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Recurrence spectroscopy of atoms in electric fields: Failure of classical
scaling laws near bifurcations
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The photoabsorption spectra of atoms in a static external electric field shows modulatiomedusrances
electron waves that go out from and return to the vicinity of the atomic core. Closed-orbit theory predicts the
amplitudes and phases of these modulations in terms of closed classical orbits. A classical scaling law relates
the properties of a closed orbit at one energy and field strength to its properties at another energy and field
strength at fixed scaled energy- EF~ Y2 The scaling law states that the recurrence strength of orbits along
the electric field axis scale @4 We show how this law fails near bifurcations when the effective Planck
constant: =% F*increases with increasing field at fixed The recurrences of orbits away from the axis scale
asF8in accordance with the classical prediction. These deviations from the classical scaling law are impor-
tant in interpreting the recurrence spectra of atoms in current experiments. This leads to an extension of the
uniform approximation developed by Gao and DelBéiys. Rev. A56, 356 (1997)] to complex momenta.
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PACS numbes): 32.60+i, 03.65.Sq

. INTRODUCTION in particular become$(e)27F~Y* in scaled variables and
this quantity determines the phase of the returning semiclas-
Experiments show oscillations in the average photoabsjcal waves. The “effective Planck constant” is defined as
sorption rate from low-lying initial states to unresolved final 7 _ c14 i, atomic units. Thush can be changed at fixed

states near the ionization threshold of atoms in external E|e%“|mply by varying the electric field range measured in the
tric and magnetic fieldgl—3]. Closed-orbit theory attributes experiment. SmalleF at fixed e implies higher principal
these oscillations to classical orbits of the electron that begin, - .+ m numbers, while largerF implies lower. We show

a.r|1|d gnd neaL the nUCIGM’s]' Thel Wa(\j/elenhgthsl of thehr(r)]s- an example recurrence spectrum where the primitive semi-
cillations on the energy axis are related to the closure imes ., qjq5| approximation that gives good agreement with

of the classical orbits bxg=h/T and the amplitude of each . . . s
Xe P fuantum calculations and experiment in the smalkighn

oscillation is inversely proportional to the divergence rate of - tb laced b i€ iclassical :
the neighbors for each orbit. Therefore, a Fourier transforn}®9'ME MUSL be replaced by a unitorm semiclassical approxi-

of an experimental or a calculated quantum photoabsorptioﬂqat'o.n as the f|gld strength is increased even thgugh the
spectrum gives information about the closed classical orbit§/assical mechanics of the system has been kept fixed. The
in the system. The absolute square of the Fourier transforfgniform approximation talfes into account that related orbits
of such an absorption spectrum is the “recurrence specwith having actions withir: of each other cannot be consid-
trum.” It has peaks at the closure times of the closed orbitered in isolation.
and the height of each peak is the “recurrence strength” for An overview of uniform approximations in closed orbit
that orbit. theory has been written recently by Main and Wunf&jr

In this paper we compare quantum and semiclassical caknd uniform approximations have been applied to periodic-
culations for hydrogen at fixed scaled energy in an electriorbit theory by Schomerus and Siebgd]. Many earlier
field for different ranges oE andF (we useF for the elec- works exist on uniform approximations and castastrophe
tric field strength to avoid confusion with the energy. theory[10-12.
Results form=0 and 1 spectra are reported. Quantum cal- The semiclassical recurrence strength of an isolated
culations and semiclassical calculations for —3.0 have closed-orbit in hydrogen at a fixed value ef scales as
been published for H and I[B,6]. Experiments for He have (F/F,)Y® except for the orbits that are on thez axes,
been performed by Keeler and Morgan and are beingvhich scale as K/F,)Y% HereF, is fixed and once the
planned by Kips and Hogervorft]. classical orbits and recurrence strengths are computed at this

