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Recurrences without closed orbits
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The results of quantum photoabsorption calculations are presented for H, K, and Cs atoms in static electric
fields. The recurrence spectra fdr,)#0 show features at scaled actions an order of magnitude shorter than
for any classical closed orbit of this system. Two interesting manifestations are presented, and some of the
systematics of the peak strengths are explored. These features suggest that closed-orbit theory may need to be
generalized to account for these effects. A heuristic formula is presented that reproduces some of these effects.
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PACS numbses): 32.60:+i, 03.65.Sq

The dynamics of an electron in a Coulomb potential and . I
static fields has been extensively studied using quantum and R(S)ZU p(0)e>*W(w)dw / f p(0)W(o)dw,
semiclassical techniques. The quantum calculations are rela- (1)
tively simple to perform for lowa states, but become in-
creasingly difficult and less accurate asincreases. Semi-
classical techniques are accurate and provide insight into theherep(w) is proportional to the photoabsorption cross sec-
dynamics at highn, but become increasingly difficult to use tion divided by the laser frequency, and the weight function
and less accurate for low. W(w)=exf —(w—w,)*Aw?] limits the range of the inte-
Closed-orbit theory is a semiclassical method for calculatgration. With this definitionR(0)=1.

ing photoabsorption cross sections. This method is based on The recurrence spectrum has peaks at valuéqu‘uaI to

the observation that to calculate this cross section it is onlyne scaled actions for which a classical electron has a closed
necessary to obtain the Green’s function for points near thgybit that leaves and returns to the nucleus. The peak height
nucleus when the initial state is compact. Thus in a semiclass the recurrence strength. Repetitions of orbits and combi-
sical approximation to the Green'’s function, it is only neces-nations of orbits arising from scattering from the core elec-

sary to use orbits whose starting and final points are near theons for alkali-metal atoms also produce well-known fea-
nucleus. The results in this paper arose from a search fq{res[1-3].

generic effects that are not incorporated in the usual imple- There have been two generalizations of closed-orbit
mentations of closed-orbit theory. Thus the effects presente{%eory to account for features R(S) that do not arise from

in this paper do not simply mgilcate a @sprepancy W.'thclosed orbits at scaled energy These are the ghost orbits
closed-orbit theory, but seem to imply a missing mechanisn)

which would be interesting to uncover arising from orbits that do not exist at but do exist at a
In this paper, we exan?ine the quaﬁtum dynamics of |_|_nearby.~3 [4,5]. The other generalization has been to incor-
and alkali-metal atoms in static electric fields. If the electricporate effects from orbits that start at a node of the wave

field is in thez direction, thel, operator commutes with the function and therefore should have zero strengtR(8) (in
Hamiltonian; thus we can choose to have eigenstates of et Simple implementation of closed-orbit thepf§].

ergy andL, . For alkali-metal atoms, there are no other con- OUr present results are fon=1 and 2 spectra in H, K,
stants of the motion. The Coulomb plus constant field give &Nd Cs;m# is the eigenvalue of the, operator with thez
potential that has a saddle-point maximum at a distangg 1/ direction defined to be in the direction of the electric field.
in the down-field direction. The height of this saddle is suchl! SPectra are over a fixed energy range froni1/800 to

that classical electrons with energy greater tha?/F can _(1/1_800 (ie., 20sn§30) ?”d.f'e'd strengths such that
leave the region near the nucleus and travebtd=or ener- classical over-the-barrier ionization does not occur. This

gies less than this, the electron can quantum mechanical nge is somewhat low, but still high enough where the ap-

tunnel through the barrier and escape. However, the tunne roximations in closed-orbit theory _might be exp_ected to
ing rate rapidly decreases with decreasing energy, and is ne ork. The quantum programs used in our calculations have
ligibly small for the cases we examine in this paper. een descrlbeq eIsgwhe[ﬁél. .

The Hamiltonian for an electron in a Coulomb potential The central l|dea in this paper is to §tay at IO‘.N enough
and a static electric field can be scaled. Our calculations ars/ch that the field does not strongly mix thenanifolds. If
performed so that the scaled eneegy E/\F is a constant; this condition is satisfied then there will be features:i(s)

