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Recurrence spectroscopy of atoms in electric fields: Failure of classical
scaling laws near bifurcations

John A. Shaw and F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36830

~Received 23 May 1997!

The photoabsorption spectra of atoms in a static external electric field shows modulations fromrecurrences:
electron waves that go out from and return to the vicinity of the atomic core. Closed-orbit theory predicts the
amplitudes and phases of these modulations in terms of closed classical orbits. A classical scaling law relates
the properties of a closed orbit at one energy and field strength to its properties at another energy and field
strength at fixed scaled energye5EF21/2. The scaling law states that the recurrence strength of orbits along
the electric field axis scale asF1/4. We show how this law fails near bifurcations when the effective Planck

constant\̂[\F1/4 increases with increasing field at fixede. The recurrences of orbits away from the axis scale
asF1/8 in accordance with the classical prediction. These deviations from the classical scaling law are impor-
tant in interpreting the recurrence spectra of atoms in current experiments. This leads to an extension of the
uniform approximation developed by Gao and Delos@Phys. Rev. A56, 356 ~1997!# to complex momenta.
@S1050-2947~98!10309-8#

PACS number~s!: 32.60.1i, 03.65.Sq
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I. INTRODUCTION

Experiments show oscillations in the average photo
sorption rate from low-lying initial states to unresolved fin
states near the ionization threshold of atoms in external e
tric and magnetic fields@1–3#. Closed-orbit theory attribute
these oscillations to classical orbits of the electron that be
and end near the nucleus@4,5#. The wavelengths of the os
cillations on the energy axis are related to the closure timeT
of the classical orbits bylE5h/T and the amplitude of eac
oscillation is inversely proportional to the divergence rate
the neighbors for each orbit. Therefore, a Fourier transfo
of an experimental or a calculated quantum photoabsorp
spectrum gives information about the closed classical or
in the system. The absolute square of the Fourier transf
of such an absorption spectrum is the ‘‘recurrence sp
trum.’’ It has peaks at the closure times of the closed orb
and the height of each peak is the ‘‘recurrence strength’’
that orbit.

In this paper we compare quantum and semiclassical
culations for hydrogen at fixed scaled energy in an elec
field for different ranges ofE andF ~we useF for the elec-
tric field strength to avoid confusion with the energyE).
Results form50 and 1 spectra are reported. Quantum c
culations and semiclassical calculations fore523.0 have
been published for H and Li@3,6#. Experiments for He have
been performed by Keeler and Morgan and are be
planned by Kips and Hogervorst@7#.

The recurrence spectrum is best studied in scaled-vari
experiments, in which the photon energy and the exte
fields are varied simultaneously to keep the scaled ene
fixed, in an electric fielde5EF21/2. Associated withe is a
scaled classical HamiltonianĤ5HF21/2. Although classical
mechanics is invariant under this scale change, quantum
chanics has a natural scale set by\. The size of the scaled
coordinates and momenta relative to\ vary with the field
strengthF. The ratio of the action along an orbit to\, S/\,
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in particular becomesŜ(e)2pF21/4 in scaled variables and
this quantity determines the phase of the returning semic
sical waves. The ‘‘effective Planck constant’’ is defined

\̂5F1/4 in atomic units. Thus\̂ can be changed at fixede
simply by varying the electric field range measured in t
experiment. SmallerF at fixed e implies higher principal
quantum numbersn, while largerF implies lower. We show
an example recurrence spectrum where the primitive se
classical approximation that gives good agreement w

quantum calculations and experiment in the small-\̂, high-n
regime must be replaced by a uniform semiclassical appr
mation as the field strength is increased even though
classical mechanics of the system has been kept fixed.
uniform approximation takes into account that related orb

with having actions within\̂ of each other cannot be consid
ered in isolation.

An overview of uniform approximations in closed orb
theory has been written recently by Main and Wunner@8#
and uniform approximations have been applied to period
orbit theory by Schomerus and Sieber@9#. Many earlier
works exist on uniform approximations and castastrop
theory @10–12#.

