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The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are
reported. The atoms are assumed to move very little during the time range we investigate. We describe the
basic interaction between atoms and show that(contrary to previous theoretical studies) the interaction between
the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an
amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned
in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too
strong for an essential states type of approximation. The relevance of our results to previous measurements in
a Rydberg gas and to possible future experiments is discussed.

DOI: 10.1103/PhysRevA.70.042703 PACS number(s): 34.60.1z, 32.80.Rm, 32.80.Pj, 78.67.Bf

I. INTRODUCTION

There have been several experimental and theoretical in-
vestigations into the properties of a dense gas of Rydberg
atoms; by a dense gas, we mean there is a sufficient density
of Rydberg atoms for the interaction between them to be
important or measurable. Broadly speaking, interesting phe-
nomena arise from many-body effects or from two-body ef-
fects. In Rydberg gases, the many-body effects are achieved
through the strong interaction between the highly excited
atoms and the small energy separation between highly ex-
cited states. Typically, the interaction potential between at-
oms is through the dipole-dipole interaction and is roughly
proportional to the square of the radius of the atoms divided
by the cube of the distance between the atoms.

In Refs.[1–6], atoms are excited into Rydberg states cho-
sen such that resonant energy transfer can occur; in this pro-
cess an atom in stateA and an atom in stateB interact and
convertA→C andB→D because the total energy is roughly
conservedEA+EB.EC+ED. Possible richness can arise from
the fact that statesC or D can then transfer to atoms of states
A or B. For example, three atoms in stateuAABl (i.e., atoms
1 and 2 in stateA and atom 3 in stateB) can make the
transitionsuAABl→ uCADl→ uACDl. In the experiments, the
atoms are cold and barely move during the interesting time
period. Thus, the transitions are coherent and can proceed in
both directions. A gas of Rydberg atoms with these resonant
energy transfers has been shown to have spectral properties
that differ from what would be expected from single-particle
physics. Thus, some aspect of many-body physics is present.

The interaction between a pair of Rydberg atoms gives
rise to long-range potentials which can be significant. In Ref.
[7], the van der Waals Rydberg-Rydberg coupling was strong
enough to significantly broaden the Rydberg lines. In Refs.
[8–10], the long-range potential affects the motion of the
atoms. Two Rydberg atoms can be made to have an attractive
or repulsive potential; in the case of the attractive potential,

the atoms can accelerate toward each other and collide. In
Ref. [11], the long-range potentials of twonp Rydberg atoms
couple at very large distances to two-atom states withsn
−1dd,ns character which cannot be excited in the single-
atom limit. However, the forbidden levels are accessed when
the density of Rydberg atoms is high enough to give pairs
within the critical distance. The strong interaction between
Rydberg atoms has been used in proposals for fast quantum
gates[12] and for a dipole blockade[13].

Lastly, the interaction between several Rydberg atoms has
many features in common with using a sequence of metal
nanoparticles as a waveguide(as an example, see Ref.[14]
and Secs. III A and V below). In this system, there is an
optically excited plasmon wave below the diffraction limit
that travels along an array of metal nanoparticles. Much of
the physics is reproduced through a simple point-dipole
model.

We present the results of theoretical investigations of
many-body processes in a Rydberg gas. As in Refs.[2–6],
the atoms will hardly move over the important time. But,
unlike previous work where the atoms are at random posi-
tions inside the gas, we imagine the atoms have been pre-
pared to have spatial correlation. The simplest case we in-
vestigated is when the atoms are positioned to be exactly on
a cubic lattice. While this situation will probably never be
experimentally realized, it has several features that may be of
interest. The band structure of a singlep state in a matrix of
s-state atoms has particle or hole properties depending on the
polarization relative to the wave number. We also investi-
gated the density of states for a random spatial distribution of
Rydberg atoms where there is onep state in a matrix of
s-state atoms.

Next, we investigated a model that could be experimen-
tally observed with current technology. In this model, a Ry-
dberg atom is randomly placed inside a small region, but the
small regions are regularly spaced. Some of the atoms will
start in stateA and the others in stateB. This situation is
sketched in Fig. 1. Such an array can be achieved by starting
with atoms prepared in an optical lattice. Or more simply, a
laser can be split and focused into small regions of a gas so*Electronic address: robicfj@auburn.edu

PHYSICAL REVIEW A 70, 042703(2004)

1050-2947/2004/70(4)/042703(11)/$22.50 ©2004 The American Physical Society70 042703-1



long as the width of a beam is smaller than the distance
between the beams. For this case, we investigate the role that
defects play in this system with special emphasis on changes
that arise from no atom being present in a region or from two
atoms being present in a small region.

In most discussions of Rydberg-Rydberg interactions, an
essential states picture is used. In this picture, we include
only the few states that are degenerate or nearly degenerate.
This approximation should be accurate for many situations.
However, we can expect the accuracy to decrease as the prin-
cipal quantum number increases because the energy differ-
ences between states decreases asn increases. Whenn is
high enough, a quasiclassical picture obtains and we should
expect transitions between many states. Since most of our
discussion will be based on the essential states model, it is
important for us to understand the region where it is appli-
cable. To address this, we directly solved the time-dependent
Schrödinger equation within two simplified models.

Atomic units are used except where explicitly stated oth-
erwise.

II. BASIC PARAMETERS

A. Coupling potential

The relevant coordinates needed to describe the interac-

tion between two Rydberg atoms areRW (the vector between
the two nuclei), rW1 (the vector between the nucleus of atom 1
and the electron of atom 1), and rW2 (the vector between the
nucleus of atom 2 and the electron of atom 2). We will as-
sume that the nuclei are not close enough for the two elec-
trons to overlap; thus, we do not need to worry about sym-
metrization of the wave function. The Hamiltonian is

H = H1 + H2 + V,

V =
1

R
−

1

uRW + rW2u
−

1

uRW − rW1u
+

1

uRW + rW2 − rW1u

.
rW1 · rW2 − 3srW1 · R̂dsrW2 · R̂d

R3 , s1d

whereH1 andH2 are the Hamiltonians for the two Rydberg
atoms. In our analysis, we will use only the lowest nonzero

coupling potential(dipole-dipole) which is shown above; a
more accurate treatment of the potential does not add new
physics for the systems that are considered here.

