PHYSICAL REVIEW A 70, 042703(2004)

Simulation of coherent interactions between Rydberg atoms
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The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are
reported. The atoms are assumed to move very little during the time range we investigate. We describe the
basic interaction between atoms and show ¢bantrary to previous theoretical studjgise interaction between
the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an
amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned
in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too
strong for an essential states type of approximation. The relevance of our results to previous measurements in
a Rydberg gas and to possible future experiments is discussed.
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I. INTRODUCTION the atoms can accelerate toward each other and collide. In
) .. Ref.[11], the long-range potentials of twip Rydberg atoms
There have been several experimental and theoretical insopje at very large distances to two-atom states With
vestigations into the properties of a dense gas of Rydber_ql)d’nS character which cannot be excited in the single-

atoms; by a dense gas, we mean t.here Is a sufficient dens'&fom limit. However, the forbidden levels are accessed when
pf Rydberg atoms for the interaction b_etwe_en ther_n to b‘?he density of Rydberg atoms is high enough to give pairs
important or measurable. Broadly speaking, interesting ph&g;iin the critical distance. The strong interaction between
nomena arise from many-body effects or from two-body ef- dberg atoms has been used in proposals for fast quantum
fects. In Rydberg gases, the many-body effects are aCh'eVZEZtes[lz] and for a dipole blockadgL3].

through the strong interaction between the highly excite Lastly, the interaction between several Rydberg atoms has

atoms and the small energy separation between highly E)fhany features in common with using a sequence of metal

cited states. Typically, the interaction potential between at- . :
. ? : . ) ; nanoparticles as a waveguigas an example, see Réil4
oms is through the dipole-dipole interaction and is roughly P 9 b &L

ional to th fthe radi £ th divid nd Secs. lll A and V beloy In this system, there is an
E;O&Zrtgjgi g‘ihi Z?Slfg:ig btet‘\alv:eaer:utig aio;itoms vide ptically excited plasmon wave below the diffraction limit

. : that travels along an array of metal nanoparticles. Much of
In Refs.[1-6], atoms are excited into Rydberg states cho- d y P

> *"“"the physics is reproduced through a simple point-dipole
sen such that resonant energy transfer can occur; in this Presodel.

cess an atom in stat® and an atom in statB interact and
convertA— C andB— D because the total energy is roughly m
conservedE, +Eg=E+Ep. Possible richness can arise from
the fact that state€ or D can then transfer to atoms of states
A or B. For example, three atoms in sta#eAB) (i.e., atoms

1 and 2 in stateA and atom 3 in stat®) can make the
transitions|/AAB) — |CAD) — |ACD). In the experiments, the

We present the results of theoretical investigations of
any-body processes in a Rydberg gas. As in Reg¥s6f],

the atoms will hardly move over the important time. But,
unlike previous work where the atoms are at random posi-
tions inside the gas, we imagine the atoms have been pre-
pared to have spatial correlation. The simplest case we in-

i Id and barel during the int g vestigated is when the atoms are positioned to be exactly on
atoms are cold and barely move during the interesing ime ¢ hic |attice. While this situation will probably never be

perlod: Thgs, the transitions are coherent a}nd can proceed &perimentally realized, it has several features that may be of
both directions. A gas of Rydberg atoms with these resonanfierest. The band structure of a singlstate in a matrix of

energy transfers has been shown to have spe_ctral prop_ertig@tate atoms has particle or hole properties depending on the
that differ from what would be expected from single-particle

hvsics. Th f body bhvsics i olarization relative to the wave number. We also investi-
physics. Thus, some aspect of many-body physics IS préserf,q j the density of states for a random spatial distribution of
The interaction between a pair of Rydberg atoms give

. - - 9 ydberg atoms where there is opestate in a matrix of
rise to long-range potentials which can be significant. In Refsstate atoms.

[7], the van der Waals Rydberg-Rydberg coupling was strong Next, we investigated a model that could be experimen-
enough to significantly broadgn the Rydberg Ime;. In R(Efstally observed with current technology. In this model, a Ry-
[8-10, _lt_he Ilgngt-)range potent|alb affec(tjs theh motion of th(?dberg atom is randomly placed inside a small region, but the
atoms. WO Rydberg at_oms can be made to ave an attra(.:t'\é‘?nall regions are regularly spaced. Some of the atoms will
or repulsive potential; in the case of the attractive potentlalStart in stateA and the others in statB. This situation is

sketched in Fig. 1. Such an array can be achieved by starting
with atoms prepared in an optical lattice. Or more simply, a
*Electronic address: robicfi@auburn.edu laser can be split and focused into small regions of a gas so
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3 pm 20 um coupling potentialdipole-dipolg which is shown above; a
more accurate treatment of the potential does not add new
o physics for the systems that are considered here.
° In the next two sections, we give expressions for the ma-

trix elements of the coupling potential between Rydberg
FIG. 1. Schematic drawing of a possible experiment to observStates on the two atoms. We will treat the case of Rydberg
the coherent hopping of a Rydberg excitation.tAD an atom is atomsin zero or weak glectnc f!eld_s separately from the case
excited into the highest energy=61 state in an electric field in the Of atoms in strong, static electric fields. When the atoms are
leftmost region. In the right region, an atom is excited into thein @ weak, static electric field the eigenstates have a well
highest energy=60 state. Thex=61 state can hop to the atom in defined angular momentum, while atoms in a strong field
the right region. Which region contains the 60 state can be de- have a well definedlarge) dipole moment.
termined by selective field ionization of the atoms onto a charge-
coupled devicagCCD) camera. The atoms have random positions
within each region. In the field-free case, we need to evaluate the coupling
potential between states of specific angular momentum on

long as the width of a beam is smaller than the distancdifferent atoms. The matrix elements are effectively evalu-

between the beams. For this case, we investigate the role th&ed by rewriting the interaction potential in terms of radial
defects play in this system with special emphasis on change¥d a@ngular pieces. Using angular momentum relationships

that arise from no atom being present in a region or from twd?!V€S
atoms being present in a small region. D rars 2 R