The recurrence spectrum is best studied in scaled-variablkeld strength, the recurrence strength is known along the
experiments, in which the photon energy and the externaéntire line satisfying the constraiat= EF~ 2. Both formu-
fields are varied simultaneously to keep the scaled energias predict an increase in the recurrence strength as the field
fixed, in an electric fielde=EF 2 Associated withe is a  strength is increased. The recurrence strength of the on-axis
scaled classical Hamiltoniaf=HF ~¥2. Although classical ~Orbit is predicted to grow faster than the recurrence strength

mechanics is invariant under this scale change, quantum méf other orbits ag= increases. . _
chanics has a natural scale setfhyThe size of the scaled =~ WhenF increases sufficiently at fixed, these semiclas-
coordinates and momenta relative ftovary with the field sical Scallng laws will begln to fail because of the increased
strengthF. The ratio of the action along an orbit fig S/%, size of, but there has been little work that quantifies this
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nonscaling, especially in a system amenable to experimentrom which they came, later to return to give thierf+1)
Atoms in electric fields are simple systems in which to studyrecurrence.

these effects. First, we show that time= 1 spectra follow the It is useful to define the “k,n) recurrence integral”
scaling law while them=0 spectra do not. Second, in the

- i i Ri=(D | AL ®)
m=0 spectra the first recurrence strengths that deviate from k ilAreturn/ -

the scaling law are the recurrences due to orbits neat-the
axes. The recurrence strengths of these orbits in our quantu
calculation can decrease relatively to the recurrences of the

;l;pen the oscillator strength is approximated by

other orbits in the system, in contradiction to the classical f= —277*1(E—Ei)|m2 Ry. 3
scaling prediction. Third, we show that this comes from the kn
breakdown of the isolated orbit approximation. Asin-  Formulas for these recurrence integrals were developed in

creases, orbits near thez axis that are isolated at low elec- [4,13]. One finds

tric field strengths are no longer isolated at higher field

strengths. The recurrences from these orbits can be calcu- RE:23/27757( 0?'”)NE, (4)
lated semiclassically with a uniform approximation devel-

oped by Gao and Delos. Their method works when thevhere))(6) is the angular distribution of the initial outgoing
closed orbits involved are real, but Gao and Delos did notvave[13].

develop a method of including the complex orbit contribu-  The quantityN} contains information about the amplitude
tions before the bifurcation. We have a simple method ofand phase of the returning wave coming from a particular
locating the complex orbits and calculating the uniform re-direction. For the orbits parallel or antiparallel to the field
currence strength when both real and complex orbits contribdirection (“uphill” and “downhill,” labeled k=0 or =, re-
ute. Therefore, we can easily study the changes in recurrenegectively it is

spectra from complex orbits as well as real orbits as func-

tions of scaled energy and the size fofand use this to
understand the failure of the classical scaling law. There is a
simple formula for the field strength where the uniform ap-
proximation becomes necessary for a given scaled energy.While for all other orbits it is

0o,n
N =4rir ;12

-1
TN exr{i(SS/ﬁ—,uSEHy(O), (5

NE: _ 29/4773/264377/4'. (; l/4| Sinﬁiksiné?'f“n| 1/2

—-1/2
exp{i
Closed-orbit theory divides the configuration space into
an inner and outer region. In the inner region we have thélere ¢; and ¢; are initial and final angless is the action all
Coulomb problem with a mixture of regular and irregular the way around the orbity is the Maslov index for the
Coulomb functions determined by the quantum defects of théeturning wave, and, is a boundary on whicté6;/96; is
ionic core. In the outer region we have the Coulomb attracevaluated; each is labeled as needed fomthereturn of the

tion plus the external field and we can use a semiclassicdith closed orbit.

