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An operator is defined that is analogous to the time translation operator except that it translates every
component of a state in energy by an amount«. A prescription for measuring expectation values of this
operator is described. These measurements provide phase information that is not obtainable by other means.
The similarity of this treatment with the treatment of recurrence spectroscopy in the time domain is presented.
Two examples from atomic systems are described, but the usefulness of this operator is not restricted to atomic
processes.@S1050-2947~97!03111-9#

PACS number~s!: 03.65.Ca, 31.15.Ar, 32.80.Dz, 42.50.Md
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The properties of quantum systems~e.g., atoms, mol-
ecules, nuclei, and solids! have typically been explored b
measuring the response of the system to a monochrom
driving field. This response depends on the squared am
tude for the process to occur at that frequency summed
all of the indistinguishable final states of the process. T
response depends on the initial state of the system and o
states of the system at an energy\v above~or sometimes
below! the initial-state energy. For example, if an atom is
an initial state, the photoionization cross section is prop
tional to ( jdE j

2 dE j
2* , where thej index the ionization chan

nels and the excitation amplitude depends on the dipole
trix element coupling the initial state to the energ
normalized final states. Of course, all phase information
lost in this type of measurement; thus it is impossible
predict the detailed response of the system to a pulsed d
ing field from this type of measurement. However, so
time-dependent information is available. Recent work h
shown that by Fourier transforming the energy-depend
response, an expectation value of the time translation op
tor may be obtained. This is an overlap between a state o
system at time 0 with itself at timet @1#. This overlap can
also be measured directly@2–9#.

The response of quantum systems to a pulsed driving fi
recently has been measured directly through the genera
and detection of wave-packets@2–22#. ~To avoid giving the
large list of fruitful wave packet experiments, I will focus o
electron wave packets. It must be remembered, though,
every aspect of this paper applies equally well to other ty
of time-dependent quantum measurements@11#.! In these
studies, the initial state is a superposition of many differ
energy components. Typically, the behavior of an elect
wave packet is probed by measuring the time-depend
probability for it to be in the vicinity of the nucleus@12–16#
or by measuring the time-depemdent flux of electrons ejec
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from autoionizing states@17–21#. It is also possible to mea
sure components of the momentum distribution@22#. The
purpose of these studies is to observe the time evolution
quantum systems since this is more analogous to our exp
ence with classical phenomena. It also provides us wit
fuller understanding of the quantum systems by forcing us
view the system in the time domain.

It is the purpose of this paper to answer the followi
question: What is obtained when the time-dependent m
surements are Fourier transformed? The question app
pointless because this Fourier transform is going to g
some sort of energy information and the whole point of tim
dependent measurements is to get away from the energy
main. It is shown below that what is obtained is the exp
tation value of an energy translation operator. Further, i
shown that the information thus obtained cannot be m
sured using the more typical energy-dependent respons
the system to the field. Relative phase information betw
different energy-states may be obtained. These meas
ments are not restricted to atomic systems, although b
examples given in this paper are for atomic processes:mea-
suring the increase of phase through a resonance andmea-
suring the change in sign of the dipole matrix element acro
a Cooper minimum.

The energy translation operator will be discussed wit
the context of a specific experimental arrangement. Rec
experiments@17,20# measured the time-dependent fluxI (t)
of electrons into a detector a distancer 0 from an atom in a
static electric field. The initial state of the atom is created
exciting it to energies above the classical ionization thre
old but below the zero-field threshold using a weak, puls
laser that has a full width at half maximum~FWHM! of a
few picoseconds. To discover the physical interpretation
the Fourier transform ofI (t), it is necessary to have a theo
retical description of this parameter.
4296 © 1997 The American Physical Society
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The theoretical description of this process is simpl
when using the outgoing-wave-type continuum wave fu
tions cE j

2 ; this function only has outgoing waves in chann
j and incoming waves in all other channels. These functi
are energy normalized̂cE j