In most discussions of Rydberg-Rydberg interactions, an V=-8m\/——=2 > [Yi(FDY1(FD Y5, (R, (2)
essential states picture is used. In this picture, we include 15 R° u==2
onI_y the few stat_es that are degenerate or nearly dggeperawhere [YlYl]i means the two spherical harmonics are
This approximation should be accurate for many SltuatlonS.COUpled to total angular momentum 2 amgomponenty
However, we can expect the accuracy to decrease as the prifj-

. . . rough the usual Clebsch-Gordan coefficients.
cipal quantum number increases because the energy differ- When there is no electric field, statdsandB are eigen-
ences between states decreases ascreases. Whem is '

) . ; ) . ates of angular momentum and have a degeneracy of 2
high enough, a quasiclassical picture obtains and we shoufgtl and Z,+1. For the case of two atoms interacting through

O e e S o fh ptenia, hee re 21,21, ) states o st
' {,+1)(2¢,+1) when atom 1 is in statd and atom 2 is in

important for us to understand the region where it is appli-

cable. To address this, we directly solved the time-dependeﬁf"’ueB a_md(2€b+1)(2€a+ 1) when atom 1 is ?n st_atB and
Schrédinger equation within two simplified models. atom 2 is in statéd. The only nonzero coupling is between

Atomic units are used except where explicitly stated othStates of t_ypefAB) and|BA). There are no gouplings Yvhen
erwise. A,B remain on the same atom due to tgr,) and Y,(f,)

dependence of the potential. This dependence also means
that Rydberg states do not couple unlggs-¢,|=1 at this
Il. BASIC PARAMETERS level of approximation of the potential. If the direction be-

tween atoms is taken to be in thalirection(i.e., R=2), then
m,+my is a conserved quantity.

The relevant coordinates needeg to describe the interac- If we write the Rydberg wave function in the form
tion between two Rydberg atoms dre(the vector between R.,(r)
the two nuclej, r; (the vector between the nucleus of atom 1 Unem() = nt
and the electron of atom)landr, (the vector between the

nucleus of atom 2 and the electron of atop B/e will as-  then the matrix element between the states where atom 1 is

sume that the nuclei are not close enough for the two eleGy_¢.m, atom 2 isn,¢,m, and where atom 1 iB,{,M;, atom
trons to overlap; thus, we do not need to worry about syms g nalam, can be written as

metrization of the wave function. The Hamiltonian is

1. Field-free case

A. Coupling potential

r Y(,m(f) (3)

27 (dn ¢ e)z 2 « n
H=Hy+Hy+V, Vaparg = = 8| o —2 2B Sy (RI(aMy, £y
15 R 2,

V=£— 1 1 . 1 X[Y1(FD)Y1(F) T €om, €amy), (4)
R OR+f)| |R-F [R+F—F where the dipole matrix element is defined as
F-F,—3(F, - R)(F, R )

_hif ($3 )(F ), 1) A0, = fo Ry ¢ (NRy ¢, (1. (5

whereH; andH, are the Hamiltonians for the two Rydberg In the special case of the interaction betweers atate and a
atoms. In our analysis, we will use only the lowest nonzerop state, the nonzero matrix elements reduce to
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8 (dn 1n 0)2 ’
Vim,00:00, 1 =~ ?aTb(— nm Vonrnn =Vornnin =

3nn’)21—3(li-2)2

2 R ®

When|n-n'| =1, the off-diagonal matrix elements are given

1 1 2 “
><< )Yz,mf_m(Rx ® by

m-m m-m
where the(---) is the usual 3- coefficient. 21_3(|”q.2)2

R 9)

B _(nn’
Vn,n’;n’,n - Vn’,n;n,n’ - 3
2. Static electric field

An obvious extension of the previous section is to exam-
ine the effect of Rydberg-Rydberg interaction when a strong
electric field is in thez direction. A static electric field breaks As a check on the feasibility of the experiment proposed
the spherical symmetry and gives states with substantial dbelow (see Fig. 1, we estimate the effect of processes that
pole moments. This gives a nontrivial difference over thewere not explicitly included in the model. Also, we estimate
previous section in that there are now nonzero diagonal mahe time and distance scales for particular geometries. To get
trix elements of the coupling potential. Another difference isspecific numbers, we will us®#Rb (M=1.4x 10725 kg) for
the large increase in the number of states that can be couplelde atom. We will also suppose the laser focus size jisT8
together through the potenti@l The increase in number of in all dimensions. To keep the situation simple, we look at
states gives rise to interesting physics in the interaction bethe case when there are only two atoms in a strong electric
tween two Rydberg atoms, but it vastly complicates the studfield so that the atoms have permanent dipole moments. We
of many atoms. We will examine the full interaction betweenassume that the highest energy state of the Stark manifold is
two Rydberg atoms in a later section. But for the many-atonmexcited; the state for atom 1 starts with principal quantum
systems, we will choose two states that couple strongly tmumbern; and that for atom 2 is,. We are interested in the

B. Rough estimates

each other but weakly to all other states. coherent transfen;n,) — [nyny).
The strength of the interaction between Rydberg states
can be adjusted by changing their separation. The dipole- 1. Hopping time scale

dipole interaction, Eql), gives a shift in energy of a pair of
Rydberg atoms in Stark states; it also causes a mixing Wit%t
other Stark states within themanifold. If the stateé&\ andB : L .

. ference in principal quantum numbers. For a pair of atoms
are both the highesor lowes) energy states of the Stark (one in therﬁ):so l?emdqthe other in the=51 statQZeparated
manifold, then the mixing with other pairs of Stark states canyy 20 um. the coupling matrix element is LAL0 a.u
be suppressed by increasing the distance between the atoms I X , o o
because no states are degenerate with this pair. For the restyf€nR-2=0. The time required for the—;gllcharacter to
this section, we will suppress all quantum numbers excepf©P {0 the other atom and then_back is 2 B0 a.u. which
the principal quantum numbersince the states we are using 'S 5-7'[_/*5- If th% tWOdS;Eatgs alrs?l—Goﬂfm(rj1 61,_thetr_l the hOID'
are specified by being the highest energy state of the Stafind time is reduced to 2.4s since the hopping time scales

. <l = O : 4 i ;
manifold. The main important atomic information is the di- @8 1A If the distance between the states is reduced to
pole connection between states of differarnanifolds: 10 pm, then the hopping time is reduced by a factor of 8

since the time scales &8.