Il. CLOSED-ORBIT THEORY P
f

k
70 . ®

A. Recurrence integrals X

n _ nz

approximation to the Green’s functid®; . The average os-  Now Ngj andNy are matching constants derived by doing

cillator strength density for a transition is proportional to thea stationary phase integral about the direction of the incom-

imaginary part of the overlap matrix ing eIectronB'f"n [4] and two approximations were used in
_ deriving Egs.(5) and(6). In the first, the returning wave can
Df=—27"HE—E)Im(Dy;|Gg D), (1) be described as an azimuthally rotated zero-energy Coulomb

wave coming in from the directiod". In the second, the
closed orbit is isolated from its neighbors. This is equivalent
; AR ) to the assumption that only one stationary phase point con-
the d'?OIe operator of the laser, ar@ is th? outgoing i tes to thepintegral. Thisysecond conditi)tl)rf)is violgted near
Green’s function for electrons ?f energ?;,y In trys formula, e pifurcations of a closed orbit where multiple stationary
[Dys) effectively constitutes a “source” an@g|D ;) are phase points merge. Since only stable orbits can bifurcate
waves that go out at constant energy from this source. Thosgio new orbits or, in the inverse bifurcation, absorb orbits
waves that later return to the source contribute to the integral,q destroy therfi8, 14, only the uphill and downhill orbits
(Dyi|GE[Dys), which governs the absorption rate. A in this system can bifurcate and all bifurcations occur near
“primitive” semiclassical approximation to the Green’s the =7 axes.
function gives a sum of returning waves associated with each \when is a stationary phase point isolated? If we consider
distinct closed classical path. integrals of the form

Each such return constitutes a classical recurrence. These
are labeled by two indicek(n) wherek labels the particular o i
closed orbit anch is the number of returns to the origin. If K= f_xA(q)expﬁS(q)dq, @
we ignore core scattering, then the returning waves associ-

ated with a closed orbit . ..(q) are simply turned around then the dominant contribution comes from the vicinity of
by the Coulomb field and they go back out in the directionpoints q,, wheredS/dq=0. The pointq, is isolated from

where i; is the initial stateD is the relevant component of
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another stationary phase point, callgt, if the ratio of

|S(g1) —S(qg)| to 7 is large[15]. )
S/% in Eqs(5) and (6) becomesS(e)27F ~* in scaled

variables, so for fixed scaled energy the approximations used v

to derive Egs.(5) and (6) will fail as # increases if the

stationary phase points in the bifurcation satisfy the inequal-

ity

2m| &, — S| <FY¥=4. (8)

The coelescence of stationary phase points is treated properly

by going to a uniform approximation.

B. Uniform recurrence integrals
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FIG. 1. Calculated Lagrangian manifolds befdsolid line),

near(dotted ling, and afterldashed linga bifurcation of the uphill
orbit is shown. The uphill orbi{square symbglexists for each
scaled energy while the newly bifurcated orkitercles only exist

A uniform approximation for the hydrogen atom in the after the bifurcation.

electric field was developed by Gao and De]Ja6,17. We

have implemgnted this method and have extended _it to in(pu ,v) surface of section is inappropriate, and we define a
clude scattering off an alkali-metal core. Let us outline thegrface of sectionf, ,u) with v=0 and a manifold on that
theory and give the results for the uniform recurrence intégyrface. The following discussion holds for the downhill or-

gral.

For an electric field along the axis in spherical coordi-
coordinates

nates we use scaled semiparabolic
(u,v,py,pP,,7) [13,18,19 defined by

r=3(u*+v?), r=rr?

z=3(u?~0v?), z=2F", 9

dt .
— =u?+0?, t=tF%¥4,
dr

The Hamiltonian in scaled semiparabolic coordinates is

fi= L o2+ 2+—mz+—mz
BTy
(10)

wherem is thez component of the angular momentuenis
the scaled energy, ang, and p, are du/dr and dv/dr,

respectively. There is a complication: The orthogonal coor

dinatesu and v correspond to the and —z axes in real

space and therefore are both axes of cylindrical symmetr)mentapvf

bit if we replace 0, ,v) by (p,,u) everywhere.
Aplot of vt vs p, on the surface of section traces out the

Lagrangian manifold. The Lagrangian manifold intersects
the p, axis at pointspvf whenever{=v=0 and these are

the locations of the closed orbits. The semiclassical ampli-
tude of the returning wave associated with the closed orbit is
related to the inverse of the sloyﬁef/ﬁpvf of the manifold

at these points. This derivative can be relatea&b”/aai in
Eq. (5) [18].