E is the energy andr is the field strength. We have per- at very short scaled actions, whéare integer multiples of
formed photoabsorption calculations where the squared dit/\—2¢. In closed-orbit theory, these peaks would be asso-
pole matrix elements from the initial to the final states areciated with orbits that go out from the nucleus and return
obtained as a function ofs where E=¢(27/w)? and F directly to the nucleus. Iin=0, there are two possible orbits
= (2wl w)*. Fourier transforming the squared dipole matrix satisfying this condition(1) the orbit that heads straight up
elements with respect t@ gives the recurrence spectrum the z axis and returns to the nucleus without leaving the
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FIG. 1. Hm=1 scaled energy spectrum fer= —4.0; p is pro- FIG. 3. Same as Fig. 2, but fon=2.
portional to the photoabsorption cross section divided by the laser .
frequencyw=2m/s/E. In Figs. 2 and 3 are the recurrence spectranfier1 and

for 2. These spectra are for the scaled energy of—4.0.
axis, and(2) the orbit that heads straight down thexis and The arrow marks the smallest action for a closed orbit for

returns to the nucleus without leaving theaxis. If m#0,  this systemS=6.89. The inset shows the regi&=0.2 and

these two .orbits are.nozt p‘;SSibz'e’ becgl@eis conse.rved S<4 by expanding both the andy axes by a factor of 2.5.
and there is a repulsivie;/(x“+y”) term in the potential. |, o1 Figs. 2 and 3 there are peaks at actions much shorter
No other orbits leave from the nucleus and directly returny, o js possible in closed-orbit theory. In particular, the first

to the nucleus. For a laser excitationrto= 0, the electron recurrence peak is at actiofs 0.35. an order of maanitude
leaves the nucleus with low angular momentum. The torqu%maller thar? that of the shorteét ciosed classical (?rbit Note
from the electric field initially causes the angular momentum '

to increase, thus preventing the electron from returning di:[hat the first recurrence peak is stronger for the 2 spec-

rectly to the nucleus. Eventually, the angular momentum preJErum than for them=1 spectrum. When the scaled energy

cesses back to small values, allowing the electron to return yas yaned betweer-3.0 and—3.5, we found that then
=1 first recurrence peak was larger than that for rine 2

the nucleus with a scaled action centeredat(~26)*%3. ot recurrence peak, while the situation reversed for scaled
This action is an order of[nagnltude larger than that for theenergies between-3.5 and —4.0. This is contrary to our
shortestm=0 closed orbitS~1/\/—2e. initial expectations that then= 1 first recurrence peak would
We first demonstrate the existence of peaks in the recurz\ways be stronger because wher: 2 the higher azimuthal
rence spectrum of H at actions shorter than the shortest afmgular momentum should push the orbits further fromzthe
lowed closed orbit. Because the potential is purely Coulomayis. Also, the initial angular distribution of trajectories em-
bic, there can be no scattering from one orbit to another; anghasizes orbits ejected into thg plane which are torqued
effects are the result of motion in the separable Hamiltoniafhe most; this should cause the electron to precess away from
of H in a static electric field. In Fig. 1, we present the the |ow angular momentum, diminishing the recurrence
squared dipole matrix elemep{w) =o(w)/v(w) as afunc-  strength. Some unknown dynamics controls the relative
tion of w=2m\e/E for excitation tom=1 states at the strength of these peaks.
scaled energyg = —4.0. o is the photoabsorption cross sec-  There are features in the recurrence spectrum that appear
tion, and v is the laser frequency. This spectrum can beto correspond to repetitions of this “short action orbit.” The
understood quantum mechanically as arising from the sepaecurrence strength rapidly decreases for low repetitions, but
raten manifolds of Stark states from= 20 to 30. The Stark increases as the action approaches that of the allowed closed
states from differenin manifolds only barely overlap, so orbits. This behavior is similar to the quasiperiodic recur-
probably perturbation theory could be used to calculate thigence strengths of repetitions of a stable closed orbit. This
spectrum. similarity suggests that the effect will be understandable
within an extension of closed-orbit theory.

A second effect similar to that in H can be seen in the
4s+hv— m=1 spectra of K and the fB,,u=3/2+hv
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FIG. 2. Hm=1 recurrence spectrum far=—4.0. The inset 0.0 —“JL!JM
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shows the regionR=<0.2 andS<4 by expanding both the andy
axes by a factor of 2.5. The closed-orbit result is given in the inset
as a dotted line. FIG. 4. Same as Fig. 1, but for K
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FIG. 5. Same as Fig. 2, but for ki=1. FIG. 7. Km=1 recurrence strength for the first four recurrence