The interaction between two atoms in the highest energy
ark state in two differem-manifolds depends on the dif-

3
)
(n|z| n) = 2n ’ 2. Atomic motion
The thermal speed =13kgT/M of %Rb at 300K is
1, 300 m/s and at 30@K is 0.3 m/s. The cases we investigate
(n-1fzn) = 3m require a few microseconds for interesting effects. Over

1 ws, a Rb atom would travel roughly 1 mm at 300 K and
1 1 um at 300uK. The original region the atom exists in is
(n=1zZn+1) = =n?, roughly 3 um with a separation of 2@um. Thus, it appears
9 that the atoms would need to be cooled below 1 mK so the
states can exchange atoms before they move out of the exci-
(n|x|n")y =(n|y|n’) = 0. (7)  tation region. The Heisenberg uncertainty relation does not

. . . . affect the analysis of the spread of speeds; for @8 spot,
Note that the interaction rapidly decreases as the dlfferenct%e spread in speedsy ~%/(MAX) ~2.5% 104 m/s which

in principal quantum number increases. Note also thakthe .
andy part of the interaction has no effect within this approxi- is much less than the thermal speed at 460
mation. Because the interaction is proportional to the square

of the matrix element, we will investigate only the case 3. Coherence

where the difference in principal quantum number is 1. We are interested in coherent hopping of the states be-
For two atoms, the diagonal terms in the interaction ardween atoms. For the hopping to be coherent, the electronic
equal and given by states of the Rydberg atoms cannot couple to other degrees of
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freedom. Assuming other particlés.g., electrons or pho- two potentials lead to two different forces which cause the
tons are not present to contribute decoherence, only the relgackets to move to different positions in space or momentum
tive motion of the atoms couples to the electronic motion.space. The different forces causes a separation of central po-
Previous theoretical studiesee, for example, Refl15])  sition of they, and._ wave functions; the difference in the
have concluded that the dipole hopping of an excitatiorforces is &?/R*. The separation after a timeis roughly
through a gas is not coherent unless the temperature is exx=(6F)t?/2M=3d’?/(MR?*). The time required for a com-
traordinarily low. In this section we argue that the systemslete transitionAB— BA— AB is T=27/AE=7R3/d?. Sub-
we will investigate are coherent even though the gas is vergtituting this in for the time givesi=37°R?/(Md?) =1.0
hot compared to the limit discussed in REE5]. X 10°%R/d)?> A. For the cases we are thinking about
The full wave function for two atomgwith the relative  R/d<10%. Thus the positions will separate by less than a
motion of the atoms and the electronic wave functjoren  nanometer which is much less than the width of the initial

most simply be written as wave packetNo decoherence occurs due to the separation in
1 . . space of they, and ¢ packets
V() = =[ (R +) + Y (Rt)|-)], (10 When the atoms do not move far compared to their sepa-
V2 ration or the localization region, the wave functions are well

where the electronic states are defined as represented through the impulse approximation

1 (R = ex[—ELRIRIR, (15
)= =(1AB) 2 [BA). (1D e =i, Yo

v where®(R, 1) is a phase common to both wave functions and
At the starting timet=0, the interatom wave functions are Ei(ﬁ): +d?(1-3 cod6)/R3 are the relative energies of the +
equal:¢.(R,0)=¢-(R,0)=¢,(R). The wave function can be gtates if the atoms were fixed with a separaforusing this

written in terms of thgAB) and |BA) states: expression to compute the probabilities for finding the atoms
in arrangemenAB or BA gives the form

1 = - 1 - -
VO =STu(RY + g RYIABH ST (R Y — y-(RO]BA). o
Pag(t) = f Pas(RHP(RIAR,

(12)
The probability for finding the atoms with the electronic state
|AB) or with the electronic statlBA) without regard for the Pa(t) = f PBA(Ii HP(R/IR (16)
position of the atoms is ' '
g _ g 2 . g . . .
Pag(t) = }{1 + REW O] O]}, where P(R) —.| W(R)? is .thﬁe probability density for finding
2 the atoms with separatidR and
1 o = L E (Rt B RI2
Pea(t) = {1 - Re(ul-0)]}, (13 Pas(RD) = Zle™= i+ e
where we have used the fact that the interatom functions are . 1 . - o
normalized(i, | 4.)=(_|y_)=1; the symbol Rle] means to Pea(R 1) = =|e7E-(Rt - gmiE.(RIY2 (17)

take the real part of the expression. Clearly, the probabilities 2
have the unitarity propert,g+Pga=1. The starting condi- are the probabilities for finding the atoms with the combina-

tion givesPag=1 att=0. tions AB or BA at timet if the atoms are at separatiéh For

_ The states evolve coherently so long as the + and — funcspy gpecific separation, the probabilities oscillate between 0
tions retain the same form. More specifically, the evolution is . . > >
coherent only for times wherky,(t)| (1) =1. To exam- and 1 with a frequencX proporuonal B (R) -E.(R). How-
ine this effect we solved the Schrodinger equation for thisever, the average ovek in Eq. (16) causes a decoherence
system. The radial wave functions are the solution of a timedu€ to the spatial dependence of the frequency.

dependent Schrodinger equation These considerations lead to a simple picture of when the
. coherence holds. We compute the evolution of the system for

9 g(RY) _| P? . <3nn’ )21 —3 co$d p many different and random separatidRshat are consistent
at 2M 2 =& with an experimental distribution; we average the observ-

(1 -3 codd ables over the different separations. This should be an accu-
w%(ﬁ,t), (14)  rate procedure so long as the conditions are such that the

i(l:_iit)i 3 . . .
R atoms do not move far during the relevant time period.

whered=nn’/3 when|n-n’|=1.