The shape of the Lagrangian manifold determines the type
of bifurcation. In this system orbits are created from the up-
hill orbit and destroyed by the downhill orbit in cusp bifur-
cations modified by the cylindrical symmetry about the
axes. Near a cusp bifurcation on thexis, the manifold is
nearly cubic aboup,=0. On one side of the bifurcation the
manifold will intersect thep, axis at only one poinlpvf
=0, corresponding to one real closed orbit. The other roots
of the cubic manifold are complex, corresponding to imagi-
nary orbits with complex momenta. At the bifurcation the
slope of the manifold is zero. After the bifurcation, two new
intersections with the, axis at+p, move away frompvf

=0. The manifold now has three real closed orbits with mo-
=0,=p, . This is shown in Fig. 1. At the bifurca-

As a result, the uniform approximation will involve a Fresnel tion energy the semiclassical amplitude predicted by (&p.

integral instead of a Pearcey integfal,2Q.

is infinite. Near the bifurcation energy, inserting E§) into

Hamilton’s equations of motion are used to calculate theEd. (4) will greatly overestimate the recurrence strength.

closed orbits in §,v) space. The ,v) transformation re-

The semiclassical representation of the coordinate space

moves the Coulomb singularity. Since the uniform approxi-wave function is constructed by the projection of the mani-
mation is needed only for the uphill and downhill orbits, fold onto the (1,v) coordinate axef21]. At the bifurcation

which do not exist fom=1, we setm=0 in this section and
start the trajectories from the origin=v =0. The initial di-
rection is given bi=tan‘1(pvi /pui), with 0= P, <2 and

pui=1/4—pfi. This angle is half the anglé in spherical

thev projection fails, but the projection of the manifold onto

the mixed (,p,) coordinate and momentum space axes is
well behaved. If we go into the mixed space representation
of the wave function when we are near a bifurcation and
transform this mixed space representation back into the co-

coordinates. The trajectories evolve in the pOtential and theardinate space, then we get a well behaved’ ﬁnite’ coordinate

return towards the origin. We define a Poincareface of
section f,,v) with u=0 and recorcbuf andv; when the

space wave function.
Gao and Delos show that the uniform coordinate space

trajectory crosses the surface in either direction. This worksvave function near the bifurcation of the uphill orbit is given

for 0=0®;<w/2. For the downhill orbit,®;==/2, the

by
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on , wherea=a,/az, \=—ay/2h, andD"=— 7w223expi(% /%
Aynir=D Jp A(p,)exiF (p,) IN(20)) —vn/2)} is a complex constant. E¢L7) has stationary phase
’ points atx=—a and 0.
X Jo(p,v! 1) Jo(pyulfi)p,dp, , (12 The amplitudeg(x) can be expanded in a power series
aboutx=0, the location of the on-axis orbit,
where
9(x)=go+gsx+gox%. (18
P, &pA 1/2 ) .
R I The bifurcations occur whea(e) passes through zere,
A(p,)= , 12 : : :
Py, 9Py, = epis - If @ is negative, then real roots and real closed orbits
exist that begin and end with momentg=* \a. If a is
~ a,(€) as(€) . - positive, then imaginary roots and complex closed orbits ex-
F(pv)z[sg(e)— 5 p2— 2 p;‘] fi— Vs ist that begin and end with momenta= *i/a. However x
(13) is still real, even though the momenta of the orbits have

become imaginary, and we can use —a in Eq. (18) to
calculate the amplitude at the complex stationary phase

andD’'=— 2% is a constant. The functioR(p,) is the points of Eq.(17),

mixed-space action, the generator of the Lagrangian man W h vtic f £ th .
fold, evaluated on thath intersection of the surface of sec- € can now get the analytic form of the recurrence Inte-
gral in the neighborhood of=¢,; . We substitute Eq(18)

tion u=0. Sincep, = —JF /dp, this reproduces the cu- : . . .
on d NCEPy, (P,)/7p, this reprodu Y into Eq. (17), change integration variables to=x+a, and

bic manifold and the closed orbits are located at the romscollect terms with the same power afunder the integral.