peaks: first peak—square; second pedk-third peak—< ; fourth
—m=2 spectra of Cs. For these systems, the quantum deeak—A. ¢ is defined to be the integral & from the minimum
fects are not negligibly small, so that scattering from the coréoefore thenth peak to the minimum after theth peak.
plays a large role in the spectra. Thavave quantum defect
in Kis 1.714, and thel-wave quantum defect is 0.265; the would give this effect. However, it must be remembered that
d-wave quantum defect in Cs is 2.473, and th@ave quan-  the orbit being scattered intdoes not exisas a true closed
tum defect is 0.03. The squared dipole matrix element for theyrbit.
K spectrum is given in Fig. 4 for the scaled energy eof One question that should be answered is how does the
=—4.0. The very tall individual peaks are the remnants ofstrength of these recurrences depend on the scaled energy or
the np states that have not strongly mixed into the Starkaveragew value? We have found that the behavior is not
manifold. trivial, and can be quite interesting. We have defined the

The recurrence spectrum for K is plotted in Fig. 5, a”dstrength of a recurrence pea, to be the integral oR(S)
that for Cs in Fig. 6. These spectra are for the scaled energyom the minimum before the peak to the minimum after the
of e =—4.0. Again, the arrow marks the smallest action for 8peak, We have plotted this for the first four short action
closed orbit for this system. There are several interestingecyrrences versum,,. Figures 7 and 8 are then=1
features in the recurrence spectra. The most visible is th§trengths for K and f_\,/ respectively, and Figs. 9 and 10 are
dominance and persistence of the short action peaks. QUafke m=2 strengths for Cs and H, respectively. In these four
tum mechanically, the explanation of this effect is fairly i, res the lowest,, point corresponds te=—3, and the
simple. We are at field strengths and energies such that thﬁghest' point corresagonds Ny '
np states in K and thed states in Cs do not strongly mix “gne of the features that strongly suggests that this phe-
with the stark manifold of states. Therefore, the dominant,ymenon can be understood within an extension of closed-

- - 9 - 3 .
period will be the field-free Rydberg periad-=2zn°, which bt theory is that the recurrence strength for the first peak
would be the period of an orbit that directly returns to the yag depend om andw,, but does not depend on the atom.
nucleus. '_I'he.slow decay of the “repetitions” of this NONEX- paaks 2—4 do depend on which atom is being excited, sug-
istent orbit arise because the states in K anchd states in gesting that the first peak derives from some sort of pure
Cs have not mixed strongly. Features strongly localized in - orpit recurrence, whereas later peaks also depend on scatter-
will cause a slow decay if. ing from the core electrons. Another feature is that in general

Note another interesting feature of the Cs recurrence spegne strengths of these peaks increase wify; this is under-
trum in Fig. 6. The “repetitions” of the short action peak standable since increasing,, means the average field
have almost completely decayed away $y5. There are strength is decreasing. One interesting feature of Figs. 7 and

peaks in the recurrence spectrum at63<8.3 arising from 8 is that the strength of the first recurrence peak oscillates
the true closed orbits of this system. After these peaks, th@ith increasing w,,; there is a local maximum for
short action peaks reappear. Perhaps this is not too surpris- —3-25 and a local minimum fog~ —3.625. Another in-
ing, since scattering from one closed orbit into anothert€resting feature is the sharp upturn in the first recurrence
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FIG. 6. Same as Fig. 2, but for @s=2. FIG. 8. Same as Fig. 7, except forrA=1.
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FIG. 9. Same as Fig. 7, except for €s=2. FIG. 10. Same as Fig. 7, except forrh=2.
strength for Cs and H in Figs. 9 and 10; this upturn i at 90
; 1_ .7 i
~—3.25. In Cs the 2-4 recurrence peaks have a sharp in- Ay=nS—vp=+sgn —| | +26, (4)
crease at the larger value~ —3.625. On the scale used in 2 90¢ |,

these figures, the 2—4 recurrence peaks in both H figures
show little variation, and remain small over the whole range.

The semiclassical explanation of the K and Cs spectra igvnheresk is the action of the first return of the on-axis orbits,

not clear. Even for H the semiclassical theory is hard tok i_s th_e Maslov i_ndex, ng(a‘/ae_f) Is the sign of t_he angle
imagine if we restrict the theory to closed orbits that returnderivative, ands, is the phase shift of the =1 partial wave

exactly to the origin. In the usual derivation of closed-orbit21Sing from the core potential. . ,
theory, the semiclassical returning wave is matched to the | N€ recurrence strengths calculated for H in this approxi-
interior partial wave solution by defining a matching con-Mation rogghly agree W't.h the_quantum calculatn()sse_ the

stantN, which is the ratio of the incoming semiclassical inset in Fig. 2. The semiclassical result was normalized to

wave ¢ to the exact solution for an incoming Coulomb give exact agreement with the quantum result at the largest
wave at zero energyl. , whenr is large. Fom=1, ¢, near allowed peak near the scaled action of 7. The largest discrep-
co . » Ye

the z axis is ancy in the semiclassical calculation is a 20% overestimate

in the peak ab=0.35. The agreement improves for the other
recurrences, and we can see that there are really two funda-
mental actions whose repetitions give separate peaks at
higher actions. These actions are 0.363 and 0.346, associated
whereJ, is the Bessel function of order 1. with the downhill and uphillm=0 orbits, respectively.

