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Pulsed field ionization of Rydberg atoms

F. Robicheaux
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Fully quantum and classical trajectory Monte Carlo calculations are performed for a Rydberg alkali-metal
atom that is kicked by a pulsed electric field. The two calculations are compared to recent experimental results
through the ionization probability versus peak field strength. The energy distributions of the final electrons are
compared between the two calculations. There is a qualitative difference between the classical and quantum
momentum distributions which is measurable in principle. An experiment to detect the time-dependent pre-
cession of the orbital angular momentum in Cs is also proposed.@S1050-2947~97!51211-X#

PACS number~s!: 32.80.Rm,32.60.1i
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Recent experimental and theoretical work has explo
the dynamics of Rydberg alkali-metal atoms that are s
jected to a kick from a unidirectional, pulsed electric fie
@1–13#. The pulses in these experiments are typically sh
compared to the Rydberg period of the electron. In this ca
the electric field kicks the electron giving it an impulse in t
field direction. Approximately, the only effect of this im
pulse is to change the electron’s momentum in the field

rection by an amountDpW . This changes the electron’s energ
by an amount that depends on the momentum at the tim

the pulse:DE5DpW •pW 1(DpW )2/2. The electron may or may
not escape the atom, depending on whetherDE is larger or
smaller than the binding energy of the initial state. This si
ation is in stark contrast to the dynamics in a static elec
field where no states are bound, but the only question is,
fast does the electron tunnel and leave the atom?

In all of these papers describing kicked Rydberg atom
the theoretical work has been restricted to classical calc
tions or to fully quantum calculations for states ofn<17.
The classical calculations are performed by generating a
tribution of trajectories with properties similar to the qua
tum state that is being kicked. The percentage of trajecto
at positive energy after the kick is generally in very go
agreement with the experiments. This is not too surpris
since the initial state is a high Rydberg state and relativ
little information about the final electron distribution is me
sured. We might expect that the dominant quantum effe
interference and tunneling, play a minor role in these m
surements. It is the main purpose of this paper to dire
compare fully quantum and classical trajectory Monte Ca
calculations to test the accuracy of the classical method. T
will provide guidance as to what sort of accuracy needs to
obtained in order to measure the difference between clas
and quantum mechanics in this system.

The second purpose of this paper is to address the in
esting measurement scheme proposed by Jones@13#. In Ref.
@13#, it was shown how a pulsed electric field could be us
to measure a component of the momentum distribution o
Rydberg state. Another secondary purpose of this paper
show that the measured momentum distribution could be
better agreement with the actual distribution than was in
cated in Fig. 1 of Ref.@13#. The method proposed by Jones
a difficult method to implement but could, in principle, be
561050-2947/97/56~5!/3358~4!/$10.00
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highly accurate method. With the accuracy that can be
tained, one could directly measure the precession of the
bital angular momentum in a Cs atom in the 27p state.

This method for measuring a component of the mom
tum distribution of a Rydberg electron has used the idea
within the impulse approximation the electron’s change
energy isDE5Dppz1Dp2/2 whereDp is the impulse~as-
sumed to be in thez direction! given to the electron. If the
change in energy is greater than the binding ene
(EB521/2n2), the electron will leave the atom. This mea
that the percentage of the atoms ionized,P(pz), equals the
percentage of the electrons with thez component of the mo-
mentum larger thanpz5(1/n22Dp2)/2Dp. The experiment
measures

P~pz!5E
pz

`

D~pz8!dpz8 , ~1!

where D(pz) is the probability density for the electron t
have momentumpz and to have any value forpx and py .
The probability density may be obtained by differentiation
the measuredP(pz):

D~pz!52
dP~pz!

dpz
. ~2!

This simple step points to the main difficulty in measuri
the z component of the electron’s momentum distributio
any experimental errors in measuringP(pz) become magni-
fied when taking the difference that is needed to obt
D(pz). In Ref. @13#, Jones showed that this method for me
suring the momentum distribution works well enough
measure the oscillation of a wave packet on an atom. Bu
must be remembered that these equations are approx
tions. One purpose of this paper is to compare the ex
momentum distribution to the distribution that would b
measured in a perfect experiment similar to Ref.@13#. For
this purpose, the time-dependent equations are accura
solved numerically to obtain the ionization probability aft
the pulse; the parametersD(pz) and2dP(pz)/dpz are then
compared. In fact, it is possible to distinguish between cl
sical and quantum momentum distributions.

