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Calculated electron dynamics in an electric field

F. Robicheaux and J. Shaw
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 18 December 1996; revised manuscript received 14 February 1997!

We present the details of a theoretical method for calculating the wave-packet dynamics of a Rydberg
electron in a strong electric field. Results for Rb are presented, and are compared to recent experiments that
measure the time dependence of the electron flux. These interesting experiments provide a different possibility
for the experimental detection of wave packets. The results of fully quantum and classical calculations are
compared to each other. Several aspects of this system that are easier to study theoretically are presented. The
main property that can only be obtained theoretically is the form of the wave function near the nucleus. We
found that the flux of electrons entering the detector accurately reflects the flux of electrons leaving a sphere of
radius 2000 a.u. centered on the atomic nucleus. The classification of the autoionizing states contributing to the
wave packet is also easier to obtain theoretically.@S1050-2947~97!06307-5#

PACS number~s!: 32.60.1i, 42.65.Re, 32.80.Dz
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I. INTRODUCTION

Recent advances allow the exploration of electron dyna
ics in atoms in a dynamical fashion@1–20# through the cre-
ation and detection of time-dependent electron waves. Th
waves are often called wave packets, although they may
be very localized in phase space. A pulsed laser field o
pulsed electric field creates the wave packet and determ
its initial conditions. The electron wave rapidly evolves
the Coulomb and external fields. Measuring the electron
namics poses a difficult technological problem that has b
solved several different ways. The focus of this paper is
the creation of wave packets in the autoionizing regime
an alkali-metal atom in a strong and static electric field. T
is one of the few systems involving more than one degre
freedom that has been explored@21–30#.

The time-dependent flux of electrons ejected from
toionizing states of Rb atoms has been measured in a s
electric field using an electron streak camera@13#. These
striking measurements form a point of comparison betw
calculations and experiment. The experiments excite
from the ground state to autoionizing states just above
classical ionization threshold in the field. These experime
provide a very interesting way to probe the wave packet n
the atom. Autoionizing states naturally eject electrons,
these electrons can be detected far from the atom. W
packets constructed from autoionizing states eject elect
in a periodic fashion that reflects the periodicity of the tra
siently bound electron.

The wave-packet dynamics is determined by several
rameters: the static electric field, the laser polarization,
main frequency of the laser, and the pulse duration. The
of electrons from the Rb can be a very complicated funct
of time but the time dependence of this flux reflects the ti
dependence of the wave packet in the autoionizing states
varying the parameters, a good match between the calcu
and experimental fluxes may be obtained. However,
asymptotic flux is only a small part of the information th
may be obtained from thecalculatedwave packet. The cal
culated wave packet allows the precise determination of
dynamics that led to the measured flux. By linking our co
561050-2947/97/56~1!/278~12!/$10.00
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putational and experimental efforts, we gain a deeper ins
into this dynamical system.

The creation and detection of wave packets allows
somewhat more direct connection to and exhibition of ‘‘cla
sical dynamics’’ in quantum-mechanical systems. Many
the experiments on simple quantum systems have feat
that may easily be interpreted using classical ideas. R
tively little work has been done on complex systems, es
cially systems involving two or more coupled degrees
freedom. Wave packets generated on heavy alkali-meta
oms in a strong static electric field are a prototype for
dynamics of complex wave packets. The electric field p
Coulomb potential leads to a separable Hamiltonian in pa
bolic coordinates; thus the motion is independent in each
the parabolic degrees of freedom. However, for the he
alkali-metal atoms, the core electrons break the ‘‘parabo
symmetry’’ for the valence electron, causing strong scat
ing between the different types of parabolic motion. T
quantum-mechanical wave function can be described a
superposition of functions in the different parabolic cha
nels, with the core causing a coupling between the chann

The motion of electron wave packets on alkali-metal io
in constant electric fields provides an ideal setting for co
parison between theory and experiment. Further, the dyn
ics of this system may be calculated in two different wa
with only a modest investment of computational resourc
The two methods that are utilized complement each othe
that there are some parameters that may be calculated u
either method~e.g., total photoionization cross section! and
there are some parameters that can only be obtained u
one of the methods. By comparing the results from the t
methods where possible, we can gain confidence that
have implemented them both in an accurate and bug-
manner.