2 ucE8 j 8
2 &5d j j 8d(E2E8) and an

unusual phase convention is employedcE j
2

5exp@2ifj(r0)#c̃Ej
2 , where the c̃E j

2 are the more usua
outgoing-wave solutions andf j (r 0) is the phase accumula
tion in channel j from the nucleus to the detecto
Im$ln@f j

1(r0)#% ~f j
1 is the outgoing wave in channelj !. If the

laser pulse has amplitudeA(E) for containing a photon to
excite the atom to energyE, then the wave function at th
detector is

c~rW0 ,t !5E dE(
j

F j~V!A~E!^cE j
2 uTucg&e

2 iEt, ~1!

whereF j (V) is the function for all the degrees of freedo
of the system orthogonal to the direction of motion of t
electron andT is the transition operator that is proportion
to x, y, or z depending on the polarization.

The flux into the detector is proportional toucu2 inte-
grated over the transverse modes

I ~ t !5KE dEE dE8(
j

^cguTucE8 j
2 &A* ~E8!ei ~E82E!tA~E!

3^cE j
2 uTucg&, ~2!

whereK is the proportionality constant and I have neglec
the different velocities in the different channels. For atoms
electric fields, the electrons have the same speed in all c
nels; for atoms in zero field, the different times of flight
the different channels separate the pulses by such large t
that it is unlikely they would be measured in the same
periment.

The Fourier transform of the flux can be obtained in
rather trivial manner

h~«!5
1

2p E
2`

`

I ~ t !e2 i«tdt

5KE dE(
j

^cguTucE1«, j
2 &A* ~E1«!A~E!

3^cE j
2 uTucg&, ~3!

with «>0 by definition. What is the meaning or physic
idea in this equation? This equation can be interpreted u
as the definition of a stateuC&5A(H)Tucg&AK, whereH is
the Hamiltonian of the system; this function has the ene
representation

uC&5AKE dE(
j

ucE j
2 &A~E!^cE j

2 uTucg&. ~4!

With these definitions the Fourier transform of the flux
equal to

h~«!5^CuW~«!uC&, ~5!

whereW(«) is the operator
t
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W~«!5E dE(
j

ucE1«, j
2 &^cE j

2 u. ~6!

To interpret this operator, note the relations

W~«!ucE j
2 &5ucE1«, j

2 &, ~7!

W~«1!W~«2!5W~«11«2!, ~8!

W~«!W†~«!51, ~9!

W†~«!W~«!Þ1. ~10!

Relations~7!–~9! indicate that theW(«) operator behaves a
an energy translation operator. Relation~10! shows that the
similarity to the time translation operator is not comple
The reasonW†WÞ1 is because the number of channels
creases with increasing energy.

Before continuing the discussion of the energy translat
operator, the method for obtaining the expectation value
W(«) should be compared with the method for obtaining t
expectation value of the time translation operator. Take
energy-dependent responseR(E)5K( j z^cE j

2 uTucg& z2, multi-
ply by uA(E)u2, and then Fourier transform. The resultin
function of time is

r~ t !5E
2`

`

R~E!uA~E!u2e2 iEtdE

5^CuU~ t !uC&, ~11!

where uC&5A(H)Tucg&AK and U(t)5exp(2iHt) is the
time translation operator. From this, the similarity betwe
the two operatorsU andW is apparent. The basic similarit
consists in the identification ofr(t) as a overlap between
state and itself, but where every component has been sh
forward in time by an amount t;h~«! can be identified as an
overlap between a state and itself, but where every com
nent has been shifted in energy by an amount«:
h(«)5*dE( jCE, jCE1«, j* . An interesting point is that with
the current definitionsr(0)5h(0) if A(E) is the same inr
andh andK is the same inr andh.