In the next two sections, we give expressions for the ma-
trix elements of the coupling potential between Rydberg
states on the two atoms. We will treat the case of Rydberg
atoms in zero or weak electric fields separately from the case
of atoms in strong, static electric fields. When the atoms are
in a weak, static electric field the eigenstates have a well
defined angular momentum, while atoms in a strong field
have a well defined(large) dipole moment.

1. Field-free case

In the field-free case, we need to evaluate the coupling
potential between states of specific angular momentum on
different atoms. The matrix elements are effectively evalu-
ated by rewriting the interaction potential in terms of radial
and angular pieces. Using angular momentum relationships
gives

V = − 8pÎ2p

15

r1r2

R3 o
m=−2

2

fY1sr̂1dY1sr̂2dgm
2Y2m

* sR̂d, s2d

where fY1Y1gm
2 means the two spherical harmonics are

coupled to total angular momentum 2 andz-componentm
through the usual Clebsch-Gordan coefficients.

When there is no electric field, statesA andB are eigen-
states of angular momentum and have a degeneracy of 2,a
+1 and 2,b+1. For the case of two atoms interacting through
the potentialV, there are 2s2,a+1ds2,b+1d states of interest:
s2,a+1ds2,b+1d when atom 1 is in stateA and atom 2 is in
stateB and s2,b+1ds2,a+1d when atom 1 is in stateB and
atom 2 is in stateA. The only nonzero coupling is between
states of typeuABl and uBAl. There are no couplings when
A,B remain on the same atom due to theY1sr̂1d and Y1sr̂2d
dependence of the potential. This dependence also means
that Rydberg states do not couple unlessu,a−,bu =1 at this
level of approximation of the potential. If the direction be-

tween atoms is taken to be in thez direction(i.e., R̂= ẑ), then
ma+mb is a conserved quantity.

If we write the Rydberg wave function in the form

cn,msrWd =
Rn,srd

r
Y,msr̂d s3d

then the matrix element between the states where atom 1 is
na,ama, atom 2 isnb,bmb and where atom 1 isnb,bmb8, atom
2 is na,ama8 can be written as

VAB,A8B8 = − 8pÎ2p

15

sdna,a,nb,b
d2

R3 o
m=−2

2

Y2m
* sR̂dk,ama,,bmbu

3fY1sr̂1dY1sr̂2dgm
2 u,bmb8,,ama8l, s4d

where the dipole matrix element is defined as

dna,a,nb,b
=E

0

`

rRna,a
srdRnb,b

srddr. s5d

In the special case of the interaction between ans state and a
p state, the nonzero matrix elements reduce to

FIG. 1. Schematic drawing of a possible experiment to observe
the coherent hopping of a Rydberg excitation. Att=0 an atom is
excited into the highest energyn=61 state in an electric field in the
leftmost region. In the right region, an atom is excited into the
highest energyn=60 state. Then=61 state can hop to the atom in
the right region. Which region contains then=60 state can be de-
termined by selective field ionization of the atoms onto a charge-
coupled device(CCD) camera. The atoms have random positions
within each region.
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V1m,00;00,1m8 = −Î8p

3

sdna1,nb0d2

R3 s− 1dm8

3S1 1 2

m − m8 m8 − m
DY2,m8−msR̂d, s6d

where thes¯d is the usual 3-j coefficient.

2. Static electric field

An obvious extension of the previous section is to exam-
ine the effect of Rydberg-Rydberg interaction when a strong
electric field is in thez direction. A static electric field breaks
the spherical symmetry and gives states with substantial di-
pole moments. This gives a nontrivial difference over the
previous section in that there are now nonzero diagonal ma-
trix elements of the coupling potential. Another difference is
the large increase in the number of states that can be coupled
together through the potentialV. The increase in number of
states gives rise to interesting physics in the interaction be-
tween two Rydberg atoms, but it vastly complicates the study
of many atoms. We will examine the full interaction between
two Rydberg atoms in a later section. But for the many-atom
systems, we will choose two states that couple strongly to
each other but weakly to all other states.

The strength of the interaction between Rydberg states
can be adjusted by changing their separation. The dipole-
dipole interaction, Eq.(1), gives a shift in energy of a pair of
Rydberg atoms in Stark states; it also causes a mixing with
other Stark states within then-manifold. If the statesA andB
are both the highest(or lowest) energy states of the Stark
manifold, then the mixing with other pairs of Stark states can
be suppressed by increasing the distance between the atoms
because no states are degenerate with this pair. For the rest of
this section, we will suppress all quantum numbers except
the principal quantum numbern since the states we are using
are specified by being the highest energy state of the Stark
manifold. The main important atomic information is the di-
pole connection between states of differentn-manifolds:

knuzunl .
3

2
n2,

kn − 1uzunl .
1

3
n2,

kn − 1uzun + 1l .
1

9
n2,

knuxun8l = knuyun8l = 0. s7d

Note that the interaction rapidly decreases as the difference
in principal quantum number increases. Note also that thex
andy part of the interaction has no effect within this approxi-
mation. Because the interaction is proportional to the square
of the matrix element, we will investigate only the case
where the difference in principal quantum number is 1.

For two atoms, the diagonal terms in the interaction are
equal and given by

Vn,n8;n,n8 = Vn8,n;n8,n = S3nn8

2
D21 – 3sR̂ · ẑd2

R3 . s8d

When un−n8 u =1, the off-diagonal matrix elements are given
by

Vn,n8;n8,n = Vn8,n;n,n8 = Snn8

3
D21 – 3sR̂ · ẑd2

R3 . s9d

B. Rough estimates

As a check on the feasibility of the experiment proposed
below (see Fig. 1), we estimate the effect of processes that
were not explicitly included in the model. Also, we estimate
the time and distance scales for particular geometries. To get
specific numbers, we will use85Rb sM =1.4310−25 kgd for
the atom. We will also suppose the laser focus size is 3mm
in all dimensions. To keep the situation simple, we look at
the case when there are only two atoms in a strong electric
field so that the atoms have permanent dipole moments. We
assume that the highest energy state of the Stark manifold is
excited; the state for atom 1 starts with principal quantum
numbern1 and that for atom 2 isn2. We are interested in the
coherent transferun1n2l→ un2n1l.

