terms in Eq. �4� are also given by Eqs. �5�–�8�, following the
substitution of n2l2�2→�ele�e.

D. Bound and continuum orbitals

The spatial part of the single-particle wave function for
each bound and continuum orbital is given by

��r,�,
� =
u�r,��
r�sin�

eim


�2�
. �9�

The reduced orbital u�r ,�� is represented on a uniform mesh
in both r and �. The bound reduced orbitals may be gener-
ated by available numerical Hartree-Fock programs for di-
atomic molecules �21�, with conversion to the uniform mesh
in �r ,�� center-of-mass polar coordinates. The continuum re-
duced orbitals are found by solution of a variationally de-
rived �22� single-particle Schrödinger equation given by

�Ku�i,j + Vi,jui,j = �ui,j , �10�

where ui,j =u�ri ,� j� is the representation of the reduced or-
bital on the lattice. With low-order finite differences the ki-
netic energy operator is given by

�Ku�i,j = −
1

2

�ciui+1,j + ci−1ui−1,j − c̄iui,j�
�r2

−
1

2ri
2

�djui,j+1 + dj−1ui,j−1 − d̄jui,j�
��2 , �11�

where

ci =
ri+1/2

2

riri+1
,

c̄i =
�ri+1/2

2 + ri−1/2
2 �

ri
2 ,
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dj =
sin � j+1/2

�sin � j sin � j+1

,

d̄j =
�sin � j+1/2 + sin � j−1/2�

sin � j
. �12�

The potential energy operator may be separated into the
components

V = Vnuclear + Vcentrifugal + Vdirect + Vexchange. �13�

The static nuclear term is given by

Vnuclear�r,�� = −
Z1

�r2 + R1
2 − rR1 cos �

−
Z2

�r2 + R2
2 + rR2 cos �

,

�14�

where Z1 and Z2 are the nuclear atomic numbers and R
=R1+R2 is the internuclear separation. The centrifugal term
is given by

Vcentrifugal�r,�� =
m2

2r2 sin2 �
, �15�

while the direct Hartree term Vdirect�r ,�� and the local den-
sity exchange term Vexchange�r ,�� are constructed from previ-
ously calculated Hartree-Fock bound orbitals.

The discrete Schrödinger equation �10� may be cast as a
system of linear equations Au=b. The matrix A is block
tridiagonal and is solved by standard LU decomposition. The
large-r boundary condition is given by

u�l��rmax,�� = P�l�rmax��2� sin �Ylm��,
 = 0� , �16�

where rmax is such that �� �V�rmax ,��� for all � and Ylm�� ,
�
is a spherical harmonic. The reduced radial orbital in the
WKB approximation is given by

P�l�rmax� =� k

��rmax�
sin ��rmax� , �17�

where

��r� = kr −
l�

2
+

q

k
ln�2kr� + �l + �l,

��r� =
d��r�

dr
, �18�

q is the asymptotic charge, �l is the Coulomb phase shift,
and �l is a non-Coulomb phase shift. As rmax→	, P�l�rmax�
goes to one times a sine function. As warned by Tully and
Berry �13�, strong l mixing may occur for unfortunate
choices of rmax. Our safeguard procedure is to solve every
continuum orbital at a succession of different values of rmax,
until the solution has the correct number of �l−�� angular
nodes.

III. RESULTS

To test the molecular configuration-average distorted-
wave �CADW� method, we first calculated electron-impact

excitation cross sections for H2
+ at both R=0.0 and R=2.0.

Reduction of Eqs. �2� and �5�–�7� for the 1s�→2p� transi-
tion with �i=0 yields

�exc =
16�

ki
3kf

�
li

�
lf

�
k

�
k�

� �Rk0�� flf0,2p0;�ili0,1s0�Rk�0�� flf0,2p0;�ili0,1s0�

+ Rk0�2p0,� flf0;�ili0,1s0�Rk�0�2p0,� flf0;�ili0,1s0�

− Rk0�� flf0,2p0;�ili0,1s0�Rk�0�2p0,� flf0;�ili0,1s0�� ,

�19�

with similar expressions for �i�0. The reduction of the
same equations for the 1s�→2p� transition with �i=0
yields

�exc =
32�

ki
3kf

�
li

�
lf

�
k

�
k�

�k − 1�!
�k + 1�!