The quantum dynamics reduces to finding the solution
the time-dependent Schro¨dinger equation for one electro
R3358 © 1997 The American Physical Society
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with a time-dependent Hamltonian given byH(t)5Hatom

1F(t)z. Hatom is the effective one-electron atomic Ham
tonian for the Rydberg alkali-metal atom andF(t) is the
pulsed electric field. For all of the calculationsF(t) was
chosen to have the formF(t)5Fpeakexp@24 ln(2)t2/t2#
whereFpeak is the peak field strength andt is the full width
at half maximum~FWHM! of the pulse. The initial time in
the calculations was chosen to bet523t and the final time
was t53t; with these choices the electric field has n
turned on yet at the initial time and has completely turned
at the final time. At the initial timeC is set equal to the
initial state,C(rW,23t)5c I(rW).

We solved Schro¨dinger’s equation by expandingC(rW,t)
into a basis set of radial functions times spherical harmon
The radial functions were eigenstates of the radial ato
Hamiltonian such that all of the functions go to zero at so
fixed radial distance,r f . The radial potentialVl (r ) is a
model potential that was used to give the correct quan
defects in the Rydberg region; none of the calculated qu
tum defects differed from the experimental ones by m
than 0.002. The second derivative inr was approximated
using a five-point differencing method with the radial me
points on a square-root mesh@14#. The radial orbitals could
be obtained efficiently using a relaxation technique so t
the calculation of orbitals and Hamiltonian matrix eleme
was a negligibly small part of the calculation.

Since the wave function is expanded in an orthonorm
basis set, it is only necessary to time propagate the co
cients. TheCnl (t) are defined by

C~rW,t !5(
nl

Rnl ~r !Yl m~V!Cnl ~ t !/r . ~3!

The coefficients are solutions of the equation

]Cnl ~ t !

]t
52 i (

n8l 8
Hnl ,n8l 8~ t !Cn8l 8~ t !, ~4!

where the Hamiltonian matrix elments are

Hnl ,n8l 8~ t !5enl dnn8d l l 81F~ t !^nl uzun8l 8&. ~5!

The dipole matrix elementŝnl uzun8l 8& were calculated
numerically using a fifth-order integration scheme; the m
trix elements between alln,l andn8,l 61 were computed
to ensure the accuracy of avoided crossings between di
ent n manifolds. A nice feature of this Hamiltonian is that
is block tridiagonal, so that a very large number of ba
functions may be used without encountering storage pr
lems on a workstation. This simple form obtains because
chose our basis set to be eigenstates of the atomic Ha
tonian with zero field. The time propagation in Eq.~4! was
performed using the staggered leapfrog algorithm

CW ~ t1dt !5CW ~ t2dt !22idtH~ t !CW ~ t !, ~6!

which is fairly accurate and easy to implement because
an explicit method.

The most important idea that enables the calculation
the ionization probability has been glossed over. The tric
that the radial functions are obtained within a finite rad
t
ff
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distancer f , so thatall of the radial functions have the prop
erty Rnl (r f)50. With this condition, there is no continuum
there are only discrete states. For lown, this condition does
not perturb the quantum states. But asn increases, eventually
the states can reachr f and these states become perturbed.
n increases further, eventuallyenl becomes greater than
and a whole sequence of discrete states in the posit
energy continuum is generated.

The cutoff radius is chosen to be large enough so that
initial state is easily contained withinr f ; the initial state is
not perturbed byRnl (r f)50. Ther f must also be chosen t
be large enough so that none of the wave function hits thr f
boundary before the pulse turns off. This condition is
quired because otherwise the final energy distribution
electrons is changed. For the calculations presented herr f
was chosen to be 2500 a.u. The number of basis function
eachl was 1402l and the maximuml was 100. It was
necessary to go to largel because the impulse can give a
angular momentum ofr maxDp52n2Dp to the electron; for
the maximum field used in this study this gives a maximu
angular momentum of 100. If the maximum angular mome
tum is not large enough, the electron will ‘‘reflect’’ from th
barrier to excite high angular momentum~represented by no
including high angular momentum in the basis! and will not
ionize efficiently. For example, if the maximum angular m
mentum is reduced to;50, the ionization probability at 20
kV/cm is reduced by a factor of 2.