The semiclassical recurrence strength of an isola
closed-orbit in hydrogen at a fixed value ofe scales as
(F/Fo)1/8 except for the orbits that are on the6z axes,
which scale as (F/Fo)1/4. Here Fo is fixed and once the
classical orbits and recurrence strengths are computed a
field strength, the recurrence strength is known along
entire line satisfying the constrainte5EF21/2. Both formu-
las predict an increase in the recurrence strength as the
strength is increased. The recurrence strength of the on-
orbit is predicted to grow faster than the recurrence stren
of other orbits asF increases.

WhenF increases sufficiently at fixede, these semiclas-
sical scaling laws will begin to fail because of the increas
size of \̂, but there has been little work that quantifies th
1910 © 1998 The American Physical Society
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nonscaling, especially in a system amenable to experim
Atoms in electric fields are simple systems in which to stu
these effects. First, we show that them51 spectra follow the
scaling law while them50 spectra do not. Second, in th
m50 spectra the first recurrence strengths that deviate f
the scaling law are the recurrences due to orbits near the6z
axes. The recurrence strengths of these orbits in our quan
calculation can decrease relatively to the recurrences of
other orbits in the system, in contradiction to the classi
scaling prediction. Third, we show that this comes from
breakdown of the isolated orbit approximation. As\̂ in-
creases, orbits near the6z axis that are isolated at low elec
tric field strengths are no longer isolated at higher fi
strengths. The recurrences from these orbits can be ca
lated semiclassically with a uniform approximation dev
oped by Gao and Delos. Their method works when
closed orbits involved are real, but Gao and Delos did
develop a method of including the complex orbit contrib
tions before the bifurcation. We have a simple method
locating the complex orbits and calculating the uniform
currence strength when both real and complex orbits con
ute. Therefore, we can easily study the changes in recurr
spectra from complex orbits as well as real orbits as fu
tions of scaled energy and the size of\̂ and use this to
understand the failure of the classical scaling law. There
simple formula for the field strength where the uniform a
proximation becomes necessary for a given scaled ener

II. CLOSED-ORBIT THEORY

A. Recurrence integrals

Closed-orbit theory divides the configuration space i
an inner and outer region. In the inner region we have
Coulomb problem with a mixture of regular and irregul
Coulomb functions determined by the quantum defects of
ionic core. In the outer region we have the Coulomb attr
tion plus the external field and we can use a semiclass
approximation to the Green’s functionGE

1 . The average os
cillator strength density for a transition is proportional to t
imaginary part of the overlap matrix

D f 522p21~E2Ei !Im^Dc i uGE
1uDc i&, ~1!

wherec i is the initial state,D is the relevant component o
the dipole operator of the laser, andGE

1 is the outgoing
Green’s function for electrons of energyE. In this formula,
uDc i& effectively constitutes a ‘‘source’’ andGE

1uDc i& are
waves that go out at constant energy from this source. Th
waves that later return to the source contribute to the inte
^Dc i uGE

1uDc i&, which governs the absorption rate.
‘‘primitive’’ semiclassical approximation to the Green
function gives a sum of returning waves associated with e
distinct closed classical path.

Each such return constitutes a classical recurrence. T
are labeled by two indices (k,n) wherek labels the particular
closed orbit andn is the number of returns to the origin.
we ignore core scattering, then the returning waves ass
ated with a closed orbitL return

k,n (qW ) are simply turned around
by the Coulomb field and they go back out in the directi
nt.
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from which they came, later to return to give the (k,n11)
recurrence.

It is useful to define the ‘‘(k,n) recurrence integral’’

Rk
n[^Df i uL return

k,n &. ~2!

Then the oscillator strength is approximated by

D f 522p21~E2Ei !Im(
k,n

Rk
n . ~3!

Formulas for these recurrence integrals were develope
@4,13#. One finds

Rk
n523/2pỸ~u f

k,n!Nk
n , ~4!

whereY(u) is the angular distribution of the initial outgoin
wave @13#.