However, beyond this one point,«50, it is impossibleto
obtain theh~«! function from the energy-dependent respon
function. This is because theh~«! function depends on the
relative phase of the dipole matrix elements between st
separated in energy by an amount«. From the preceding
derivation, it is clear that the expectation value ofW(«) is a
measurable quantity, but perhaps it is not clear that it i
quantity worth measuring. After all, the reason for doi
wave packet studies is that you can make quantum syst
behave somewhat classically. The important point is t
there is phase information available inh~«! that is not ob-
tainable in principle fromR(E). In certain interesting cir-
cumstances it allows the measurement of the relative ph
dependence of the wave function. Below two interesting
amples of this possibility are given.

The first interesting case involves the behavior ofh~«!
near two resonances, one that is much sharper than the o
To be specific, the transition amplitudes will have the for
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^cE j
2 uTucg&5Tc j1

T1 j

E2E11 iG1/2
1

T2 j

E2E21 iG2/2
,

~12!

whereTc j , T1 j , andT2 j are essentially energy independe
andEi ,G i are the position and width of the two resonanc
To be specific, we chooseE1,E2 and G1!G2 ~i.e., the
lower-energy resonance is the sharper one!. If either
T1 j@T2 j or E22E1.G2 , the excitation amplitude can b
chosen in such a way that

h~«!}(
j

S Tc j* 1
T2 j*

E11«2E22 i ~G11G2!/2DT1 j

.(
j

^cguTucE11«
2 &T1 j ~13!

for «@G1 . This allows the measurement of the compl
conjugate of the dipole matrix elements dotted into the a
plitude for exciting resonance 1.

In Fig. 1 the ground-state total photoionization cross s
tion for Na in a 1990-V/cm static field is shown for a las
polarized perpendicular to the static field direction. This w
calculated using the method described in Ref.@21#. The
dashed line is theA(E) used to excite the wave packe
There are three resonances excited by this pulse at ene
21.016 1831023, 21.011 7431023, and 21.010 00
31023 a.u. These resonances have asymmetric profiles
to the interference between the resonant and direct am
tudes. In Fig. 2 the imaginary part ofh~«! versus its real par
for the case shown in Fig. 1 is plotted. No approximatio
were made in this calculation except the numerical appro
mations inherent in the calculation of the dipole matrix e
ments. The following points in « are marked: ~i!
«53.6331026 ~diamond!, the smallest value of« in this
plot; ~ii ! «54.4431026 ~triangle!, the exact spacing be
tween the lowest two resonances;~iii ! «55.9331026

~square!, the spacing between the lowest and highest re
nances minus the halfwidth of the highest resonance.~iv!
«56.1831026 ~cross!, the exact spacing between the lowe
and highest resonances; and~v! «56.4731026 ~plus!, the
spacing between the lowest and highest resonances plu
halfwidth of the highest resonance.

FIG. 1. Solid line, proportional to the ground-state infinite res
lution photoionization cross section~in arbitrary units! of Na in a
static electric field as a function of the electron’s ener
Fstat51990 V/cm and the laser polarized perpendicular to the st
electric field; dotted line; proportional toA(E), the amplitude for
finding a photon at each energy.
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There are several interesting features of this plot that
be understood from the approximate equation~13!. ~i! As «
becomes nearly equal to the spacing of two resonances
trajectory of h~«! in the complex plane approximately ex
ecutes an elliptical-type motion.~The initial value of« is too
large to see the third ellipse that arises when« equals the
difference in energy of the middle and upper resonanc!
The eccentricity of the ellipse depends on the asymmetry
the broader resonance: Lorentzian resonances produce c
and window resonances produce straight lines.~ii ! The tra-
jectory of h~«! traverses the ellipse in a clockwise directio
~iii ! Not shown on the figure is thatdh/d« is largest at the
triangle and cross~i.e., when« equals the spacing of two
resonances!; the rate of phase change is largest on resona
~iv! The diameter of the ellipse is related to the product
the oscillator strength of the two resonances separated
energy« ~i.e., the larger the oscillator strength of the res
nance, the larger the ellipse!.