�k� − 1�!
�k� + 1�!

� �Rk1�� flf1,2p1;�ili0,1s0�Rk�1�� flf1,2p1;�1li0,1s0�

+ Rk1�2p1,� flf1;�ili0,1s0�Rk�1�2p1,� flf1;�ili0,1s0�

− Rk1�� flf1,2p0;�ili0,1s0�Rk�1�2p1,� flf1;�ili0,1s0�� ,

�20�

with similar expressions for �i�0. The 1s�, 2p�, and 2p�
bound orbitals for H2

+ at R=0.0 and R=2.0 are from the
classic tables of Bates et al. �23�, with conversion to the
uniform mesh in �r ,�� center-of-mass polar coordinates. The
�l� continuum orbitals are calculated using Eq. �10� with the
direct and exchange potentials of Eq. �13� set to zero—i.e.,
Coulomb partial waves.

The configuration-average distorted-wave calculations for
the excitation and ionization of H2

+ employed a �1000, 100�
lattice with the radial coordinate from 0.0→20.0 spanned by
a uniform mesh �r=0.02 and the polar coordinate from 0
→� spanned by a uniform mesh ��= �0.01��. The angular
and magnetic quantum numbers spanned li=0→10, �i=0
→4, and lf =0→10 for excitation and, in addition, le=0
→4 and �e=0→4 for ionization. For calculation at rela-
tively high incident electron energy, simple extrapolation
procedures are used to estimate cross sections for li�10 and
�i�4. A simple parallelization over both li and �i was em-
ployed for the running of the excitation code, while, in ad-
dition, a further parallelization over both le and �e was em-
ployed for the running of the ionization code.

Electron-impact excitation cross sections for H2
+ at R

=0.0 calculated using the molecular CADW method are pre-
sented in Fig. 1. The results for the 1s�→2p� transition are
shown as the connected squares, and the results for the
1s�→2p� transition are shown as the connected circles.
The sum of the cross sections for the two transitions is found
to be in good agreement with the electron-impact excitation
cross section for the 1s→2p transition in He+ calculated
using the atomic CADW method �6� with Coulomb waves,
shown in Fig. 1 as the solid curve.

Electron-impact excitation cross sections for H2
+ at

R=2.0 are presented in Figs. 2 and 3. The results for the
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1s�→2p� transition are again shown as the connected
squares, and the results for the 1s�→2p� transition are
again shown as the connected circles. The reversal of
strengths of the cross sections for the two transitions in going
from R=0.0 to R=2.0 is in keeping with previous molecular
plane-wave Born calculations �16�, shown in Figs. 2 and 3 as
the solid curves. Molecular R-matrix calculations �18� for the
transition 1s�→2p� are also shown in Fig. 2 as the con-
nected diamonds. In contrast to the molecular plane-wave
Born results, the molecular Coulomb-wave cross sections are
finite at the excitation threshold, in agreement with the mo-
lecular R-matrix results.

To further test the molecular configuration-average
distorted-wave method, we calculated electron-impact ion-
ization cross sections for H2

+ at R=0.0 and R=2.0. Reduc-
tion of Eqs. �4�–�7� for 1s� ionization with �i=0 and �e=0
yields

�ion = �
0

E/2

d�e
32

ki
3kekf

�
li

�
le

�
lf

�
k

�
k�

� �Rk0�� flf0,�ele0;�ili0,1s0�Rk�0�� flf0,�ele0;�ili0,1s0�

+ Rk0��ele0,� flf0;�ili0,1s0�Rk�0��ele0,� flf0;�ili0,1s0�

− Rk0�� flf0,�ele0;�ili0,1s0�Rk�0��ele0,� flf0;�ili0,1s0�� ,

�21�

with similar expressions for �i�0 and �e�0.
Electron-impact ionization cross sections for H2