We constructed a semiclassical approximation for the re- To check the validity of the semiclassical formula, we
turning wave function fom=1, where the node along the compared the closed-orbit calculations to quantum calcula-

L ; o ; tions done for principal quantum numbers in the ranges 30
positive and negative axes is incorporated into the match- . )
ing constaniN via the correci),, but the semiclassical wave <n§40 and 46<n<50. B.y a classical scahn_g la@iRef. [6])
function °°is computed fom=0 as if the classical trajec- applied to Eq.(3), the isolated short action recurrences
tories on the axis did exisThe method used is the same asShOUId decrease .bY factors O.f 0.5 and 0.3 as the principal
the method outlined in Ref6] for a nodal wave function guantum number is increased into these ranges. The quantum

along the direction perpendicular to the magnetic field, bu ecurrences do depreasg accordlmg to th(_a classical _scalmg
aw, though there is again a noticeable discrepancy in the

now the node is assumed to be on the axis. The crucial dif- ) ) L
ference between the calculations is that in the magnetic-fieIBeak height for the shortest action for-36<40. This dis-

case[6] an orbitdoesexist in the node, while for then=1 crepancy is strongly rgduced fpr 40<50. This first peak
spectra in the electric fieldo orbit exists along the axighut is sensitive to the relative amplitudes and phases of the “up-

the features in the spectrum imply that the wave functionhIII and downhlll_ returning waves, more so '_[ha_m any of
near the axis behaves as if the orbit eyists the other short action recurrences. These deviations may re-

If we use them=0 orbits and amplitudes with the nodal flect shortcomings in the approximations made deriving Egs.

_ ) (3) and (4).
matching, one can show that the amplitudes are A formula similar to Eq.(3) can be derived fom=2

excitation. Comparisons between the semiclassical and quan-
tum calculation in Fig. 3 show overall agreement in recur-

rence amplitude and scaling behavior. The first peal at
=0.35 is now underestimated by 50%, but the agreement
improves rapidly for the higher action recurrences. For both
where |96;/36; ~! is the change in the final angle as the the m=1 andm=2 formulas, the agreement is best for the
initial angle is variedr is the matching radius, arign,0,1)  weaker recurrences and the highest principal quantum num-
is the radial overlap of the initial atomic state with a zerobers. Both describe the general behavior of the peaks, but the
energy outgoing wave witl’=1. The phases of the return- m=1 formula is much better at reproducing the quantum
ing waves are given by results.

Pe=\r—z3(2yr+2z), 2

16 06,2 ,
Cy=—(E—E)|— [1(n,0,1)[%, (©))
lo (7(9f
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To extend these heuristic formulas to atoms heavier thaprocedure must come from outside the usual implementation
H (for instance then=1 K andm=2 Cs presented in this of closed-orbit theory. It may be that the closed-orbit theory
papej, requires calculating thp andd components of the needs to incorporate orbits that do not start and end with
core scattered wave produced by the returning nodal waveadial orbits near the nucleus. Or maybe the semiclassical
Since the core scattering is incorporated into closed-orbiGreen’s function needs to include orbits that are not quite
theory by a perturbative expansion of the Green’s function, igjassical. Or maybe there is an end point contribution to the
currently works best for weak scattering of low partial semjclassical Green'’s function in addition to the stationary
waves. Strong scattering in K .and Cs in handd waves is  phase points that are usually included. None of these sugges-
required to reproduce the effects seen in the quantum spectigyns may be correct; however, the results presented in this
The current semiclassical theory does not work for thes%aper suggest that closed-orbit theory is missing a mecha-

cases. This topic is under investigation. nism for describing some aspects of scaled energy spectra.

Although we obtain decent agreement with the quantumye expect similar effects for other types of static fields.
H results, we stress that these are heuristic equations, and we

do not have a justification for using the nonexistent orbits in  This work was supported by the NSF and the U.S. De-
the semiclassical theory. It appears that a justification for thipartment of Energy with Auburn University.
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