p,,fzo,i V—ay/az. The mixed space action can be directly The result is
calculated from the formula

. ‘ i 0
_ RyMfn= D”[ g(a)e"(“z)azD()\;a) o a—?( we—at O(uz)] .
S(pv ’U):f pudu_f v dpv (14) (19)
and fitted to Eq(13) on the surface of section to gaf and ~ Where
az. The r.nlxed—Aspaf:e 'actlonS and the sca.lled coordl'nate g(a)=go—g,a+g,a?, (20)
space actions 2S coincide at the closed orbits. The uniform
recurrence integral is given by a9
5 :gl_zaQZl (21)
X=-a
Ry"™"=(D | Al =D'2%%7 f ApexdiF(p,)]
XN(20)(20¢)p,dp, . 15 ® 1 [m
N(20,))(20/)p,dp, (15) D(x;a)=f e'("/z)xzdx=§\/;[1+sgr()\)i]
a
C. Evaluating the recurrence integral
v v o
The uniform recurrence integral eliminates the divergence - \/;[ C( \[Xa +sgr()\)i8( \[Xa) ] .
in the primitive semiclassical approximation. The evaluation
of this integral when two of the stationary phase poihts, (22

are complex and the field strength dependence of(Es).
must now be examined.
The integral in Eq(15) is converted to a Fresnel integral

TheC andSin Eq(22) are standard Fresnel integr®,23
and sgnk) is the sign ofA. The field strength dependence of

in the variablex= p,f with an additional end-point correction Eq.l 52?) IS N the parameted, which is proportional to
from x=0. The closed orbits correspond to the roots of the” _ -+ I~ Lh. The parametea depends only or.

cubic manifold atp,. =0 and +.—a;/a;. Complex mo- Th? coefﬁmentsgo., 91, andg, can be.calcula.ted wh_en

; t be con sfi dered whan/as is positive and onl the mixed-space action is calculated by integrating trajecto-
menta must be cor whap/as IS p Y ries for a range op,. until they reach the surface of section
the on-axis orbit withp, =0 is real. i

If we define

(p,,v) for u=0. The functionsg(p,) andé(pv) are then

known from Egs.(16) and (14) and g(p,) and S(p,) are
fitted to polynomials inp? and p?. In principle, the calcu-
(16)  lated manifold should be transformed by an addition change
of variables to normal form, but the deviation of the La-
grangian manifold from a cubic polynomial is very small for
the bifurcations of the uphill orbit in the scaled-energy range
below e= —2 so the root positions can be calculated directly
Rgnif,n:DuJ g(x)expli A (2x2+ax)}dx, (17) from the fittgd .manifold. The Lagrangian manifold near lthe
x=0 downhill orbit is more strongly curved and the deviation

Py, 9Py,

P, 7P,

a(p,) =) 65)

and change variables tq then
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from the cubic form can be significant for bifurcations near 10—
e=—2. Betweene=—2.1 and—3.0 the cubic approxima- ‘
tion for the downhill orbit manifold becomes very good. 5r 7
Equation(19) should be compared to the uniform result of = _l h l ] ,
Bleistein[24]. The Bleistein formula as adapted by Gad6] % O FpHessnir} IH {HH{:“[%
is = I
i
. ) a)—g(0) i r
Rgmf'HZD" g(a)e_'(}‘/z)azD()\;a)-l—g( ) g( ) —, -10 P T WU S T
a A 0 2 4 6 8 10
(23 s
whereg(0) is the amplitude of the uphill orbit;=0, and FIG. 2. Quantum(top) and primitive semiclassicabottom m

g(a) is the amplitude of the new closed orbit. This was the=0 recurrence spectra at=—3.0 for 1.85<F<10.9 Vicm (60
formula used to calculate the spectra[it6,17 when the  <n<95). The quantum spectrum is in reasonable agreement with
momenta were real. Near the bifurcation the finite differencehe primitive semiclassical spectrum.