The results of this simulation can be understood from
simple arguments. The overlap goes to 0 because of the dif- A simple case of coherent hopping is when all of the
ferent potentials for thé+) and|-) states. Qualitatively, the atoms are on a regular lattice. There are many examples of

Ill. SIMPLE BANDS
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this type that can be investigated. We chose the simplest o6 T T T T T T T
example: onegp atom with all of the other atoms havirg 04
character. We picked a simple geometigubic) although 0.2
others could be equally interesting. Because there are fhree

€
|
4
o

R e RAARR A a

states(m=-1,0, 1), there will only be three bands for each

wave numberk. Since there is only ong-type atom, the -0z

state can be specified by giving the atom thatptstate is on -0.4

and the azimuthal quantum numbégm) will mean that 060 e e
atom B hasp character with azimuthal quantum numbmr 00 02 04 08 08 10

and all other atoms are in thestate. To somewhat simplify k (n/6x)

the notation we will combine parameters: FIG. 2. The scaled band energpand energy divided by

q 2 \““‘%(dnal,nbo)z/éx?’] as a function of the wave numbgn units of
/877'( n 1nb0) (18) 7l &) for a line of atoms with ong state(all others state$. The
Y 3 two bands with thep orbital perpendicular to the line of atoms are
degeneraténegative energy ne&=0). This band structure is very
where o is the spacing of the atoms. This parameter hasimilar to that for an optically excited plasmon wave propagating
been defined so that the band energy dividedylig inde-  along metal nanoparticles; see Fig. 1 of Rd#]. Note that near
pendent of the dipole matrix element and the spacing bek=0 some bands have positive curvatdsehave like particles with

3 a0

tween at0m$. . _ . _ the group velocity the same sign §$ and some have negative
For aD-dimensional lattice, the eigenstate can be writtencurvature(behave like holes with the group velocity in the opposite
as the superposition direction ofk).
1 - -
a= T > dReU (KB M), (19)  positive effective mass and bands that have negative mass. A
Vg wave packet centered at wave numhkghas the group ve-

. > . locity for banda:
whereN is the total number of atom®; is the position of

the B atom,lz is the wave numbery determines the band at Ja(lzo) = [Wea(IZ)]g:‘ . (23)

wave numbek, andUn,(k) is a unitary matrix for any fixed There will be some bands with par'ucle charaafgositive

k. The time- independent Schrodinger equation takes the forraroup velocity proportional té for smallk) and some bands

; s with hole charactefnegative group velocity proportional to
Hii o = €,(K : 20 - ~
V™ €alk) Vi 20 k for smallk).

We assume that the diagonal elements of the Hamiltonian
have been removed since they are the same for every state.

Projecting the staté8m| onto the Schrédinger equation and A. Linear lattice
using the matrix element from E¢6) gives a 3< 3 Hermit- The simplest case is a linear lattice which consists of at-
ian diagonalization problem: oms equally spaced on a line. The band energies are plotted
R R L in Fig. 2. Two of the bands are degenerate. These are the
D Henm (WU oK) = Upy o(K) €,4(K), (21)  bands corresponding to transverse waithe lobes of thep
oo ' ' orbital perpendicular to the line of atoishe two directions
orthogonal to the line of atoms are equivalent. All of the
where the Hermitian matrix is given by bands have a quadratic dependence for smak: ¢,~C,
+D_k%. This means the magnitude of the group velocity is
H,, m,(|2) = - yox(- 1)m’( 11 2 ) proportional tok at smallk.
' m -m m-m The two degenerate bands have hole character. The band

corresponding to the longitudinal wave has particle charac-
xS e"k RBB 2m—m’(Rﬁ5) 22) ter._This exectly matches the character _of the bands f_or an
' optically excited plasmon wave propagating along a series of
metal nanoparticle§l4]. The degeneracy means that if the
bands cross they must crosseatO. For a perfect lattice, the
bands exactly cross because there is no coupling between the
longitudinal and transverse waves. If there were defects in
the lattice, especially some atoms shifted out of line, then the
degeneracy of the two transverse bands would be lifted.
of atoms in the sum until convergence is achieved.
o > Also, the crossing would be replaced by an avoided crossing.
The trace of theH,,, matrix is 0 for allk which con- | the amount and size of the defects were small, the coupling
strains the sum of the band energies to be 0. This has theatween the transverse and longitudinal bands would be lo-
consequence that nekr-0 there must be bands that have calized to wave numbers near the avoided crossing.

B'#B RBB’

Whereﬁﬁﬁr—ﬁﬁ ﬁr

We are mterested in the band structure of this systeni
which means th&l — o limit. We compute the X 3 Hermit-
ian matrix by numerical summation, increasing the number
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FIG. 3. Same as Fig. 2 but for a square array of atoms. The solid FIG. 4. Same as Figs. 2 and 3 but for a cubic array of atoms.
lines are the band energies along théine (center of the Brillouin ~ The solid lines are the band energies alongAH@e (center of the
zone to the center of an edg¢he dashed lines are along thdine Brillouin zone to the center of an edgehe dash-dotted lines are
(center of the Brillouin zone to a corneland the dotted lines are along theS line (center of a face to a cornerthe dash-dot-dot-
along theZ line (center of an edge to an adjacent coyndmwo dotted lines are along thEline (center of an edge to a cormgthe
bands(with the lobe of thep orbital in the plane of atomsare  short-dashed lines are along tBdine (center to center of an edge
degenerate only at the center and a corner of the Brillouin zonethe dotted lines are along tizeline (center of a face to center of an
Two of the band energigshe lobe of thep orbital perpendicular to  edgg, and the long-dashed lines are along thédine (center to a
k) are proportional td neark=0; excitations of these bands behave cornej. As with the two-dimensional example, the bands have par-
more like acoustic phonons or photom dispersion Note some ticle or hole character ned=0 depending on the direction &f
of the bands behave like particles and some like holes kefr Note that the corner is a point of triple degeneracy.