1. Hopping time scale

The interaction between two atoms in the highest energy
Stark state in two differentn-manifolds depends on the dif-
ference in principal quantum numbers. For a pair of atoms
(one in then=50 and the other in then=51 state) separated
by 20 mm, the coupling matrix element is 1.3310−11 a.u.

when R̂·ẑ.0. The time required for then=50 character to
hop to the other atom and then back is 2.331011 a.u. which
is 5.7ms. If the two states aren=60 and 61, then the hop-
ping time is reduced to 2.7ms since the hopping time scales
as 1/n4. If the distance between the states is reduced to
10 mm, then the hopping time is reduced by a factor of 8
since the time scales asR3.

2. Atomic motion

The thermal speedv=Î3kBT/M of 85Rb at 300 K is
300 m/s and at 300mK is 0.3 m/s. The cases we investigate
require a few microseconds for interesting effects. Over
1 ms, a Rb atom would travel roughly 1 mm at 300 K and
1 mm at 300mK. The original region the atom exists in is
roughly 3mm with a separation of 20mm. Thus, it appears
that the atoms would need to be cooled below 1 mK so the
states can exchange atoms before they move out of the exci-
tation region. The Heisenberg uncertainty relation does not
affect the analysis of the spread of speeds; for a 3mm spot,
the spread in speedsDv," / sMDxd,2.5310−4 m/s which
is much less than the thermal speed at 300mK.

3. Coherence

We are interested in coherent hopping of the states be-
tween atoms. For the hopping to be coherent, the electronic
states of the Rydberg atoms cannot couple to other degrees of
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freedom. Assuming other particles(e.g., electrons or pho-
tons) are not present to contribute decoherence, only the rela-
tive motion of the atoms couples to the electronic motion.
Previous theoretical studies(see, for example, Ref.[15])
have concluded that the dipole hopping of an excitation
through a gas is not coherent unless the temperature is ex-
traordinarily low. In this section we argue that the systems
we will investigate are coherent even though the gas is very
hot compared to the limit discussed in Ref.[15].

The full wave function for two atoms(with the relative
motion of the atoms and the electronic wave functions) can
most simply be written as

Cstd =
1
Î2

fc+sRW ,tdu + l + c−sRW ,tdu− lg, s10d

where the electronic states are defined as

u ± l =
1
Î2

suABl ± uBAld. s11d

At the starting timet=0, the interatom wave functions are

equal:c+sRW ,0d=c−sRW ,0d=c0sRW d. The wave function can be
written in terms of theuABl and uBAl states:

Cstd =
1

2
fc+sRW ,td + c−sRW ,tdguABl+

1

2
fc+sRW ,td − c−sRW ,tdguBAl.

s12d

The probability for finding the atoms with the electronic state
uABl or with the electronic stateuBAl without regard for the
position of the atoms is

PABstd =
1

2
h1 + Refkc+stduc−stdlgj,

PBAstd =
1

2
h1 − Refkc+stduc−stdlgj, s13d

where we have used the fact that the interatom functions are
normalizedkc+ uc+l=kc− uc−l=1; the symbol Ref g means to
take the real part of the expression. Clearly, the probabilities
have the unitarity propertyPAB+PBA=1. The starting condi-
tion givesPAB=1 at t=0.

The states evolve coherently so long as the + and − func-
tions retain the same form. More specifically, the evolution is
coherent only for times wherezkc+std zc−stdlu.1. To exam-
ine this effect we solved the Schrödinger equation for this
system. The radial wave functions are the solution of a time-
dependent Schrödinger equation

i
] c±sRW ,td

] t
= F P2

2M
+ S3nn8

2
D21 – 3 cos2u

R3 Gc

±sRW ,td±
d2s1 – 3 cos2ud

R3 c±sRW ,td, s14d

whered=nn8 /3 whenun−n8 u =1.
The results of this simulation can be understood from

simple arguments. The overlap goes to 0 because of the dif-
ferent potentials for theu+l and u−l states. Qualitatively, the

two potentials lead to two different forces which cause the
packets to move to different positions in space or momentum
space. The different forces causes a separation of central po-
sition of thec+ andc− wave functions; the difference in the
forces is 6d2/R4. The separation after a timet is roughly
dx=sdFdt2/2M =3d2t2/ sMR4d. The time required for a com-
plete transitionAB→BA→AB is T=2p /DE=pR3/d2. Sub-
stituting this in for the time givesdx=3p2R2/ sMd2d.1.0
310−5sR/dd2 Å. For the cases we are thinking about
R/d,103. Thus the positions will separate by less than a
nanometer which is much less than the width of the initial
wave packet.No decoherence occurs due to the separation in
space of thec+ and c− packets.

When the atoms do not move far compared to their sepa-
ration or the localization region, the wave functions are well
represented through the impulse approximation

c±sRW ,td . expf− iE±sRW dtgeifsRW ,tdc0sRW d, s15d

wherefsRW ,td is a phase common to both wave functions and

E±sRW d= ±d2s1–3 cos2ud /R3 are the relative energies of the ±

states if the atoms were fixed with a separationRW . Using this
expression to compute the probabilities for finding the atoms
in arrangementAB or BA gives the form

PABstd =E PABsRW ,tdPsRW dd3RW ,

PBAstd =E PBAsRW ,tdPsRW dd3RW , s16d

where PsRW d= uc0sRW du2 is the probability density for finding

the atoms with separationRW and

PABsRW ,td =
1

2
ue−iE−sRW dt + e−iE+sRW dtu2,

PBAsRW ,td =
1

2
ue−iE−sRW dt − e−iE+sRW dtu2 s17d

are the probabilities for finding the atoms with the combina-

tionsAB or BA at timet if the atoms are at separationRW . For
any specific separation, the probabilities oscillate between 0

and 1 with a frequency proportional toE−sRW d−E+sRW d. How-

ever, the average overRW in Eq. (16) causes a decoherence
due to the spatial dependence of the frequency.