The calculation of the ionization probability can be pe
formed using the coefficientsCnl (3t). The ionization prob-
ability is simply the sum of the probabilities to be in each
the positive-energy states:

P5(
nl

uCnl ~3t!u2 for enl .0. ~7!

To obtain the distribution of final energies it is only nece
sary to calculate the probability for being in a state in
certain energy range. In these calculations the highest-en
basis function had energy 0.01 a.u. which is roughly dou
the energy of the highest-energy electron after being kic
by a 20-kV/cm half cycle pulse.

The classical calculations were performed by numerica
solving the classical equations of motion for an electron w
random initial conditions that match the quantum state.
trajectories start with energy equal to the binding energy
the 25d state of Na and all trajectories start with total angu
momentum equal to 2.5~the semiclassicald-wave angular
momentum! and with m50. The random conditions on th
orbit are obtained by startingx(t i)5r ocosg, y(t i)50, and
z(t i)5r osing, wherer o was always the outer radial turnin
point, g is a randomly chosen number between 0 andp
with a flat distribution, andt i523t2btRyd (tRyd is the
Rydberg period andb is a randomly chosen number betwe
0 and 1 with a flat distribution!. The initial velocity is com-
pletely determined by the initial position,l andE, depend-
ing on whether the angular momentum in they direction is
positive or negative; the sign of they component of the
angular momentum was chosen randomly for each traject
The flat distributions inb and g automatically produce the
correct distribution inr , pr , andu at the true starting time
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t523t. The codes were run for each of 100 different pe
field strengths. After the field was off att53t, the energy of
the electron was determined. The probability for ionizati
was obtained by finding the percentage of the trajecto
that finished at positive energy. The energy distribution w
obtained by finding the percentage of trajectories with en
gies betweenE2d/2 andE1d/2. The classical and quantum
final energy distributions were the same for the large value
d that would be expected in an experiment.

Putting a reasonable bin of trajectories around the va

of E, uLW u, andLz ~instead of using only the quantum value!
does not change any of the qualitative features of the cla
cal momentum distribution in thez direction. A reasonable
bin in energy would extend from the average of the 24d and
25d energies to the average of the 25d and 26d energies;
since the momenta scale like 1/n, this would make a chang
in the momentum distribution of less than 2
(@1/2#3@1/25#). A reasonable bin inLz would extend from
21/2 to 1/2. The momentum distribution in thez direction
for LzÞ0 can be exactly obtained from the distribution f
Lz50 by dividing theLz50 distribution by sina and chang-
ing the scale ofpz by a factor of sina, wherea is the positive
angle between the angular momentum vector and thez axis;

since sin2a512Lz
2/LW2, the change in the distribution is les

than 2% (@1/8#3@1/2.52#). A reasonable bin inuLW u would
extend betweenuLW u61/2. The main change in the mome
tum distribution in thez direction arises from the change
the eccentricity of the orbit because the change in the ra
velocity is negligible over most of the orbit; since the chan
in the eccentricity isE times the change inLW 2, this gives a
change in the distribution of less than 1%.

The main results of this paper relate to the behavior of
25d m50 state of Na kicked by a 500-fs electric-field puls
The dynamics of the system for 100 peak field streng
between 0 and 20 kV/cm are obtained and used to ‘‘m
sure’’ the z component of the momentum distributions,
suggested by Jones. This is the same system used in
@13#.

In Fig. 1, the experimentally measured ionization pro
ability versus peak field strength is shown with the solid lin
and the theoretically measured probability is shown with
dashed line for the classical calculation and the dotted
for the quantum calculation. It is clear that all three of the
curves are in substantial agreement with each other. T
shows that the basic mechanism for ionization is corre
described in both the quantum and classical calculatio
However, this is an integrated parameter. The differen
parameterD(pz) shows a qualitative difference between t
quantum and classical calculations.

In Figs. 2 and 3 are presented the main results of
paper. In Fig. 2, the classical momentum distribution for
25d state is shown with the solid line and the measu
distribution@using 105 classical trajectories per field and E
~2!# is shown with the dashed line. In Fig. 3, the quantu
momentum distribution for the 25d state is shown with the
solid line and the measured distribution~using nmax5140
andl max5100) is shown with the dashed line. The quantu
momentum distribution in thez direction ~with px and py
anything! for an nl m state is given by
k
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D~pz!54E
0

`

uYl ,m~cosup,0!u2Qnl
2 ~p!prdpr , ~8!

where cosup5pz/Apz
21pr

2 andp5Apz
21pr

2 and

Qnl ~p!5E
0

`

j l ~pr !Rnl ~r !rdr . ~9!