Also, one of the bandghe longitudinal band with the direction of

the lobe of thep orbital in the same direction 49 behaves like a with k. These bands have roughly constant group velocity for

hole or a particle depending on the directi@oward the middle of smaIIIZand the group velocity does not depend on the direc-
an edge or toward a comer tion. Thus the perpendicular bands behave like neither par-
. ticles nor holes, but like photons or phonons. Interestingly,

B. Square lattice the nondegenerate band haesgativegroup velocity: a wave

The bands for a square lattice are two-dimensional funcPacket moves in the opposite direction to the wave number.
tions: Ea(erky)- The Brillouin zone for a square lattice has Another interesting feature is thaf the sign of the group ve-
three special points: centék,,k,)=(0,0), which is thel' locity depends on the direction & the IongitudinaIAwave
point, center of a sidén/x,0), which is theX point, and  can behave like either a particle or hole depending.on
the corner(ar/ 8,7/ 8x), which is theM point. A common
way of presenting the bands is to plot the band energy along
three special lines that connect these poiats:onnects the C. Cubic lattice
pointsI'and X (i.e., from the center of the Brillouin zone o The Brillouin zone for a cubic lattice has four special
the center of a sideX connects the pointf andM (i.e.,  points: centerk,,k,,k,)=(0,0,0, which is thel' point, cen-
center to corner andZ connects the points andM (center g1 of a face(w/ &x,0,0), which is theX point, center of an
of side to cornex o _ edge (7/ %, 7/ 5%, 0) which is theM point, and a corner

The band erlergliare plotted in Fig. 3 for these lines as 67/@(,77/63(.77/ &%), which is theR point. We have com-
function ofk=|k|=ki+k;. The solid lines are the band en- pyted the bands along six lines that connect these paints:
ergies along tha line, the dashed lines are along teine,  connectd™ and X (center of the Brillouin zone to the center
and the dotted lines are along thdine. The character of the of a face, S connectsX andR (center of a face to a corner
eigenvectors lets us assign the different bands. At the centgr connectsVl andR (center of an edge to a corngE con-
and the corner of the Brillouin zone, two of the bands alrenectsI” and M (Center to center of an edpi connectsX
degenerate and one is nondegenerate. The nondegenergigim (center of a face to center of an edigendA connects
band corresponds to thgestate havingn=0 character: thisis T andR (center to a corngr

the state whose wave function has a nodal plane inxthe  The band energies are plotted in Fig. 4 for these lines as a
plane. Thus, the nondegenerate band has character where mﬁction 0fk=||2| :\‘,—k% 2112 The character of the eigen-
k2 2.

lobes of thep state are perpendicular tg the band withm  vectors lets us assign the different bands. All four of the
=0 character crosses the other bands due to the lack of codpecial points have degenerate states andAth&, and A
pling to states withm=+1 character. The two degenerate |ines have degenerate bands. The two bands witlp tsate

bands atk| — 0 have the lobes of the state in thexy plane. . Iy :
. : : perpendicular tk are degenerate at tHg X, andM points
For both theX andA lines, the band that linearly increases ;i states are degenerate at R@oint (cornel. For the

from |k| =0 has ap state with the lobe perpendicular ko A T, andA lines the two bands with the state perpendicu-

while the band that is flat negk| =0 is parallel tok. lar to k are degenerate; foA and A these are the lower
For this system, the bands nelaf=0 with p-state lobes  energy bands while the degenerate bands are the higher en-
perpendicular tk have band energies that charlgesarly  ergy bands foiT.

042703-6



SIMULATION OF COHERENT INTERACTIONS BETWEEN. PHYSICAL REVIEW A 70, 042703(2004)

The bands show a remarkable richness for such a simple Lo ' N ' ]
system. All of the bands nede~0 have particle or hole 08f ]
character depending on the directionkofBut, interestingly, g 06:_ 3
whether a band has particle or hole character hkedr de- A ]

. . v . . . . Lo F B
pends on the direction & The cubic lattice is also interest- 5 04 -
ing because the interactionn®t well approximated by only a 022_ 3
including nearest neighbaor even next nearest neighbor T %y ]
interactions. Because the number of atoms in a spherical ] i Y S S

shell increases proportional ® while the interaction de- -1o -5 0 5 10

creases like 1%, the atoms at large distances must be in-
cluded for accurate band energies neat0. The sum in Eq. FIG. 5. The distribution of energies for a random placement of

(22) only converges due to the presence of m(ﬁ) and  Rvdberg atomsN Rydberg atoms are randomly positioned within a

= . . . . cube and cyclic approximation is used for the interaction potential.
the exmlk ‘R); the changing signs of these.fu.nctlons 9IVe The energies are scaled as discussed in the text. The solid line and
cancellations that converge the sum. w0 limits can be  qotted line are for one state andN-1 s states: the solid line is the
found analytically by converting the sum in E@2) into an  ayerage of many geometries with=216 and the dotted line is the
integral; the integral can be performed analytically whichaverage of many geometries witt=8. This suggests thaexcept
gives the energy of the band with tipestate parallel t.k as  for the small region - e<1) the main determination of the en-

€= \5877/273/ and the energies of the degenerate perpendiclergy depends on fewer than eight atoms. The dashed line is for the

lar states a&=—27/27y. simplified interaction potential used in previous theoretical treat-
ments; this potential simplifies the angular dependence of the
interaction.

IV. AMORPHOUS DISTRIBUTION

In Refs.[2—6], a cold gas is excited to Rydberg states thattron; however, in the actual experiments, the states are eigen-
can make degenerate transitions to nearby states. A typicatates of théotal angular momenturaf the Rydberg electron
description of this system is that a state hops away aftefspin plus orbital which changes the details of the interac-
making the transition. We have investigated the hopping astion. Because we include the degeneracy of phetates in
sumption through large numerical diagonalization. Our re-this model, the number of states ix3he number of atoms.
sults are not in complete agreement with previous theoreticahgain, we have scaled the interaction potential to remove the
investigationg4,5] but do support the main conclusions. trivial dependence on the density and the dipole strengths:

We performed calculations with two models. In both mod-
els, a singlep-type atom is in a gas dd-type atoms. TheN — . L3
atoms are randomly positioned within a cube with a lerigth Hij = V(ARij)dz_N- (25)
so that the density i®N/L3; to minimize the effect of the
surfaces, we use a cyclic interaction between the atoms the In Fig. 5, we show the distribution of eigenenergies for
difference isAX;; which is given by whichever is smaller in the two models. We obtained the distribution by diagonaliz-
magnitudeX;—X; or Xj-X;xL (with a similar prescription ing the interaction Hamiltonian for random placementh\of
for they andz components For a given number of atoms, atoms within a cube with a cyclic approximation to the in-
we performed\ independent calculations with the atoms atteraction. We averaged over a sufficient number of indepen-
random positions. We increased until convergence was dent geometries to obtain a smooth curve. Finally, we in-
achieved. creased the number of atoms in a single geometry until the