term[g(a)—g(0)]/a in Eq. (23) was taken to be a constant,

equal to the limiting value as(e)—0 from below[16].  |oy.field strengths. Note that we plot the absolute value of
Whena was large and positive the asymptotic form of thehe Fourier transform instead of the square of the transform
terms involvingg(a) was shown to cancel so ony(0)  to emphasize the weak features in the spectrum. The agree-

remained, giving the isolated orbit res{dt5]. However, the  ment is good, although the semiclassical approximation

b_ehawor between the blfurc_atlon energy and the_ isolated O\ erestimates the peaks néae5.9 and 7.9. The level of
bit result could only be estimated by extrapolation frem

_ S ; . agreement is comparable to that in Réf]. Figure 3 shows
= €vir and approximations. This leads to problems since the, o~ 1ated semiclassical recurrence strengths and the

D e L o et uantum recurence srenghs or hydrogen; 0 a g
orbit result aw); Ff)rom the bifurcation SincegEq$9) and eld strengths. The semiclassical recurrence strengths have
Y : increased according to the scaling law, but the general fea-

23) are equivalent near the bifurcatiog(a) and a A
(—g)(O)]/a gan now be calculated with gE(cqz)O) whgg(th)e tures, relatively small peaks belo8~ 3.9 and then the first

momenta are complex. By inserting the proper complex stalarge peak aB=3.9, etc., have not changed.

tionary phase points into Eq23) we get results that are A comparison to the guantum spectr26-27, how-
smooth functions ofe and . In particular, the Bleistein ever, shows significant changes between the low-field and

formula now smoothly goes to the isolated on-axis orbit re-the high-field recurrence spectra. In the quantum calculation,

currence strength in the limi(e)— + as e is varied at the large peaks nea=3.9 and 5.9 seen at lower-field

fixed field strengthif we use Eq(20) to calculate the contri- strengths are greatly suppressed relatively to the recurrence
butions of the complex momenta. No extrapolation isstrengths of the other orbits at higher-field strengths. There is
needed. It is the and# dependence of the Bleistein formula MOW @ cluster of peaks of essentially the same heights in the

with real and complex contributions that determines the scaltange 3.8<5<6. In Fig. 4 we show the semiclassical and the

ing or nonscaling of the recurrence spectra measured in eduantumm=1 spectrum at high fields. These are, in contrast
periments. to them=0 results, in good agreement. Tire=1 semiclas-

sical recurrence spectrum was calculated usingrke) or-

bits and changing the angular distribution of the outgoing

waves[28]; therefore, the closed orbits in Fig. 4 are the same
For comparison to known results we calculated the ac-

tions and amplitudes for thek{n) recurrence strengths in —

Ill. CALCULATIONS AND COMPARISONS

hydrogen atF,=1985 V/cm ande= —3.0 and scaled these 10 1
values into the range of the experiments and calculations. I

Hydrogen is the simplest case to study the scaling behavior = 0 I

of the spectra because there is no core to complicate the ) 10

scaling recurrence strengths. Most experiments have been e« I

done on alkali-metal atoms, but the short action alkali spec- -20

trum is usually very similar to hydrogen. The differences are

due to the quantum defects of the core. Courteewl. at -30 0 2 zl'. 6 8 10

MIT have published calculations and experimental results for
lithium in the field range 1.8 F<11 V/cm (low field, high

n, 60<n<95) with the electron excited froms3o np states FIG. 3. Quantunitop) and semiclassicgbottom) m=0 recur-

[3]. The Wesleyan experiments were performed on singletence spectra at=—3.0 for 176<F<890 V/cm. The quantum
and triplet helium in the field range 183F<890 V/cm  spectrum does not agree with the primitive semiclassical spectrum.
(high field, lown, 20<n<30) and the electron was excited In particular, the pattern of large peaks in the range<®¢:6 is
from the 2 to np states]7]. Figure 2 shows the calculated completely different. The large peaks just beléw 4, 6, and 8 are
semiclassical recurrence strengths and the quantum recufom repetitions of the uphill and the downhill orbits that are near
rence strengths for hydrogem=0, s to p excitation, at bifurcations(see Fig. &.
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S FIG. 6. Locations of bifurcations of the uphill and downhill