These considerations lead to a simple picture of when the
coherence holds. We compute the evolution of the system for

many different and random separationsRW that are consistent
with an experimental distribution; we average the observ-
ables over the different separations. This should be an accu-
rate procedure so long as the conditions are such that the
atoms do not move far during the relevant time period.

III. SIMPLE BANDS

A simple case of coherent hopping is when all of the
atoms are on a regular lattice. There are many examples of
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this type that can be investigated. We chose the simplest
example: onep atom with all of the other atoms havings
character. We picked a simple geometry(cubic) although
others could be equally interesting. Because there are threep
statessm=−1,0,1d, there will only be three bands for each
wave numberk. Since there is only onep-type atom, the
state can be specified by giving the atom that thep state is on
and the azimuthal quantum number:ubml will mean that
atom b hasp character with azimuthal quantum numberm
and all other atoms are in thes state. To somewhat simplify
the notation we will combine parameters:

g =Î8p

3

sdna1,nb0d2

dx3 , s18d

where dx is the spacing of the atoms. This parameter has
been defined so that the band energy divided byg is inde-
pendent of the dipole matrix element and the spacing be-
tween atoms.

For aD-dimensional lattice, the eigenstate can be written
as the superposition

ckW,a =
1

ÎN
o
b8m8

eikW·RW b8Um8askWdub8m8l, s19d

whereN is the total number of atoms,RW b is the position of

the b atom,kW is the wave number,a determines the band at

wave numberkW, andUmaskWd is a unitary matrix for any fixed

kW. The time-independent Schrödinger equation takes the form

HckW,a = easkWdckW,a. s20d

We assume that the diagonal elements of the Hamiltonian
have been removed since they are the same for every state.
Projecting the statekbmu onto the Schrödinger equation and
using the matrix element from Eq.(6) gives a 333 Hermit-
ian diagonalization problem:

o
m8

Hm,m8sk
WdUm8,askWd = Um,askWdeaskWd, s21d

where the Hermitian matrix is given by

Hm,m8sk
Wd = − gdx3s− 1dm8S1 1 2

m − m8 m8 − m
D

3 o
b8Þb

e−ikW·RW bb8
Y2,m−m8sR̂bb8d

Rbb8
3 , s22d

whereRW bb8=RW b−RW b8.
We are interested in the band structure of this system

which means theN→` limit. We compute the 333 Hermit-
ian matrix by numerical summation, increasing the number
of atoms in the sum until convergence is achieved.

The trace of theHm,m8 matrix is 0 for all kW which con-
strains the sum of the band energies to be 0. This has the

consequence that nearkW ,0W there must be bands that have

positive effective mass and bands that have negative mass. A

wave packet centered at wave numberkW0 has the group ve-
locity for banda:

vWaskW0d = f¹W kWeaskWdgkW=kW0
. s23d

There will be some bands with particle character(positive

group velocity proportional tokW for smallkW) and some bands
with hole character(negative group velocity proportional to

kW for small kW).

A. Linear lattice

The simplest case is a linear lattice which consists of at-
oms equally spaced on a line. The band energies are plotted
in Fig. 2. Two of the bands are degenerate. These are the
bands corresponding to transverse waves(the lobes of thep
orbital perpendicular to the line of atoms); the two directions
orthogonal to the line of atoms are equivalent. All of the
bands have a quadratick dependence for smallk: ea,Ca

+Dak2. This means the magnitude of the group velocity is
proportional tok at smallk.

The two degenerate bands have hole character. The band
corresponding to the longitudinal wave has particle charac-
ter. This exactly matches the character of the bands for an
optically excited plasmon wave propagating along a series of
metal nanoparticles[14]. The degeneracy means that if the
bands cross they must cross ate=0. For a perfect lattice, the
bands exactly cross because there is no coupling between the
longitudinal and transverse waves. If there were defects in
the lattice, especially some atoms shifted out of line, then the
degeneracy of the two transverse bands would be lifted.
Also, the crossing would be replaced by an avoided crossing.
If the amount and size of the defects were small, the coupling
between the transverse and longitudinal bands would be lo-
calized to wave numbers near the avoided crossing.

FIG. 2. The scaled band energy[band energy divided by
Î8p /3sdna1,nb0d2/dx3] as a function of the wave number(in units of
p /dx) for a line of atoms with onep state(all others states). The
two bands with thep orbital perpendicular to the line of atoms are
degenerate(negative energy neark=0). This band structure is very
similar to that for an optically excited plasmon wave propagating
along metal nanoparticles; see Fig. 1 of Ref.[14]. Note that near
k=0 some bands have positive curvature(behave like particles with

the group velocity the same sign askW) and some have negative
curvature(behave like holes with the group velocity in the opposite

direction ofkW).
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B. Square lattice

The bands for a square lattice are two-dimensional func-
tions: easkx,kyd. The Brillouin zone for a square lattice has
three special points: centerskx,kyd=s0,0d, which is theG
point, center of a sidesp /dx,0d, which is theX point, and
the cornersp /dx,p /dxd, which is theM point. A common
way of presenting the bands is to plot the band energy along
three special lines that connect these points:D connects the
pointsGandX (i.e., from the center of the Brillouin zone to
the center of a side), S connects the pointsG and M (i.e.,
center to corner), andZ connects the pointsX andM (center
of side to corner).