The quantityNk
n contains information about the amplitud

and phase of the returning wave coming from a particu
direction. For the orbits parallel or antiparallel to the fie
direction~‘‘uphill’’ and ‘‘downhill,’’ labeled k50 or p, re-
spectively! it is

N0
n54p ir o

21/2U]u f
0,n

]u i
U21

expF i S S0
n/\2m0

np

2 D GY~0!, ~5!

while for all other orbits it is

Nk
n5229/4p3/2e2 i3p/4r o

21/4usinu i
ksinu f

k,nu1/2

3U]u f
k,n

]u i
U21/2

expF i S Sk
n/\2mk

n p

2 D GY~u i
k!. ~6!

Hereu i andu f are initial and final angles,S is the action all
the way around the orbit,m is the Maslov index for the
returning wave, andr o is a boundary on which]u f /]u i is
evaluated; each is labeled as needed for thenth return of the
kth closed orbit.

Now N0
n andNk

n are matching constants derived by doin
a stationary phase integral about the direction of the inco
ing electronu f

k,n @4# and two approximations were used
deriving Eqs.~5! and~6!. In the first, the returning wave ca
be described as an azimuthally rotated zero-energy Coul
wave coming in from the directionu f

k,n . In the second, the
closed orbit is isolated from its neighbors. This is equivale
to the assumption that only one stationary phase point c
tributes to the integral. This second condition is violated n
the bifurcations of a closed orbit where multiple stationa
phase points merge. Since only stable orbits can bifurc
into new orbits or, in the inverse bifurcation, absorb orb
and destroy them@8,14#, only the uphill and downhill orbits
in this system can bifurcate and all bifurcations occur n
the 6z axes.

When is a stationary phase point isolated? If we consi
integrals of the form

K5E
2`

`

A~q!exp
i

\
S~q!dq, ~7!

then the dominant contribution comes from the vicinity
points qn , where]S/]q50. The pointq0 is isolated from
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1912 PRA 58JOHN A. SHAW AND F. ROBICHEAUX
another stationary phase point, call itq1 , if the ratio of
uS(q1)2S(q0)u to \ is large@15#.

S/\ in Eqs.~5! and ~6! becomesŜ(e)2pF21/4 in scaled
variables, so for fixed scaled energy the approximations u
to derive Eqs.~5! and ~6! will fail as \̂ increases if the
stationary phase points in the bifurcation satisfy the inequ
ity

2puŜk8
n82Ŝk

nu<F1/45\̂. ~8!

The coelescence of stationary phase points is treated pro
by going to a uniform approximation.

B. Uniform recurrence integrals

A uniform approximation for the hydrogen atom in th
electric field was developed by Gao and Delos@16,17#. We
have implemented this method and have extended it to
clude scattering off an alkali-metal core. Let us outline t
theory and give the results for the uniform recurrence in
gral.

For an electric field along thez axis in spherical coordi-
nates we use scaled semiparabolic coordina
(u,v,pu ,pv ,t) @13,18,19# defined by

r̂ 5 1
2 ~u21v2!, r̂ 5rF 1/2,

ẑ5 1
2 ~u22v2!, ẑ5zF1/2, ~9!

d t̂

dt
5u21v2, t̂5tF3/4.

The Hamiltonian in scaled semiparabolic coordinates is

Ĥ5
1

2
~pu

21pv
2!1

m2

2u2
1

m2

2v2
,

~10!

2e~u21v2!1
1

2
~u42v4!52,

wherem is thez component of the angular momentum,e is
the scaled energy, andpu and pv are du/dt and dv/dt,
respectively. There is a complication: The orthogonal co
dinatesu and v correspond to thez and 2z axes in real
space and therefore are both axes of cylindrical symme
As a result, the uniform approximation will involve a Fresn
integral instead of a Pearcey integral@17,20#.