iclassi _ orbits plotted vs the scaled energy. The circles are the bifurcation
FIG. 4. Quantunitop) and semiclassicabottom m=1 recur- energies of the downhill orbit and the squares are the bifurcation

rence spectra at= —3.0 for 176< F<_890 \_//cm (26<n<30). The locations of the uphill orbit. Notice the accumulation of bifurcations
quantum spectrum and the semiclassical spectrum show goqgst belowe=—2 and 0

agreement. The uphill and downhill orbits are completely absent in

the semiclassical spectrum, lghostpeaks near the bifurcations are ) ) o .
visible in the quantum result. At low fields and highn, n~80, the primitive semiclas-

sical approximation is reasonably close to the uniform result

orbits used in Fig. 3. The=1 semiclassical spectrum, how- &t €= —3.0, but it is already starting to diverge. The bifur-
cation energy iss=—3.028 77 ande=—3.0 is on the for-

ever, does not contain recurrences from the uphill and down=¢ . ) . .
P idden side of the bifurcation where complex orbits affect

hill orbits since they lie in the nodes of the angular distribu- L
tion produced by the laser. The slightly high recurrencell® recurrence strength. At high fields and lown~25, the
strengths in the low fieldn=0 spectrum are also a clue. Primitive semiclassical result has increased BYRo)™,

They are associated with the 15th return of the uphill orbit2Pout a factor of 3, and the uniform result has increased only
and 9th and 18th returns of the downhill orbits and these ar8!i9htly. As the other closed-orbit recurrence strengths in-
near bifurcations. From the discussion of E@2) and(23), creased according to the scaling law, the recurrence strengths

we expect deviations from the classical scaling near the biof the orbits near thez axis did not increase at the pre-
furcations. dicted rate when they were near bifurcations. There the in-

We calculated the uniform recurrence amplitudes and'€2se in the recurrence strength was much slower than the
compared them to the primitive recurrence amplitudes in th@ediction. This is the main cause of the deviations from the
two different field strength ranges. The recurrence strengtfiCaling law in the recurrence spectra and explains the change
after Fourier transformation is proportional to the recurrencdom relative agreement to complete disagreement seen in

amplitude of the orbif13,29. Figure 5 shows the calculated F19S- 2 and 3. Since there are many bifurcations in this sys-
recurrence amplitudes as a functioneofor the 15th return €M, this nonscaling is typical and at any scaled energy some

. . . - return of the uphill or downhill will pass close to a bifurca-
(lf5thge ;pthr:”ﬂ?rb't’ ;he retu(;rlr:esppni!ble for ;[the peaIﬁSat tion. Figure 6 shows the positions of the bifurcations of the
;né ét tr?e aveerelljgnelz %gﬂj i?reng?hpcr):‘n:%giﬂ:'T'S:XSe?irriesntgvg phill and downhill orbits versus scaled action and scaled
. nergy. The downhill orbit only exists below=—2 and
the other at the average field strength of the Wesleyan ex- . : : :
periments. At either engd of the scalgd—energy range {)Iotte any bifurcations are encountered just below this scaled en-

i s : rgy.
the uniform and primitive are starting to agree. However, the oy

: . . : ' The range of scaled energy about the bifurcation ener
width of the region where they disagree increases as the f'ekg/here the Sniform approximag[i)gn is needed can be estimatge):j
strength increases.

from the action inequality

aj

<ElA
42 F (29

which comes from Eq(13) evaluated at the real or complex
rootsp, =+ y—a and Eq.(8). This formula can be used on
either side of the bifurcation. The coefficierstg andas are
independent of the field strength because the shape of the
manifold depends only on the value af Thus the manifold