The band energies are plotted in Fig. 3 for these lines as a

function of k= ukW u =Îkx
2+ky

2. The solid lines are the band en-
ergies along theD line, the dashed lines are along theS line,
and the dotted lines are along theZ line. The character of the
eigenvectors lets us assign the different bands. At the center
and the corner of the Brillouin zone, two of the bands are
degenerate and one is nondegenerate. The nondegenerate
band corresponds to thep state havingm=0 character: this is
the state whose wave function has a nodal plane in thexy
plane. Thus, the nondegenerate band has character where the

lobes of thep state are perpendicular tokW; the band withm
=0 character crosses the other bands due to the lack of cou-
pling to states withm= ±1 character. The two degenerate
bands atuku →0 have the lobes of thep state in thexy plane.
For both theS andD lines, the band that linearly increases

from uku =0 has ap state with the lobe perpendicular tokW

while the band that is flat nearuku =0 is parallel tokW.
For this system, the bands nearuku =0 with p-state lobes

perpendicular tokW have band energies that changelinearly

with k. These bands have roughly constant group velocity for

smallkW and the group velocity does not depend on the direc-
tion. Thus the perpendicular bands behave like neither par-
ticles nor holes, but like photons or phonons. Interestingly,
the nondegenerate band hasnegativegroup velocity: a wave
packet moves in the opposite direction to the wave number.
Another interesting feature is that the sign of the group ve-

locity depends on the direction ofkW: the longitudinal wave

can behave like either a particle or hole depending onk̂.

C. Cubic lattice

The Brillouin zone for a cubic lattice has four special
points: centerskx,ky,kzd=s0,0,0d, which is theG point, cen-
ter of a facesp /dx,0 ,0d, which is theX point, center of an
edge sp /dx,p /dx,0d which is the M point, and a corner
sp /dx,p /dx,p /dxd, which is theR point. We have com-
puted the bands along six lines that connect these points:D
connectsG andX (center of the Brillouin zone to the center
of a face), S connectsX andR (center of a face to a corner),
T connectsM andR (center of an edge to a corner), S con-
nectsG and M (center to center of an edge), Z connectsX
andM (center of a face to center of an edge), andL connects
G andR (center to a corner).

The band energies are plotted in Fig. 4 for these lines as a

function of k= ukW u =Îkx
2+ky

2+kz
2. The character of the eigen-

vectors lets us assign the different bands. All four of the
special points have degenerate states and theD, T, and L
lines have degenerate bands. The two bands with thep state

perpendicular tok̂ are degenerate at theG, X, andM points
andall states are degenerate at theR point (corner). For the
D, T, andL lines the two bands with thep state perpendicu-

lar to k̂ are degenerate; forD and L these are the lower
energy bands while the degenerate bands are the higher en-
ergy bands forT.

FIG. 3. Same as Fig. 2 but for a square array of atoms. The solid
lines are the band energies along theD line (center of the Brillouin
zone to the center of an edge), the dashed lines are along theS line
(center of the Brillouin zone to a corner), and the dotted lines are
along theZ line (center of an edge to an adjacent corner). Two
bands(with the lobe of thep orbital in the plane of atoms) are
degenerate only at the center and a corner of the Brillouin zone.
Two of the band energies(the lobe of thep orbital perpendicular to

k̂) are proportional tok neark=0; excitations of these bands behave
more like acoustic phonons or photons(no dispersion). Note some
of the bands behave like particles and some like holes neark=0.
Also, one of the bands(the longitudinal band with the direction of

the lobe of thep orbital in the same direction askW) behaves like a
hole or a particle depending on the direction(toward the middle of
an edge or toward a corner).

FIG. 4. Same as Figs. 2 and 3 but for a cubic array of atoms.
The solid lines are the band energies along theD line (center of the
Brillouin zone to the center of an edge), the dash-dotted lines are
along theS line (center of a face to a corner), the dash-dot-dot-
dotted lines are along theT line (center of an edge to a corner), the
short-dashed lines are along theS line (center to center of an edge),
the dotted lines are along theZ line (center of a face to center of an
edge), and the long-dashed lines are along theL line (center to a
corner). As with the two-dimensional example, the bands have par-

ticle or hole character neark=0 depending on the direction ofk̂.
Note that the corner is a point of triple degeneracy.
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The bands show a remarkable richness for such a simple
system. All of the bands neark,0 have particle or hole

character depending on the direction ofk̂. But, interestingly,
whether a band has particle or hole character neark=0 de-

pends on the direction ofkW. The cubic lattice is also interest-
ing because the interaction isnot well approximated by only
including nearest neighbor(or even next nearest neighbor)
interactions. Because the number of atoms in a spherical
shell increases proportional toR2 while the interaction de-
creases like 1/R3, the atoms at large distances must be in-
cluded for accurate band energies neark,0. The sum in Eq.

(22) only converges due to the presence of theY2msR̂d and

the expsikW ·RW d; the changing signs of these functions give
cancellations that converge the sum. Thek=0 limits can be
found analytically by converting the sum in Eq.(22) into an
integral; the integral can be performed analytically which

gives the energy of the band with thep state parallel tok̂ as
e=Î8p /27g and the energies of the degenerate perpendicu-
lar states ate=−Î2p /27g.

IV. AMORPHOUS DISTRIBUTION

In Refs.[2–6], a cold gas is excited to Rydberg states that
can make degenerate transitions to nearby states. A typical
description of this system is that a state hops away after
making the transition. We have investigated the hopping as-
sumption through large numerical diagonalization. Our re-
sults are not in complete agreement with previous theoretical
investigations[4,5] but do support the main conclusions.

We performed calculations with two models. In both mod-
els, a singlep-type atom is in a gas ofs-type atoms. TheN
atoms are randomly positioned within a cube with a lengthL
so that the density isN/L3; to minimize the effect of the
surfaces, we use a cyclic interaction between the atoms: thex
difference isDXij which is given by whichever is smaller in
magnitudeXi −Xj or Xi −Xj ±L (with a similar prescription
for the y andz components). For a given number of atoms,
we performedM independent calculations with the atoms at
random positions. We increasedN until convergence was
achieved.

In the first model, we used the form of the interaction that
was used in previous studies[4,5]. This is a simplified form
of the dipole-dipole interaction where only the radial depen-
dence of the interaction is retained. Defining the stateu jl to
be the atom withp character, a scaled interaction Hamil-
tonian is defined as

H̄ij =
1

NS L

uDRW i j u
D3

s24d

for i Þ j and H̄ii =0. The main simplification in this Hamil-
tonian is the fact that the coupling is the same sign with
every atom and the degeneracy of thep state is ignored. The
scaling removes the trivial dependence on the dipole
strengths and the density.