Hamilton’s equations of motion are used to calculate
closed orbits in (u,v) space. The (u,v) transformation re-
moves the Coulomb singularity. Since the uniform appro
mation is needed only for the uphill and downhill orbit
which do not exist form51, we setm50 in this section and
start the trajectories from the originu5v50. The initial di-
rection is given byQ i5tan21(pv i

/pui
), with 0<pv i

<2 and

pui
5A42pv i

2 . This angle is half the angleu in spherical

coordinates. The trajectories evolve in the potential and t
return towards the origin. We define a Poincare´ surface of
section (pv ,v) with u50 and recordpv f

and v f when the
trajectory crosses the surface in either direction. This wo
for 0<Q i,p/2. For the downhill orbit, Q i5p/2, the
ed
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(pv ,v) surface of section is inappropriate, and we define
surface of section (pu ,u) with v50 and a manifold on tha
surface. The following discussion holds for the downhill o
bit if we replace (pv ,v) by (pu ,u) everywhere.

A plot of v f vs pv f
on the surface of section traces out t

Lagrangian manifold. The Lagrangian manifold interse
the pv axis at pointspv f

wheneverv f5v50 and these are

the locations of the closed orbits. The semiclassical am
tude of the returning wave associated with the closed orb
related to the inverse of the slope]v f /]pv f

of the manifold

at these points. This derivative can be related to]u f
k,n/]u i in

Eq. ~5! @18#.
The shape of the Lagrangian manifold determines the t

of bifurcation. In this system orbits are created from the u
hill orbit and destroyed by the downhill orbit in cusp bifu
cations modified by the cylindrical symmetry about the6z
axes. Near a cusp bifurcation on thez axis, the manifold is
nearly cubic aboutpv50. On one side of the bifurcation th
manifold will intersect thepv axis at only one pointpv f

50, corresponding to one real closed orbit. The other ro
of the cubic manifold are complex, corresponding to ima
nary orbits with complex momenta. At the bifurcation th
slope of the manifold is zero. After the bifurcation, two ne
intersections with thepv axis at6pv8 move away frompv f

50. The manifold now has three real closed orbits with m
mentapv f

50,6pv8 . This is shown in Fig. 1. At the bifurca
tion energy the semiclassical amplitude predicted by Eq.~5!
is infinite. Near the bifurcation energy, inserting Eq.~5! into
Eq. ~4! will greatly overestimate the recurrence strength.

The semiclassical representation of the coordinate sp
wave function is constructed by the projection of the ma
fold onto the (u,v) coordinate axes@21#. At the bifurcation
thev projection fails, but the projection of the manifold on
the mixed (u,pv) coordinate and momentum space axes
well behaved. If we go into the mixed space representa
of the wave function when we are near a bifurcation a
transform this mixed space representation back into the
ordinate space, then we get a well behaved, finite, coordin
space wave function.

Gao and Delos show that the uniform coordinate sp
wave function near the bifurcation of the uphill orbit is give
by

FIG. 1. Calculated Lagrangian manifolds before~solid line!,
near~dotted line!, and after~dashed line! a bifurcation of the uphill
orbit is shown. The uphill orbit~square symbol! exists for each
scaled energy while the newly bifurcated orbits~circles! only exist
after the bifurcation.
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Lunif
0,n 5D8E

pv

A~pv!exp@ iF ~pv!#Y~2Q i !

3J0~pvv/\̂ !J0~puu/\̂ !pvdpv , ~11!

where

A~pv!5Upv i

pv f

]pv i

]pv f

U1/2

, ~12!

F~pv!5H S̃0
n~e!2

a1~e!

2
pv

22
a3~e!

4
pv

4J Y \̂2n
p

2
,

~13!

and D852p23/2 is a constant. The functionF(pv) is the
mixed-space action, the generator of the Lagrangian m
fold, evaluated on thenth intersection of the surface of se
tion u50. Sincepv f

52]F(pv)/]pv this reproduces the cu
bic manifold and the closed orbits are located at the ro
pv f

50,6A2a1 /a3. The mixed space action can be direc
calculated from the formula

S̃~pv ,u!5E pudu2E v dpv ~14!

and fitted to Eq.~13! on the surface of section to geta1 and
a3 . The mixed-space actionsS̃ and the scaled coordinat
space actions 2pŜ coincide at the closed orbits. The unifor
recurrence integral is given by

R0
unif,n5^Df i uLunif

0,n &5D823/2pE
pv

A~pv!exp@ iF ~pv!#

3Y~2Q i !Ỹ~2Q f !pvdpv . ~15!