+ at R
=0.0 calculated using the molecular CADW method are pre-
sented in Fig. 4. The results for the 1s� cross section are
shown as connected squares and are in very good agreement
with the electron-impact 1s ionization cross sections for He+

calculated using the atomic CADW method �6� with Cou-
lomb waves, shown in Fig. 4 as the solid curve. Both

FIG. 1. Electron-impact excitation of H2
+ at R=0.0. Solid curve:

1s→2p atomic distorted-wave results. Connected squares: 1s�
→2p� molecular distorted-wave results. Connected circles: 1s�
→2p� molecular distorted-wave results �1.0 Mb
=1.0�10−18 cm2�.

FIG. 2. Electron-impact excitation of H2
+ at R=2.0. Solid curve:

1s�→2p� molecular plane-wave Born results �16�. Connected
squares: 1s�→2p� molecular distorted-wave results. Connected
diamonds: 1s�→2p� molecular R-matrix results �18� �1.0 Mb
=1.0�10−18 cm2�.

FIG. 3. Electron-impact excitation of H2
+ at R=2.0. Solid curve:

1s�→2p� molecular plane-wave Born results �16�. Connected
circles: 1s�→2p� molecular distorted-wave results �1.0 Mb
=1.0�10−18 cm2�.

FIG. 4. Electron-impact ionization of H2
+ at R=0.0. Solid

curve: 1s atomic distorted-wave results. Connected squares: 1s�
molecular distorted-wave results. Solid circles with error bars: ex-
perimental measurements �19� �1.0 Mb=1.0�10−18 cm2�.
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Coulomb-wave calculations are higher than the experimental
measurements �19� for He+, shown as the solid circles with
error bars. However, more advanced atomic scattering meth-
ods, like the convergent close-coupling �24� and the time-
dependent close-coupling �25� methods, yield ionization
cross sections that are in excellent agreement with the ex-
perimental measurements.

Electron-impact ionization cross sections for H2
+ at R

=2.0 are presented in Fig. 5. The results for the 1s� cross
section are again shown as the connected squares. The
strength of the ionization cross section has noticeably in-
creased in going from R=0.0 to R=2.0. Previous molecular
distorted-wave results �17� for the 1s� cross section, gener-
ated in prolate spheroidal coordinates, are shown in Fig. 5 as
the connected diamonds. At incident electron energies just
above the ionization threshold, both molecular distorted-
wave calculations are somewhat higher than the experimen-
tal measurements �20�, again shown as the solid circles with
error bars.

IV. SUMMARY

In conclusion, we have developed a configuration-average
distorted-wave method to calculate electron-impact excita-
tion and ionization cross sections for diatomic molecules and
their ions. For H2

+ at R=0.0, the molecular CADW results
are in very good agreement with atomic CADW results for
selected excitation and ionization cross sections of He+. For
H2

+ at R=2.0, the molecular CADW results are in reasonable
agreement with previous molecular distorted-wave and
R-matrix results for selected excitation and ionization cross
sections.

We look forward to applying the molecular CADW
method to calculate excitation and ionization processes in a
wide variety of diatomic molecules and their ions. For other
diatomic molecules, only the bound and continuum orbitals
change, while the general collision cross section expressions
of Eqs. �1�–�8� and the corresponding computer programs
remain exactly the same. The bound orbitals, extracted from
existing Hartree-Fock computer programs, will be used in
the radial matrix elements of Eq. �8� and will also be used to
construct the direct and local exchange potentials of Eq. �13�
needed to calculate the continuum orbitals.

We also look forward to applying the molecular CADW
method to help develop the application of the molecular
time-dependent close-coupling �TDCC� method �5� to
electron-molecule scattering processes. An obvious first step
will be a molecular TDCC investigation of the electron ion-
ization of H2

+ at incident energies just above threshold. A
second step will be the electron ionization of H2 in a frozen-
core approximation to compare with current R-matrix pseu-
dostate calculations and experiment.
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