It is clear from Fig. 2 that the phase ofh decreases by 2p
as « is varied over each of the resonance spacings. In p
ticular, the trajectory for the region of« near the energy
difference of the lowest and highest resonances follows
form predicted by Eq.~13!. ~As an aside, onep of this phase
comes from the phase shift of the continuum wave and
extrap of this phase arises from the energy-dependent
plitude multiplying the autoionizing resonance part of t
wave function.! This example shows that it is possible
measure the change in phase of the dipole matrix elem
across a resonance.

Another interesting case involves the change in sign
the dipole matrix element across a Cooper minimum in
photoionization cross section. If the minimum is at a hi
enough energy, the dispersion of the electron wave trave
to the detector can be neglected. A wave packet created
the main photon frequency centered on the Cooper minim
will give information on the sign change of the dipole matr
element if« is chosen large enough so that the correlat
function of the dipole matrix elementTE* TE1« involves en-
ergies from opposite sides of the Cooper minimum.

A simpler experiment to measure the sign change acro
Cooper minimum can use the system discussed in Ref.@23#.

-

ic

FIG. 2. Imaginary part ofh~«! plotted versus the real part. Th
symbols on the line are particular values of« as discussed in the
text. h is in arbitrary units.
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A wave packet around a Cooper minimum in the bound-s
region can be created in Li. In this situation, the wave fu
tion is given by

c~rW,t !5(
n

Cn~ t !dne2 iEntcn~rW !, ~14!

where

Cn~ t !52 i E
2`

t

F~ t8!ei ~En2Eg2v!t8dt8 ~15!

anddn5(En2Ec)D/(n2m)3/2, with F(t) the laser field am-
plitude,D a constant, andm the quantum defect; the quantit
Ec is the energy at which the dipole matrix element chan
sign. Cn(t) quickly approachesA(En) as t gets larger than
the FWHM of the pulse. In a pump-probe experiment wh
a second laser excites the wave packet into the continu
measuring the probability for ionization versus the time d
lay between pulses givesuc(0,t)u2 to a good approximation
since the electron absorbs photons most efficiently when
near the nucleus. This simplifies the calculation because e
component of the wave function behaves li
cn(rW).F(rW)/(n2m)3/2 near the nucleus. Fourier transform
ing this quantity with a small imaginary part to« gives

h~«2 id/2!5
2 iK

p (
n,n8

A~En!A* ~En8!

3dndn8
* /@~nn8!3/2~En1«2En82 id/2!#,

~16!

wheren5n2m. If d is chosen to be much smaller than t
difference in energy spacings, theh function can be inte-
ev

. H

de
m

eu

r,

an

,

te
-

s

e
m,
-

is
ch

grated over one of the peaks to give

E
En82En210d

En82En110d
h~«2 id/2!.KA~En!A* ~En8!dndn8

* /~nn8!3/2.

~17!

This lets onemeasurethe sign change of the dipole matri
elements because ifn andn8 are such thatEn,En8,Ec or
Ec,En,En8 , then the parameter in Eq.~17! should be posi-
tive. If En,Ec,En8 , then the parameter should be negativ

These two examples show that the energy translation
erator could be a powerful tool for measuring previous
undetectable parameters. A more concerted effort will
needed to understand the behavior of the energy transla
operator in more complex circumstances. A couple of
amples that might show interesting behavior will suffic
First-row atoms and many molecular systems have ioniza
thresholds that have a small spacing; an electron wave pa
in these systems will give radial motion for the electron
well as for the core that remains after the electron is kick
out; interesting correlations are expected when« is chosen to
equal the core energy spacing. Rydberg states that are su
to unidirectional kicks by a pulsed electric field evolve like
wave packet; contrasting the correlation in these state
those created from pulsed lasers may shed light on the
namics. Wave packets constructed from states in static e
tric or magnetic fields are difficult to understand due to t
interactions between nearly degenerate states; by giving
tive signs of dipole matrix elements and correlations betw
states at different energies the energy shift operator may
vide another method for unraveling the quantum dynami
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