C. Evaluating the recurrence integral

The uniform recurrence integral eliminates the diverge
in the primitive semiclassical approximation. The evaluat
of this integral when two of the stationary phase points6pv f

are complex and the field strength dependence of Eq.~15!
must now be examined.

The integral in Eq.~15! is converted to a Fresnel integr
in the variablex[pv

2 with an additional end-point correctio
from x50. The closed orbits correspond to the roots of
cubic manifold atpv f

50 and 6A2a1 /a3. Complex mo-

menta must be considered whena1 /a3 is positive and only
the on-axis orbit withpv f

50 is real.
If we define

g~pv!5Y~u i !Ỹ~u f !Upv i

pv f

]pv i

]pv f

U1/2

~16!

and change variables tox, then

R0
unif,n5D9E

x50
g~x!exp$ il~ 1

2 x21ax!%dx, ~17!
i-

s,

e
n

e

where a5a1 /a3 , l52a3/2\̂, and D9[2p223exp$i(Ŝ0 /\̂
2np/2)% is a complex constant. Eq.~17! has stationary phas
points atx52a and 0.

The amplitudeg(x) can be expanded in a power seri
aboutx50, the location of the on-axis orbit,

g~x!5g01g1x1g2x2. ~18!

The bifurcations occur whena(e) passes through zero,e
5ebif . If a is negative, then real roots and real closed orb
exist that begin and end with momentapv56Aa. If a is
positive, then imaginary roots and complex closed orbits
ist that begin and end with momentapv56 iAa. However,x
is still real, even though the momenta of the orbits ha
become imaginary, and we can usex52a in Eq. ~18! to
calculate the amplitude at the complex stationary ph
points of Eq.~17!.

We can now get the analytic form of the recurrence in
gral in the neighborhood ofe5ebif . We substitute Eq.~18!
into Eq. ~17!, change integration variables tou5x1a, and
collect terms with the same power ofu under the integral.
The result is

R0
unif,n5D9H g~a!e2 i ~l/2!a2

D~l;a!1
i

l

]g

]x Ux52a1O~u2!J ,

~19!

where

g~a!5g02g1a1g2a2, ~20!

]g

]x U
x52a

5g122ag2 , ~21!

and

D~l;a!5E
a

`

ei ~l/2!x2
dx5

1

2
Ap

l
@11sgn~l!i #

2Ap

l H CSAp

l
aD 1sgn~l!iSSAp

l
aD J .

~22!

TheC andS in Eq.~22! are standard Fresnel integrals@22,23#
and sgn(l) is the sign ofl. The field strength dependence
Eq. ~22! is in the parameterl, which is proportional to
F21/4, i.e., 1/\̂. The parametera depends only one.

The coefficientsg0 , g1 , andg2 can be calculated when
the mixed-space action is calculated by integrating trajec
ries for a range ofpv i

until they reach the surface of sectio

(pv ,v) for u50. The functionsg(pv) and S̃(pv) are then
known from Eqs.~16! and ~14! and g(pv) and S̃(pv) are
fitted to polynomials inpv

2 and pv
4 . In principle, the calcu-

lated manifold should be transformed by an addition cha
of variables to normal form, but the deviation of the L
grangian manifold from a cubic polynomial is very small f
the bifurcations of the uphill orbit in the scaled-energy ran
belowe522 so the root positions can be calculated direc
from the fitted manifold. The Lagrangian manifold near t
downhill orbit is more strongly curved and the deviatio
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from the cubic form can be significant for bifurcations ne
e522. Betweene522.1 and23.0 the cubic approxima
tion for the downhill orbit manifold becomes very good.