FIG. 5. Recurrence amplitude for the= 15 recurrence of the needs only to be calculated once at each scaled energy and
uphill orbit is shown for a range of scaled energies near-3.0 at  the inequality can be checked in the field strength range of
the field strength& =5 V/cm (lower solid ling andF=534 V/cm  the experiment.
(upper solid ling. The dashed and the dotted lines are the respective Figure 7 shows then=0 quantum and the uniform semi-
primitive recurrence amplitudes. The bifurcation occurs near  classical calculation. The agreement between the two is now
—3.028. This recurrence is the peak n&ar5.9 in Fig. 3. very good. To construct the uniform semiclassical recurrence
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near a bifurcation on some repetition of those closed orbits.
As the field strength is increased, the scaled-energy range
around the bifurcations where the primitive closed-orbit
theory fails gets wider according to EqR4). This makes
closed-orbit theory more difficult to apply, but the repair is
straightforward for hydrogen. We have also derived a for-
mula for the scattered wave near the bifurcation for alkali-
I ] metal atoms and this will be explored in another paper.
| S N E N B R The change from good agreement with a primitive semi-

6 2 4 6 8 10 classical calculation to poor agreementat— 3 as the field

S strength is varied for then=0 recurrence spectra can be

understood as a variation in the effective sizehofind a
breakdown of the isolated orbit approximation for the orbits
on the*+z axes. The isolated closed-orbit results are good for
the orbits away from the axes, so thie=1 recurrence spec-

spectrum the unifom approximation also had to be applied téra, where the recurrences of the on axis orbits are sup-

the 9th and 18th returs of the downhill orbit, which have aPcSSed: do not show deviations from the scaling law. Modi-
bifurcation ate= — 3.01903. fications to the uniform approximation to include complex

orbits allow us to accurately calculate the recurrence strength

If we know the uniform recurrence strength can we scaIeTPr them=0 spectra for different scaled energies and electric

that result to get the uniform recurrence strength at anoth o .
field strength at fixe@? The field strength dependence of thei'g::insérfar\lgths and study the deviations from the classical

recurrence strength is in the dependence of Eq¢22) and The uniform approximation used here replaces the

23). There are only three simple cases. At the bifurcation ' . . .
(Eq)(22) simplifies a);\d scales IiﬁeF(/F )8 The finite dif- isolated-closed-orbit approximation by an isolated-cusp ap-
. o) o

ference term in Eq(23) reduces the contribution from Eq. proximation: It presumes that the on-axis and bifurcated or-

(22) and it always scales a$(F,)¥. Neither term domi- bits are well separated from any other closed orbits. More

) ) .. .complicated cases also arise. For example ntiereturn of
nates the other at the bifurcation, so the observed variation e downhill orbit hasn—1 bifurcations that get closely

the recurrence strength with field strength does not follow . .
spaced in scaled energy as — 2 is approached from below

either scaling law though each part scales separately. Beforg. . . o .
. . - (Fig. 6). In these cases the isolated-orbit approximation will
the bifurcation, when the roots are complex, the asymptoti . . . .
) . 14 Certainly break down, but the isolated-cusp, cubic-manifold
form of Eq.(22) is proportional to F/F,)~"* and when com- g )
: : = P . approximation we used to calculate our uniform wave func-
bined with the finite-difference term goes over to the scaling. . . . .
ions will also break down as the manifold coils into a spiral

law for the uphill or downhill orbit. Past the bifurcation, . . . . o
when the asymptotic form of EG22) goes over to two terms and multiple stationary phase_ points exist witlinof one
another. Then an approach using normal fofh80] may be

that scale asR/F,)Y® and (F/F,)' we recover the scaling . : : .
N required to calculate the returning wave function entering
laws for the separated primitive recurrences. However, away Eq. (1). There is still interesting work to be done before

from the b_lfurcatlon _but before the primitive results can beWe have a complete semiclassical understanding of even the
used, no simple scaling law can be extracted from(E8). at
hydrogen Stark spectrum.

a fixed scaled energy. The direct calculation of the recur-
rence strengths as a function efand F is straightforward ACKNOWLEDGMENTS
though once the complex momenta are properly included.

IR(S:e)l

FIG. 7. Quantum(top) and uniform semiclassicabottom) m
=0 recurrence spectra at=—23.0 for 176<F<890 V/cm. The
agreement is now very good.
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