In the second model, we used the form of the interaction
in Eq. (6). This is a somewhat more realistic interaction since
it accounts for the angular momentum of the Rydberg elec-

tron; however, in the actual experiments, the states are eigen-
states of thetotal angular momentumof the Rydberg electron
(spin plus orbital) which changes the details of the interac-
tion. Because we include the degeneracy of thep states in
this model, the number of states is 33 the number of atoms.
Again, we have scaled the interaction potential to remove the
trivial dependence on the density and the dipole strengths:

H̄ij = VsDRW i jd
L3

d2N
. s25d

In Fig. 5, we show the distribution of eigenenergies for
the two models. We obtained the distribution by diagonaliz-
ing the interaction Hamiltonian for random placement ofN
atoms within a cube with a cyclic approximation to the in-
teraction. We averaged over a sufficient number of indepen-
dent geometries to obtain a smooth curve. Finally, we in-
creased the number of atoms in a single geometry until the
distribution was independent of the number of atoms. The
distributions for the simplified model and more realistic
model give qualitatively similar results, but there are differ-
ences. The more realistic model has a somewhat narrower
distribution which means that the simplified model will tend
to give faster hopping. The qualitatively similar shapes of the
two models reflect the radial dependence of the strength and
the random placement of the atoms.

In Fig. 6, we show the time dependence of the probability
for finding the p state at the atom it started on. It is clear
from this figure that the more simplified interaction, Eq.(24),
substantially differs from the interaction that includes the
correct effect from the angular momenta and the angular de-
pendence inV. However, the difference between the models
is quantitative and the main conclusions from previous theo-
ries seem to be unchanged. It is interesting that most of the
dependence in both figures is already present with eight at-
oms; this is because thep state is distributed over few atoms

FIG. 5. The distribution of energies for a random placement of
Rydberg atoms:N Rydberg atoms are randomly positioned within a
cube and cyclic approximation is used for the interaction potential.
The energies are scaled as discussed in the text. The solid line and
dotted line are for onep state andN−1 s states: the solid line is the
average of many geometries withN=216 and the dotted line is the
average of many geometries withN=8. This suggests that(except
for the small region −1,e,1) the main determination of the en-
ergy depends on fewer than eight atoms. The dashed line is for the
simplified interaction potential used in previous theoretical treat-
ments; this potential simplifies the angular dependence of the
interaction.
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at short times. For the energy distribution, there is only a
small energy range(width roughly 1 in scaled units) that
changes with the number of atoms. For the time-dependent
probability in Fig. 6, the rapid drop(to roughly P=1/2) is
accurately reproduced with eight atoms. It is the slower de-
cay (and small energies) that depends on the number of at-
oms. Note that the probability for the excitation to remain on
the starting atom does not decrease to 1 divided by the num-
ber of atoms but is much higher: roughly between 1/6 and
1/4.

This scenario can be explained because the large energy
shifts and the corresponding rapid drop in time are due to

close pairs which give large interactionsH̄ij . Close pairs
roughly act like isolated systems because the pair energy
shifts them out of resonance with the rest of the atoms; this is
similar to the dipole blockade idea[13]. The p state then
hops back and forth between the close atoms; it is pinned to
the defect at early times. However, there are some regions
within the gas where many atoms are roughly equidistant;
within these regions thep state can diffuse far from the ini-
tial atom.

This idea can be quantified. IfPj ,j0
std is the probability

that thep state is on atomj when it starts on statej0, then the
quantity N;fo jPj ,j0

2 stdg−1 roughly tracks the number of at-
oms thep state is spread over if it starts on atomj0. For the
more sophisticated model, there are geometries andj0 that
did not allow thep state to spread(roughly 24% startingj0
spread over four or fewer atoms att=4).The remaining part
of the population was spread over a wide distribution of
atoms which seems to represent thep state hopping away
from the original atom.

V. HOPPING IN A SMALL NONPERFECT LATTICE

The hopping of a Rydberg excitation between atoms has
been invoked to explain the results in Refs.[2–6]. We note
that this hopping could be directly measured. This can be
accomplished by having a laser excite small regions of a gas
into a Rydberg stateA; a second laser can excite a disjoint
region into a stateB. By using a CCD camera and state
selective field ionization, the character of the Rydberg state

in each region can be ascertained and the hopping of the
Rydberg state can be seen experimentally.

Since we imagine the states will be distinguished by
ramping an electric field, we will assume the atoms are al-
ways in a strong electric field and that the Rydberg states are
Stark states. The interaction between the Rydberg states will
be through Eqs.(8) and(9). To be specific, we will treat the
case where one atom is excited to then=61 state and all
other atoms are inn=60. Each Rydberg atom is created ran-
domly within a cube with edge length of 3mm and nearest
neighbor separation of 20mm. For all cases, we imagine the
electric field is perpendicular to the line or plane of atoms so

ẑ·R̂,0.
We plot the results for a line of atoms in Fig. 7; for all

cases, the regions are along thex-axis with then=61 state
starting in the leftmost region. The simplest result is when
there are only two atoms, Fig. 7(a). The probability for find-
ing the n=61 state in the leftmost region is plotted as the
solid line and the probability for finding then=61 state in the
rightmost region is the dotted line. If we were to pick a
specific distance between the atoms, the probability would
oscillate between 0 and 1 like cos2vt. Because the distribu-
tion is somewhat random in space, there is a range of fre-
quencies that need to be averaged over and this gives the
damping. The next case we plot, Fig. 7(b), is for six atoms:
one atom ofn=61 and five ofn=60. Again we started the
n=61 state in the leftmost region. The solid line shows the
probability for finding then=61 state in the leftmost region,
the dotted line is for finding it in the region adjacent to the
starting region, and the dashed line shows the probability for
finding it in the rightmost region. It is interesting that the
probability for finding then=61 state in the region adjacent
to the starting region peaks just after it leaves the leftmost
region and just before it reenters the leftmost region. It is
somewhat surprising that the probability for findingn=61 in
the leftmost region recurs up to 0.3 at,8 ms since the two-
atom case has damped to the average value by that time.
Note also that the probability for findingn=61 in the right-
most region peaks at,4 ms to a value of 0.3. The probabili-
ties oscillate out to,20 ms and shows that the coherence
survives the spatial averaging for substantial times. For the
last case, Fig. 7(c), we show the effect of having an atom
missing from one of the regions; this case has five atoms in
six regions with the pattern 61,60,skip,60,60,60(i.e., there is
no Rydberg atom in the third region). The solid curve is the
probability for finding then=61 state in the leftmost region,
the dotted curve is the probability for being in the adjacent
region, and the dashed curve is the probability for finding it
past the skipped region. The probability for findingn=61 in
the two leftmost regions behaves as in the two-atom case,
Fig. 7(a), and there is very little probability for finding it
beyond the skip region during the first 10ms. Then=61 state
has a difficult time jumping the gap caused by the missing
atom because the interaction between region 2 and region 4
is a factor of 8 smaller than that between successive regions.
A similar effect occurs if there are two atoms within the
same region; the two nearby atoms interact so strongly that
the pair energy is well shifted away from the band energy so
they do not interact strongly with the rest of the atoms.