Equation~19! should be compared to the uniform result
Bleistein@24#. The Bleistein formula as adapted by Gao@16#
is

R0
unif,n5D9H g~a!e2 i ~l/2!a2

D~l;a!1
g~a!2g~0!

a

i

lJ ,

~23!

whereg(0) is the amplitude of the uphill orbit,u i50, and
g(a) is the amplitude of the new closed orbit. This was t
formula used to calculate the spectra in@16,17# when the
momenta were real. Near the bifurcation the finite differen
term @g(a)2g(0)#/a in Eq. ~23! was taken to be a constan
equal to the limiting value asa(e)→0 from below @16#.
When a was large and positive the asymptotic form of t
terms involving g(a) was shown to cancel so onlyg(0)
remained, giving the isolated orbit result@16#. However, the
behavior between the bifurcation energy and the isolated
bit result could only be estimated by extrapolation frome
5ebif and approximations. This leads to problems since
approximations appropriate near the bifurcation do not g
the correct asymptotic behavior needed to get the isola
orbit result away from the bifurcation. Since Eqs.~19! and
~23! are equivalent near the bifurcation,g(a) and @g(a)
2g(0)#/a can now be calculated with Eq.~20! when the
momenta are complex. By inserting the proper complex
tionary phase points into Eq.~23! we get results that are
smooth functions ofe and \̂. In particular, the Bleistein
formula now smoothly goes to the isolated on-axis orbit
currence strength in the limita(e)→1` as e is varied at
fixed field strengthif we use Eq.~20! to calculate the contri-
butions of the complex momenta. No extrapolation
needed. It is thee and\̂ dependence of the Bleistein formu
with real and complex contributions that determines the s
ing or nonscaling of the recurrence spectra measured in
periments.

III. CALCULATIONS AND COMPARISONS

For comparison to known results we calculated the
tions and amplitudes for the (k,n) recurrence strengths i
hydrogen atFo51985 V/cm ande523.0 and scaled thes
values into the range of the experiments and calculatio
Hydrogen is the simplest case to study the scaling beha
of the spectra because there is no core to complicate
scaling recurrence strengths. Most experiments have b
done on alkali-metal atoms, but the short action alkali sp
trum is usually very similar to hydrogen. The differences a
due to the quantum defects of the core. Courtneyet al. at
MIT have published calculations and experimental results
lithium in the field range 1.8,F,11 V/cm ~low field, high
n, 60,n,95) with the electron excited from 3s to np states
@3#. The Wesleyan experiments were performed on sin
and triplet helium in the field range 185,F,890 V/cm
~high field, lown, 20,n,30) and the electron was excite
from the 2s to np states@7#. Figure 2 shows the calculate
semiclassical recurrence strengths and the quantum re
rence strengths for hydrogen,m50, s to p excitation, at
r

e
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en
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low-field strengths. Note that we plot the absolute value
the Fourier transform instead of the square of the transfo
to emphasize the weak features in the spectrum. The ag
ment is good, although the semiclassical approximat
overestimates the peaks nearŜ55.9 and 7.9. The level of
agreement is comparable to that in Ref.@6#. Figure 3 shows
the calculated semiclassical recurrence strengths and
quantum recurrence strengths for hydrogen,m50, at high-
field strengths. The semiclassical recurrence strengths h
increased according to the scaling law, but the general
tures, relatively small peaks belowŜ53.9 and then the first
large peak atŜ53.9, etc., have not changed.

A comparison to the quantum spectrum@25–27#, how-
ever, shows significant changes between the low-field
the high-field recurrence spectra. In the quantum calculat
the large peaks nearŜ53.9 and 5.9 seen at lower-fiel
strengths are greatly suppressed relatively to the recurre
strengths of the other orbits at higher-field strengths. Ther
now a cluster of peaks of essentially the same heights in
range 3.8,Ŝ,6. In Fig. 4 we show the semiclassical and t
quantumm51 spectrum at high fields. These are, in contr
to them50 results, in good agreement. Them51 semiclas-
sical recurrence spectrum was calculated using them50 or-
bits and changing the angular distribution of the outgo
waves@28#; therefore, the closed orbits in Fig. 4 are the sa

FIG. 2. Quantum~top! and primitive semiclassical~bottom! m
50 recurrence spectra ate523.0 for 1.85,F,10.9 V/cm (60
,n,95). The quantum spectrum is in reasonable agreement
the primitive semiclassical spectrum.