In the first model, we used the form of the interaction thatdistribution was independent of the number of atoms. The
was used in previous studi¢4,5]. This is a simplified form distributions for the simplified model and more realistic
of the dipole-dipole interaction where only the radial depen-model give qualitatively similar results, but there are differ-
dence of the interaction is retained. Defining the siptéo  ences. The more realistic model has a somewhat narrower
be the atom withp character, a scaled interaction Hamil- distribution which means that the simplified model will tend

tonian is defined as to give faster hopping. The qualitatively similar shapes of the
1 3 two models reflect the radial dependence of the strength and
Hy = _<%> (24) the random placement of the atoms.
N AR;| In Fig. 6, we show the time dependence of the probability

_ for finding thep state at the atom it started on. It is clear
for i#j andH;=0. The main simplification in this Hamil- from this figure that the more simplified interaction, E24),
tonian is the fact that the coupling is the same sign withsubstantially differs from the interaction that includes the
every atom and the degeneracy of thetate is ignored. The correct effect from the angular momenta and the angular de-
scaling removes the trivial dependence on the dipolependence in/. However, the difference between the models
strengths and the density. is quantitative and the main conclusions from previous theo-

In the second model, we used the form of the interactiorries seem to be unchanged. It is interesting that most of the
in Eqg. (6). This is a somewhat more realistic interaction sincedependence in both figures is already present with eight at-
it accounts for the angular momentum of the Rydberg elecems; this is because thestate is distributed over few atoms
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1.0 in each region can be ascertained and the hopping of the

Rydberg state can be seen experimentally.

Since we imagine the states will be distinguished by
ramping an electric field, we will assume the atoms are al-
ways in a strong electric field and that the Rydberg states are
Stark states. The interaction between the Rydberg states will

0.8

0.6

0.4

LB B R B o

0.2 be through Eqs(8) and(9). To be specific, we will treat the
00 ] case where one atom is excited to the61 state and all
o ; — 2' — é - other atoms are in=60. Each Rydberg atom is created ran-

t domly within a cube with edge length of #m and nearest
neighbor separation of 2@m. For all cases, we imagine the

FIG. 6. The probabilityP for finding thep state on the same g|acyric field is perpendicular to the line or plane of atoms so
atom that it starts on as a function of scaled time. The line types arg - 0

the same as in Fig. 5. Note that the fast drop in probability is wellZ ™™ . L
reproduced with eight atoms, which shows that most of the drop is Ve Plot the results for a line of atoms in Fig. 7; for all
due to hopping to adjacent atoms. The longer time developmerft@Ses, the regions are along teexis with then=61 state
shows the hopping of the state further from its original position. Starting in the leftmost region. The simplest result is when
there are only two atoms, Fig(&. The probability for find-

at short times. For the energy distribution, there is only ang then=61 state in the leftmost region is plotted as the

small energy rangewidth roughly 1 in scaled unijsthat solid line and the probability for finding the=61 state in the

changes with the number of atoms. For the time-dependeﬁlghtn;osé.rfgion Ilf ;[he doﬁ}ed Iitne. I t\;lve Welr)e é_cl).tpick ald
probability in Fig. 6, the rapid drogto roughly P=1/2) is speciiic distance between the aloms, the probability wou

accurately reproduced with eight atoms. It is the slower gegscillate between 0 and 1 like cost. Because the distribu-

cay (and small energigghat depends on the number of at- tlognli'essrphzvt\/hnzgerda?gotr; '2 2?:(:;’1 tge(;? ;:ng tﬁ.gge. oefsfrt?]_e
oms. Note that the probability for the excitation to remain onduenc verag v IS giv

the starting atom does not decrease to 1 divided by the nung_amplng. The next case we plot, Figby, is for six atoms:

; ; . ne atom ofn=61 and five ofn=60. Again we started the
?(72 of atoms but is much higher: roughly between 1/6 anoﬁ:m state in the leftmost region. The solid line shows the

This scenario can be explained because the large enerf}?()bab”ity for finding then=61 state in the leftmost region,

: . ; o e dotted line is for finding it in the region adjacent to the
shifts and the corresponding rapid drop in time are due tstarting region, and the dashed line shows the probability for

close pairs which give large interactiots;. Close pairs finging it in the rightmost region. It is interesting that the
roughly act like isolated systems because the pair energy onapility for finding then=61 state in the region adjacent
shifts them out of resonance with the rest of the atoms; this i, the starting region peaks just after it leaves the leftmost
similar to the dipole blockade idef3]. The p state then oqion and just before it reenters the leftmost region. It is
hops back and forth between the close atoms; it is pinned t@omewhat surprising that the probability for finding 61 in
the defect at early times. However, there are some regiong,e |efimost region recurs up to 0.3-a8 us since the two-
within the gas where many atoms are roughly equidistantyiom case has damped to the average value by that time.
v_vithin these regions thp state can diffuse far from the ini- Note also that the probability for finding=61 in the right-
tial atom. - , ,_ most region peaks at4 us to a value of 0.3. The probabili-
This idea can be quantified. B;; (t) is the probability  tjes oscillate out to~20 us and shows that the coherence
that thep state is on atom when it starts on statg, then the  syrvives the spatial averaging for substantial times. For the
quantity N'=[2;Pf; (t)]"* roughly tracks the number of at- |ast case, Fig. (£), we show the effect of having an atom
oms thep state is spread over if it starts on atgg For the  missing from one of the regions; this case has five atoms in
more sophisticated model, there are geometriesjgrilat  six regions with the pattern 61,60,skip,60,60(66., there is
did not allow thep state to sprea¢roughly 24% starting, no Rydberg atom in the third regipriThe solid curve is the
spread over four or fewer atomstat4).The remaining part probability for finding then=61 state in the leftmost region,
of the population was spread over a wide distribution ofthe dotted curve is the probability for being in the adjacent
atoms which seems to represent {hetate hopping away region, and the dashed curve is the probability for finding it
from the original atom. past the skipped region. The probability for finding61 in
the two leftmost regions behaves as in the two-atom case,
Fig. 7(a@), and there is very little probability for finding it
beyond the skip region during the first 1&. Then=61 state
The hopping of a Rydberg excitation between atoms hakas a difficult time jumping the gap caused by the missing
been invoked to explain the results in Refa-6]. We note  atom because the interaction between region 2 and region 4
that this hopping could be directly measured. This can bés a factor of 8 smaller than that between successive regions.
accomplished by having a laser excite small regions of a ga8 similar effect occurs if there are two atoms within the
into a Rydberg staté; a second laser can excite a disjoint same region; the two nearby atoms interact so strongly that
region into a stateB. By using a CCD camera and state the pair energy is well shifted away from the band energy so
selective field ionization, the character of the Rydberg stat¢hey do not interact strongly with the rest of the atoms.