FIG. 6. The probabilityP for finding thep state on the same
atom that it starts on as a function of scaled time. The line types are
the same as in Fig. 5. Note that the fast drop in probability is well
reproduced with eight atoms, which shows that most of the drop is
due to hopping to adjacent atoms. The longer time development
shows the hopping of thep state further from its original position.
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These are not the only interesting cases of Rydberg
atoms in a line. We have investigated several other cases
(atoms arranged in a circle geometry, four atoms in the
pattern 61,60,skip,60,60, N atoms in the
pattern 61,skip,60,60,60,60,…, two atoms in the excited state
61,60,60,60,61, etc.). Each of these has features that would
be worth more detailed studies.

We plot the results for a two-dimensional array of atoms
in Fig. 8. Again, we investigated several cases but present
results for only one of them. This case is a 232 grid of
atoms. The solid line is the probability for finding then
=61 state on the atom it started on, the dotted line is the
probability for finding it on either of the atoms in adjacent
corners, and the dashed line is the probability for finding it
on the opposite corner. We note that then=61 state seems to

first jump to the adjacent corner before jumping to the oppo-
site corner. We find that the coherence is somewhat less sen-
sitive to the randomness in the relative positions of the atoms
for the square lattice; this means we could reduce the dis-
tance between atoms and preserve coherence.

VI. STRONG RYDBERG-RYDBERG INTERACTION

An essential states model has been assumed in previous
treatments of Rydberg-Rydberg interactions. We investigate
the validity of this assumption. In the next section, we nu-
merically solve the time-dependent Schrödinger equation for
a model interaction between atoms. With this model, we in-
vestigate when the Rydberg atoms will make transitions to
n-states outside of those being explicitly treated. In the fol-
lowing section, we numerically solve for the interaction be-
tween two hydrogen atoms where transitions can be made
within then-manifold. This investigation also affects the pre-
dictions of Ref.[12] where the interaction between two Stark
states(approximated by an essential states model) was an
important aspect of using the dipole-dipole interaction for
“fast quantum gates.” As shown below, the essential states
model is only accurate for a strong enough electric field; the
strength depends on the distance between the atoms and
should be achievable.

A. n-changing interaction

We solve the time-dependent Schrödinger equation for the
model potentialVsr1,r2d=−1/r1−1/r2+r1r2/R3. The limit
R→` gives two isolated atoms. The atoms have outer radial
turning points atr1=2n1

2 and r2=2n2
2. We examined two

cases:(1) when n1=n2=n and (2) when n1=n,n2=n+1.
Within the essential states model, the first case is nondegen-
erate; however, we note that the states withn1=n+1,n2=n
−1 andn1=n−1,n2=n+1 are shifted in energy by 3/n4 from
the initial state,n1=n2=n. In case 2, this state is degenerate
with n1=n+1,n2=n but again there are states that differ by
energies of order 1/n4. The results for the limitations of the

FIG. 8. The probability for finding then=61 state on different
atoms for a 232 grid of atoms. The solid line is the probability for
finding then=61 state at the atom it started on, the dotted line is the
probability for finding it on either of the atoms in adjacent corners,
and the dashed line is the probability for finding it on the opposite
corner. Note the probability for finding then=61 state at an adja-
cent corner peaks before finding it at the opposite corner; this indi-
cates the excitation hops to the nearby atoms then to the opposite
corner.

FIG. 7. The probabilityP for finding then=61 state on various
atoms. Atoms are excited within regions that are separated by
20 mm and each of the regions has a width of 3mm as drawn in
Fig. 1. (a) For two regions, the probability for finding then=61
state in the leftmost region is plotted as the solid line and the prob-
ability for finding the n=61 state in the rightmost region is the
dotted line.(b) There are six atoms: one atom ofn=61 and five of
n=60. Again we started then=61 state in the leftmost region. The
solid line shows the probability for finding then=61 state in the
leftmost region, the dotted line for finding then=61 in the region
adjacent to the starting region, and the dashed line shows the prob-
ability for finding it in the rightmost region.(c) We show the effect
of having an atom missing from one of the regions; this case has
five atoms in six regions with the pattern 61,60,skip,60,60,60(i.e.,
there is no Rydberg atom in the third region). The solid curve is the
probability for finding then=61 in the leftmost region, the dotted
line is for finding it adjacent to the starting region, and the dashed
line is for finding it in any of the three regions past the skip. The
probability for findingn=61 in the leftmost regions behaves as in
the two-atom case(a) and there is very little probability for finding
it beyond the skip region during the first 10ms. The skipped region
blocks the hopping.
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essential states model was similar for both initial states. We
report the details for model 1 where both atoms start in the
samen-state.

We expanded the wave function in a basis of states
cn1

sr1dcn2
sr2d and increased the number of basis functions

until convergence was achieved. The basis set consisted of
all pairs of functions withn1 and n2 betweenn−Dn and n
+Dn; we increasedDn until the time-dependent wave func-
tion was converged. We started with the distance between the
atoms atR=8n2 and reducedR until the initial state started to
substantially mix. The statesn,n are most strongly coupled
to n−1,n+1 andn+1,n−1 due to the small energy differ-
ence: u«n+«n−«n−1−«n+1u ,3/n4. We computed the prob-
ability of finding the pair of atoms in the three statesn,n and
n71,n±1 when the atom started in the staten,n. We found
that the probability for finding the atom pair in these states
decreased to,90% atR,8n2 for n=40 and the probability
decreased to,50% atR,4.5n2 for n=40 andR,5.2n2 for
n=60.