FIG. 3. Quantum~top! and semiclassical~bottom! m50 recur-
rence spectra ate523.0 for 176,F,890 V/cm. The quantum
spectrum does not agree with the primitive semiclassical spectr

In particular, the pattern of large peaks in the range 3.9,Ŝ,6 is

completely different. The large peaks just belowŜ54, 6, and 8 are
from repetitions of the uphill and the downhill orbits that are ne
bifurcations~see Fig. 6!.
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orbits used in Fig. 3. Them51 semiclassical spectrum, how
ever, does not contain recurrences from the uphill and do
hill orbits since they lie in the nodes of the angular distrib
tion produced by the laser. The slightly high recurren
strengths in the low fieldm50 spectrum are also a clue
They are associated with the 15th return of the uphill or
and 9th and 18th returns of the downhill orbits and these
near bifurcations. From the discussion of Eqs.~22! and~23!,
we expect deviations from the classical scaling near the
furcations.

We calculated the uniform recurrence amplitudes a
compared them to the primitive recurrence amplitudes in
two different field strength ranges. The recurrence stren
after Fourier transformation is proportional to the recurren
amplitude of the orbit@13,29#. Figure 5 shows the calculate
recurrence amplitudes as a function ofe for the 15th return
of the uphill orbit, the return responsible for the peak aŜ
55.9. Both the uniform and the primitive results are show
one at the average field strength of the MIT experiments
the other at the average field strength of the Wesleyan
periments. At either end of the scaled-energy range plot
the uniform and primitive are starting to agree. However,
width of the region where they disagree increases as the
strength increases.

FIG. 4. Quantum~top! and semiclassical~bottom! m51 recur-
rence spectra ate523.0 for 176,F,890 V/cm (20,n,30). The
quantum spectrum and the semiclassical spectrum show g
agreement. The uphill and downhill orbits are completely absen
the semiclassical spectrum, butghostpeaks near the bifurcations ar
visible in the quantum result.

FIG. 5. Recurrence amplitude for then515 recurrence of the
uphill orbit is shown for a range of scaled energies neare523.0 at
the field strengthsF55 V/cm ~lower solid line! andF5534 V/cm
~upper solid line!. The dashed and the dotted lines are the respec
primitive recurrence amplitudes. The bifurcation occurs neare5

23.028. This recurrence is the peak nearŜ55.9 in Fig. 3.
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At low fields and highn, n'80, the primitive semiclas-
sical approximation is reasonably close to the uniform res
at e523.0, but it is already starting to diverge. The bifu
cation energy ise523.028 77 ande523.0 is on the for-
bidden side of the bifurcation where complex orbits affe
the recurrence strength. At high fields and lown, n'25, the
primitive semiclassical result has increased by (F/F0)1/4,
about a factor of 3, and the uniform result has increased o
slightly. As the other closed-orbit recurrence strengths
creased according to the scaling law, the recurrence stren
of the orbits near the6z axis did not increase at the pre
dicted rate when they were near bifurcations. There the
crease in the recurrence strength was much slower than
prediction. This is the main cause of the deviations from
scaling law in the recurrence spectra and explains the cha
from relative agreement to complete disagreement see
Figs. 2 and 3. Since there are many bifurcations in this s
tem, this nonscaling is typical and at any scaled energy so
return of the uphill or downhill will pass close to a bifurca
tion. Figure 6 shows the positions of the bifurcations of t
uphill and downhill orbits versus scaled action and sca
energy. The downhill orbit only exists belowe522 and
many bifurcations are encountered just below this scaled
ergy.

The range of scaled energy about the bifurcation ene
where the uniform approximation is needed can be estima
from the action inequality

U a1
2

4a3
U<F1/4, ~24!

which comes from Eq.~13! evaluated at the real or comple
rootspv856A2a and Eq.~8!. This formula can be used o
either side of the bifurcation. The coefficientsa1 anda3 are
independent of the field strength because the shape of
manifold depends only on the value ofe. Thus the manifold
needs only to be calculated once at each scaled energy
the inequality can be checked in the field strength range
the experiment.