V. HOPPING IN A SMALL NONPERFECT LATTICE
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b ¢ J N B I B B f X0 N G B B IR L
0.8} (=) = 08F ]
LYY Y N g 06| - .
04 3 A [ \\4.,: -7
o ] 04 AN 3
0.2 = L | J
0.0 :": I 1 1 I . 02f kS ‘\ ,/_E
S ool T
0.8 - 0 1 2 3 4 5
E ] t (us)
0.6 -
. oab E FIG. 8. The probability for finding th@=61 state on different
E Nl ] atoms for a 2 2 grid of atoms. The solid line is the probability for
0.2 Lo s Tl finding then=61 state at the atom it started on, the dotted line is the
ook 4 s . . . probability for finding it on either of the atoms in adjacent corners,
LOR ™7 ' ' ' ] and the dashed line is the probability for finding it on the opposite
o8 K () 3 corner. Note the probability for finding the=61 state at an adja-
C ] cent corner peaks before finding it at the opposite corner; this indi-
o 0.8 S T A _ cates the excitation hops to the nearby atoms then to the opposite
04F e = corner.
o2l 3 o . o
ool Y -] first jJump to the adjacent corner before jumping to the oppo-

site corner. We find that the coherence is somewhat less sen-
FIG. 7. The probabilityP for finding then=61 state on various ~Sitive to the randomness in the relative positions of the atoms
atoms. Atoms are excited within regions that are separated bfor the square lattice; this means we could reduce the dis-
20 um and each of the regions has a width ofs81 as drawn in  tance between atoms and preserve coherence.
Fig. 1. (a) For two regions, the probability for finding the=61
state in the leftmost region is plotted as the solid line and the prob- \/, STRONG RYDBERG-RYDBERG INTERACTION
ability for finding then=61 state in the rightmost region is the
dotted line.(b) There are six atoms: one atom ¥ 61 and five of An essential states model has been assumed in previous
n=60. Again we started the=61 state in the leftmost region. The treatments of Rydberg-Rydberg interactions. We investigate
solid line shows the probability for finding the=61 state in the the validity of this assumption. In the next section, we nu-
leftmost region, the dotted line for finding tme=61 in the region  merically solve the time-dependent Schrédinger equation for
adjacent to the starting region, and the dashed line shows the probr model interaction between atoms. With this model, we in-
ability TOl’ finding it in the rightmost regionc) We ShOW the effect Vestigate when the Rydberg atoms will make transitions to
of having an atom missing from one of the regions; this case hag.states outside of those being explicitly treated. In the fol-
five atoms in six regions with the pattern 61,60,skip,60,60i%0,  |owing section, we numerically solve for the interaction be-
there is no Rydberg atom in the third regjoiihe solid curve is the tween two hydrogen atoms where transitions can be made
probability for finding then=61 in the leftmost region, the dotted ithin the n-manifold. This investigation also affects the pre-
line is for finding it adjacent to the starting region, and the daShec}(,ivictions of Ref[12] where the interaction between two Stark

line is for finding it in any of the three regions past the skip. The . .
probability for findingn=61 in the leftmost regions behaves as in _states(approxmated by an essential states mpaels an

the two-atom caséa) and there is very little probability for finding (l‘:cnpi)rtant ?SpeCt tOf ,L,JSAmg ';]he d'%OIIe'd'pt?]le |ntera?t|?ntf?r
it beyond the skip region during the first 1. The skipped region as qL_Jan um gates.” AS shown below, the esse_n 'fa states
blocks the hopping. model is only accurate for a strong enough electric field; the

strength depends on the distance between the atoms and
These are not the only interesting cases of Rydberghould be achievable.
atoms in a line. We have investigated several other cases
(atoms arranged in a circle geometry, four atoms in the
pattern  61,60,skip,60,60, N  atoms in  the _ _ _
pattern 61,skip,60,60,60,60, two atoms in the excited state ~ We solve the time-dependent Schrédinger equation for the
61,60,60,60,61, etc.Each of these has features that wouldmodel potentialV(ry,r)==1/r;=1/r,+ryr,/R3. The limit
be worth more detailed studies. R— o gives two isolated atoms. The atoms have outer radial
We plot the results for a two-dimensional array of atomsturning points atr;=2n7 and r,=2n5. We examined two
in Fig. 8. Again, we investigated several cases but preserttases:(1) when n;=n,=n and (2) when n;=n,n,=n+1.
results for only one of them. This case is &2 grid of  Within the essential states model, the first case is nondegen-
atoms. The solid line is the probability for finding thre  erate; however, we note that the states witkn+1,n,=n
=61 state on the atom it started on, the dotted line is the-1 andn,=n-1,n,=n+1 are shifted in energy by & from
probability for finding it on either of the atoms in adjacent the initial staten;=n,=n. In case 2, this state is degenerate
corners, and the dashed line is the probability for finding itwith n;=n+1,n,=n but again there are states that differ by
on the opposite corner. We note that the61 state seems to energies of order 1. The results for the limitations of the

A. n-changing interaction
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essential states model was similar for both initial states. We 7.7 A -1 _1
i . Li=di+ds A=J1-Jy,
report the details for model 1 where both atoms start in the
samen-state. e s s s
We expanded the wave function in a basis of states Lo=J3+ds Ar=J3-Js (28)
n (1) (r) and increased the number of basis functions

. . . . though many aspects of H atoms in fields have been ex-
until convergence was achieved. The basis set consisted g y asp

Il pai f functi ith dn. betw _A d Bored, we do not know of any treatments of a pair of inter-
all parrs of functions withn, andn, betweenn=an andn acting H atoms at this level of approximation. This model