Our conclusion is that the transition betweenn-manifolds
should be weak forR.10n2 as long asn,80 unless acci-
dental degeneracies are present. This distance is somewhat
smaller than might be expected. The important point is that
the transition matrix elementn,n→n−1,n+1 or n+1,n−1
is proportional tosn2/3d2 since there are two dipoles between
states in differentn-manifolds; thes1/3d2 reduces the cou-
pling by an order of magnitude over what might be expected.
For different applications that require the mixing to be less
than 10% the distance would need to be larger. Using these
values, we find that the distance at which the essential states
approximation becomes problematic isR,2 mm for n=60
which is much smaller than the values used in the simula-
tions of the previous section.

B. Within Stark manifolds

The interaction between two H atoms in an electric fieldF
gives rise to a potential

V = sz1 + z2dF +
1

R3frW1 · rW2 − 3srW1 · R̂dsrW2 · R̂dg, s26d

which gives the Stark splitting of the energy levels and
couples together the states within then-manifolds. For the
special case of two H atoms, we can compute the matrix
elements between the different states using the usual decom-
position of therW operators in terms of the scaled Runge-Lenz
vector [16]:

rW1 =
3

2
n1AW 1, rW2 =

3

2
n2AW 2. s27d

The scaled Runge-Lenz vector and the orbital angular mo-
mentum operators can be expressed in terms of commuting
angular momenta

LW1 = JW1 + JW2, AW 1 = JW1 − JW2,

LW2 = JW3 + JW4, AW 2 = JW3 − JW4. s28d

Although many aspects of H atoms in fields have been ex-
plored, we do not know of any treatments of a pair of inter-
acting H atoms at this level of approximation. This model
should be the subject of a more detailed study than that pre-
sented in this section.

For a single atom in a static electric field, the projection of
Stark states on angular momentum states is simply the

Clebsch-Gordan coefficients sinceLW is the addition of the
two angular momenta

kcn,mucnj1m1j2m2
l = k,mu j1m1j2m2l. s29d

The magnitude ofJW1 andJW2 are bothj1= j2=sn1−1d /2. The
range of the azimuthal quantum number is −j1øm1ø j1. The
change in the energy due to the electric field isEm1m2
=3Fn1sm1−m2d /2. The maximum energy is whenm1= j1
=sn1−1d /2 andm2=−j2=−sn1−1d /2.

In terms of the commuting angular momenta, the coupling
potential can be written as

V =
3

2
Ffn1sJ1z − J2zd + n2sJ3z − J4zdg+

9n1n2

4R3

3hsJW1 − JW2d · sJW3 − JW4d − 3fsJW1 − JW2d · R̂gfsJW3 − JW4d · R̂gj.

s30d

The eigenstates of this interaction will be a superposition of
the states which we write asum1,m2,m3,m4l (for notational
simplicity we suppress thej and n quantum numbers since
they are fixed for specifiedn-manifolds). The highest energy
state whenR→` is u j1,−j2, j3,−j4l which corresponds to
both atoms being in the highest energy state of the Stark
manifold.

The dipole-dipole interaction acts to mix the Stark states.
The mixing can be suppressed if the spacing between the
Stark states is large compared to the coupling matrix ele-

ments. We examined two special cases(RW parallel toFW andRW

perpendicular toFW ) to determine the distanceR where the
Stark states start becoming mixed for a fixed external fieldF.
We found that the transition from little mixing to complete
mixing occurred over a small region ofR. The separation
distance between strong mixing and little mixing is roughly
the distance where the dipole electric field from one atom is
comparable to the external field:n2/R3,F. This implies the
atoms will need a distance greater thanRcut,Cn2/3F−1/3 for
the essential states approximation to hold; the parameterC is
independent ofn andF. If F is in V/cm andR is in mm then

calculations forn=41, 61, 81 giveC,0.16 whenR̂= ẑ.
However, it is important to note that ifF is too large then

states between differentn-manifolds start mixing and then
further complications arise from jumps to adjacent
n-manifolds. Then-mixing field strength isF.1/s3n5d. The
minimum distance that allows the essential states approxima-
tion will be when the field is slightly less than 1/s3n5d; this
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field gives the minimum Rcut,Dn7/3 where D,1.35

310−4 mm when R̂= ẑ; D is reduced slightly to 1.1

310−4 mm whenR̂= x̂. It is important to note that the mini-
mum distance where the essential states approximation
works well increases faster than the size of the atom which
increases asn2.

For then=60 state, the minimum distance for which the
essential states model works is roughly 2mm. Thus, the es-
sential states model should be a very good approximation for
the examples described in previous sections.

VII. CONCLUSIONS

We have investigated several aspects of strong interac-
tions in a Rydberg gas. We performed a full simulation of the
motion of two atoms to obtain the conditions when the inter-
action between Rydberg atoms is coherent; in contradiction
with previous studies, we expect the dipole hopping of Ryd-
berg excitations to be coherent. We also investigated the
limitations of the essential states model since this has been
the foundation of previous treatments of both Rydberg gases
and effects such as the dipole blockade; we introduced two
models(which could be investigated more deeply) to study

the transitions to adjacentn-manifolds and transitions within
an n-manifold.

We investigated the hopping of an excitation through a
Rydberg gas in various configurations. We studied two mod-
els with random placement of atoms and found that the main
points of previous discussions of this situation[2–6] were
correct although more realistic models affect the quantitative
properties. We studied the band structure for a perfect lattice
of Rydberg atoms and found many similarities with studies
of optical excitations along metal nanoparticles. We also
studied small arrays of atoms in nearly regular arrangements
since these are more experimentally accessible. We found
that the Rydberg excitation should coherently hop between
atoms in configurations that are experimentally accessible.
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