Figure 7 shows them50 quantum and the uniform sem
classical calculation. The agreement between the two is n
very good. To construct the uniform semiclassical recurre

od
in

e

FIG. 6. Locations of bifurcations of the uphill and downh
orbits plotted vs the scaled energy. The circles are the bifurca
energies of the downhill orbit and the squares are the bifurca
locations of the uphill orbit. Notice the accumulation of bifurcatio
just belowe522 and 0.
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spectrum the unifom approximation also had to be applie
the 9th and 18th returns of the downhill orbit, which have
bifurcation ate523.01903.

If we know the uniform recurrence strength can we sc
that result to get the uniform recurrence strength at ano
field strength at fixede? The field strength dependence of t
recurrence strength is in thel dependence of Eqs.~22! and
~23!. There are only three simple cases. At the bifurcat
Eq. ~22! simplifies and scales like (F/Fo)1/8. The finite dif-
ference term in Eq.~23! reduces the contribution from Eq
~22! and it always scales as (F/Fo)1/4. Neither term domi-
nates the other at the bifurcation, so the observed variatio
the recurrence strength with field strength does not foll
either scaling law though each part scales separately. Be
the bifurcation, when the roots are complex, the asympt
form of Eq.~22! is proportional to (F/Fo)1/4 and when com-
bined with the finite-difference term goes over to the scal
law for the uphill or downhill orbit. Past the bifurcation
when the asymptotic form of Eq.~22! goes over to two terms
that scale as (F/Fo)1/8 and (F/Fo)1/4, we recover the scaling
laws for the separated primitive recurrences. However, a
from the bifurcation but before the primitive results can
used, no simple scaling law can be extracted from Eq.~22! at
a fixed scaled energy. The direct calculation of the rec
rence strengths as a function ofe and F is straightforward
though once the complex momenta are properly included

IV. CONCLUSIONS

In the rangee,22 where the uphill and the downhi
orbits are both bifurcating, almost any choice ofe will pass

FIG. 7. Quantum~top! and uniform semiclassical~bottom! m
50 recurrence spectra ate523.0 for 176,F,890 V/cm. The
agreement is now very good.
e,
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near a bifurcation on some repetition of those closed orb
As the field strength is increased, the scaled-energy ra
around the bifurcations where the primitive closed-or
theory fails gets wider according to Eq.~24!. This makes
closed-orbit theory more difficult to apply, but the repair
straightforward for hydrogen. We have also derived a f
mula for the scattered wave near the bifurcation for alka
metal atoms and this will be explored in another paper.

The change from good agreement with a primitive sem
classical calculation to poor agreement ate523 as the field
strength is varied for them50 recurrence spectra can b
understood as a variation in the effective size of\ and a
breakdown of the isolated orbit approximation for the orb
on the6z axes. The isolated closed-orbit results are good
the orbits away from the axes, so them51 recurrence spec
tra, where the recurrences of the on axis orbits are s
pressed, do not show deviations from the scaling law. Mo
fications to the uniform approximation to include compl
orbits allow us to accurately calculate the recurrence stren
for them50 spectra for different scaled energies and elec
field strengths and study the deviations from the class
scaling law.

The uniform approximation used here replaces
isolated-closed-orbit approximation by an isolated-cusp
proximation: It presumes that the on-axis and bifurcated
bits are well separated from any other closed orbits. M
complicated cases also arise. For example, thenth return of
the downhill orbit hasn21 bifurcations that get closely
spaced in scaled energy ase522 is approached from below
~Fig. 6!. In these cases the isolated-orbit approximation w
certainly break down, but the isolated-cusp, cubic-manif
approximation we used to calculate our uniform wave fun
tions will also break down as the manifold coils into a spi
and multiple stationary phase points exist within\ of one
another. Then an approach using normal forms@9,30# may be
required to calculate the returning wave function enter
into Eq. ~1!. There is still interesting work to be done befo
we have a complete semiclassical understanding of even
hydrogen Stark spectrum.
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