+_An; we increasedin until the tim_e-deper_1dent wave func- should be the subject of a more detailed study than that pre-
tion was converged. We started with the distance between tl?ented in this section

o . o
atoms aR— 8n gnd reduced until the initial state started to For a single atom in a static electric field, the projection of
substantially mix. The states,n are most strongly coupled Stark states on angular momentum states is simply the

ton-1,n+1 andn+1,n-1 due to the small energy differ- - - .
ence: e, +en—en1—ensa| ~3/n%. We computed the prob- Clebsch-Gordan coefficients sinteis the addition of the
two angular momenta

ability of finding the pair of atoms in the three states and
n¥1,n+1 when the atom started in the staitgn. We found o = mlimi _ 29
that the probability for finding the atom pair in these states el = (Ol majzms) 29
decreased te-90% atR~ 8n? for n=40 and the probability : - 3 Do
The magnitude ofl; andJ, are bothj;=j,=(n;—1)/2. The
4502 = ~5.2n2 . - :
ge_:%rgased te-50% atR~4.5" for n=40 andR~5.2n" for range of the azimuthal quantum number js=m;<j;. The
Our conclusion is that the transition betwagmanifolds Eg?:ng? m_ th)e/zen_?;]gy due_ to the electr!c f'ild E§_1r.“2
should be weak foR>10n? as long an<80 unless acci- _ n_11m/12 mzd .___e_TaX|£n1ur/n2 energy 1s whem,=J;
dental degeneracies are present. This distance is somewh_a(tnl )/2 andm,=—j,= (_nl )/2. )
smaller than might be expected. The important point is that In terms of the commuting angular momenta, the coupling
the transition matrix elemenmt,n—n-1,n+1 orn+1,n-1 potential can be written as
is proportional to'n?/3)? since there are two dipoles between 9nyn,
states in different-manifolds; the(1/3)2 reduces the cou- V= =F[ny(J;,— Jz) + Np(J3,— s 1+ 4;3
pling by an order of magnitude over what might be expected.
For different applications that require the mixing to be less X{J=3) - (Fa=3) -3A(F =3 -RI(I-—J,) - RIL.
than 10% the distance would need to be larger. Using these {91792 (3= 34) = 331 =) - R = 3a) - RY
values, we find that the distance at which the essential states (30)

approximation becomes problematicRs-2 um for n=60  The gjgenstates of this interaction will be a superposition of
which is much smaller than the values used in the simulaghe states which we write ds,,my, ms, my) (for notational
tions of the previous section. simplicity we suppress thg andn quantum numbers since
they are fixed for specified-manifoldg. The highest energy
state whenR— is |j1,=j»,j3,~j4) Which corresponds to
both atoms being in the highest energy state of the Stark
The interaction between two H atoms in an electric field manifold. o _ .
gives rise to a potential The dipole-dipole interaction acts to mix the Stark states.
The mixing can be suppressed if the spacing between the
Stark states is large compared to the coupling matrix ele-
1 . LA A i i 3 = =
V=(z+2)F + S[f1 T~ 3(F,-R(T,- R, (26) ments. We examlned two spe.mal caéé:parallel toF andR
R perpendicular tdF) to determine the distand® where the
Stark states start becoming mixed for a fixed external feld
: : L We found that the transition from little mixing to complete
which gives the Stark sphttmg .Of the energy levels ar‘dmixing occurred over a small region @& Thg separatri)on
couples together the states within thenanifolds. For the _distance between strong mixing and little mixing is roughly

special case of two H atoms, we can compute the matri e distance where the dipole electric field from one atom is
elements between the different states using the usual decom- P

23 L
position of ther” operators in terms of the scaled Runge-Lenzcormj"’“a.ble to the e_xternal field:/R°~F. This 'EQF’_"le,f the
vector[16]: atoms will need a distance greater tHan,~ Cr?/*F~/2 for

the essential states approximation to hold; the paranieier
independent of andF. If F is in V/cm andR is in um then

- 3 - calculations fom=41, 61, 81 giveC~0.16 whenR=2.

1= EnlAl- 2= 5”2A2- (27) However, it is important to note that i is too large then
states between differem-manifolds start mixing and then
further complications arise from jumps to adjacent

The scaled Runge-Lenz vector and the orbital angular mor-manifolds. Then-mixing field strength is==1/(3n°). The

mentum operators can be expressed in terms of commutinginimum distance that allows the essential states approxima-

angular momenta tion will be when the field is slightly less than @h®); this

B. Within Stark manifolds
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field gives the minimumR.,~Dn"® where D~1.35 the transitions to adjacentmanifolds and transitions within
X104 um when R=% D is reduced slightly to 1.1 ann-manifold.

X 107 um whenR=%_ It is important to note that the mini- We investigated the hopping of an excitation through a

mum distance where the essential states approximatioﬁydb.erg gas in various configurations. We studied two mOd.'
Is with random placement of atoms and found that the main

works well increases faster than the size of the atom whiclf . . : TR
increases ag?. points of previous discussions of this situatifi+-6] were

For then=60 state, the minimum distance for which the correct.although more realistic models affect the quantitatiye
essential states model works is roughly.éh. Thus, the es- p;oge(;tt:es. Wwe StUd'e% tfhe bgmd strucf[ur.(la f‘?F a pgrLect I?ﬂce
sential states model should be a very good approximation fo(r)f yoberg atqm; and found many simi armgs with studies
the examples described in previous sections. 0 optlcal excitations along metal nanoparticles. We also

studied small arrays of atoms in nearly regular arrangements
since these are more experimentally accessible. We found
that the Rydberg excitation should coherently hop between

We have investigated several aspects of strong intera@toms in configurations that are experimentally accessible.
tions in a Rydberg gas. We performed a full simulation of the
motion of two atoms to obtain the conditions when the inter-
action between Rydberg atoms is coherent; in contradiction
with previous studies, we expect the dipole hopping of Ryd- We gratefully acknowledge conversations with T. F. Gal-
berg excitations to be coherent. We also investigated th&gher. This work was supported in part by the NSF and in
limitations of the essential states model since this has begpart by the research program of the Stichting voor Funda-
the foundation of previous treatments of both Rydberg gasesienteel Onderzoek der Mate(EOM), which is financially
and effects such as the dipole blockade; we introduced twsupported by the Nederlandse Organisatie voor Wetenschap-
models(which could be investigated more deeptp study pelijk OnderzoekNWO).

VIl. CONCLUSIONS
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