Both the classical and quantum measurements were
formed using a 500-fs FWHM pulse electric field. The
were runs for 100 equally spaced peak field strengths fro
to 20 kV/cm.

Several interesting features of these distributions are
parent. The most interesting is the qualitative difference
tween the classical and quantum distributions nearpz50: the
classical distribution has a minimum and the quantum dis
bution has a maximum. This difference arises from the c
structive interference atpz50 for all states, such thatl 1m

FIG. 1. Ionization probability versus peak field for a 0.5-
FWHM pulse. Solid line, experimental results of Ref.@@13##; dotted
line, quantum calculation;. dashed line, classical trajectory Mo
Carlo calculation.

FIG. 2. Solid line, classical momentum distributionD(pz) in the
z direction;, dashed line, classical momentum distribution in thz
direction as ‘‘measured’’ using2dP(pz)/dpz .
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is even. Whenl 1m is odd, there is destructive interferenc
and the distributionD(pz50)50. This can be seen in Eq
~8! where the distribution atpz50 is given by

D~0!54uYl m~cosu50,f50!u2K 1

pL , ~10!

which equals

D~0!5
~2l 11!~ l 1m!! ~ l 2m!!

22l ~ l ! !2p

11~21! l 1m

2 K 1

pL .

~11!

Of course, the classical distribution does not have this pr
erty. For the 25d m50 state, the constructive interferenc
causes a very large maximum atpz50, whereas the classica
distribution has a minimum. The important point of this d
tribution is that it is measurable in principle, using Jone
method. The measured classical distribution shows a di
pz50, while the quantum distribution is clearly peaked.

Another interesting feature is the noise in the class
distribution at negativepz . This arises because the runs a

FIG. 3. Solid line; quantum momentum distributionD(pz) in
thez direction; dashed line, quantum momentum distribution in
z direction as ‘‘measured’’ using2dP(pz)/dpz .
p
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made using equal steps in the peak field strength. At
higher fields, this results in smaller steps inpz . The statisti-
cal noise in going from onepz to the next is enhanced. In th
quantum distribution there is an oscillation inD(pz) for
negativepz whose source is completely unknown. This o
cillation does not appear to be a numerical artifact: differ
runs withl max increased by 20%, ornmax increased by 20%,
or r f increased by 20%, ordt decreased by a factor of 2all
gave exactly the same results.

This interference effect in the quantum distribution is e
perimentally measurable, in principle, but of course the m
surement will be difficult. For example, in the experiment
Ref. @13#, the initial state, thej 53/2 state, was excited; thi
would wash out the interference effect atpz50 because the
j 53/2,umj u51/2 has bothm50 andumu51. One then might
consider how to enhance this effect. One possibility wo
be to excite a Csnp state wheren;20230, with a pulsed
laser that has a pulse time much shorter than 2p/DE, where
DE is the energy splitting of thenp3/2 andnp1/2 states. For
n527, 2p/DE561 ps. If this excitation occurs with ligh
linearly polarized in thez direction, the atom will be in a
superposition ofnp3/2 and np1/2 states such that the spati
part of the packet will be purelym50. Sincel 1m is odd,
the momentum distributionD(pz) will go to 0 at pz50. But
after a timep/DE, the spatial part of the wave function wi
be 89% in anm51 or m521 state. Sincel 1m is even,
the momentum distribution will constructively interfere
pz50 and thus be substantially above the classical value
bonus is that the precession of the orbit about the spin wil
directly measurable.

In conclusion, classical and quantum calculations w
performed for the Na 25d m50 state kicked by a 500-fs
electric-field pulse with peak field strengths from 0 to
kV/cm. It was shown that good agreement with experime
tally measured ionization probabilities could be obtaine
Perhaps, more importantly, it was shown that the meth
proposed by Jones could in principle distinguish betwe
quantum and classical distributions. This method would
low the direct measurement of the orbit’s precession ab
the spin in Cs.

I greatly appreciate experimental data given to me
R.R. Jones and enlightening conversations with him. T
work was supported by the NSF.
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