The simpler of the two methods to implement constru
the wave packet using a superposition of functions that
solutions of an inhomogeneous Schro¨dinger equation. These
functions depend on the energy, and are constructed by
culating the Green’s function using a basis set of functions
spherical coordinates. The more difficult method to imp
ment constructs wave packets by superposing homogen
278 © 1997 The American Physical Society
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56 279CALCULATED ELECTRON DYNAMICS IN AN ELECTRIC FIELD
functions calculated within the formalism developed
Harmin @31# using the local frame transformation sugges
by Fano@32#. In this method, the parabolic symmetry of th
Hamiltonian outside of the core region is exploited in t
construction of the energy-dependent wave function. T
core couples together the different parabolic channels, wh
causes the scattering of the electron from one channe
another.

We have completed some preliminary calculations of
classical dynamics for this system, as well as the exact wa
packet calculations. The connection betweensome aspectsof
the classical and quantum dynamics should be more ea
made using wave packets. In general, we have found th
be true. For the systems that we present in this paper,
connection is sometimes difficult to make, because the w
packets are constructed from relatively few states. Certai
the connection of our packets to periodic orbits cannot
made cleanly.

The final part of this paper involves the presentation
calculations of electron wave packets for Rb in an elec
field. These calculations focus on explaining the experim
tal results of Lankhuijzen and Noordam@13#. To this end we
calculate the frequency-dependent cross section, we calc
the asymptotic flux for one of the experimental geometri
we show several of the wave packets, and we show som
the classical trajectories that seem to have some corres
dence with the wave packet. Calculations for another of
experimental geometries has already been presented@33#.
Atomic units are used throughout this paper unless spe
cally noted.

II. LASER PULSE EXCITATION OF WAVE PACKETS

In this paper, we are concerned with the dynamics
wave packets that have been created by shining a w
pulsed laser on an initial state. The wave packet is the s
tion of the inhomogeneous Schro¨dinger equation

S i ]

]t
2H Dc~rW,t !5F~ t !ê•rW cosv0t exp~2 iEI t !c I~rW !,

~1!

whereH is the static Hamiltonian incorporating the atom
Hamiltonian and the potential from the static electric fie
c I(rW) is the initial state,EI is the initial state energy,v0 is
the main frequency of the laser pulse,ê is the polarization,
andF(t) is the relatively slowly varying laser envelope. Th
function c(rW,t) may be obtained in several different way
Two methods based on time-dependent perturbation th
may be used. Both methods use a Fourier decompositio
the laser envelope

F~V!5E
2`

`

F~ t !eiVtdt. ~2!

The quantityF(v2v0) is proportional to the amplitude fo
finding a photon of frequencyv in the laser pulse. The func
tion F(V) is strongly peaked aroundV50, which gives a
strong peaking of the photon amplitude nearv5v0.

We are interested in calculating wave packets of c
tinuum states. This makes the construction of wave pac
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slightly more difficult than the usual case where the pack
are constructed from bound states. It is now necessar
superpose an infinite number of states. The wave packet
be constructed by superimposing the solutions of the in
mogeneous Schro¨dinger equation

~E2H !LE
1~rW !5 ê•rWc I~rW !, ~3!

where the1 superscript indicates thatLE
1 is composed of

outgoing waves ineveryopen channel. By simple substitu
tion into Eq.~1!, it is possible to show that

c~rW,t !5
1

4pE LE
1~rW !e2 iEtF~E2EI2v!dE ~4!

where the rotating-wave approximation has been used„i.e.,
the exp@2i(EI2v)t# term in Eq.~1! is neglected….

The wave packet may also be constructed by superimp
ing the solutions of the homogeneous Schro¨dinger equation

~E2H !CEb
2 ~rW !50. ~5!

For energies in the continuum, there are, in general, sev
open channels at energyE. The number of linearly indepen
dent solutions,N, equals the number of open channels. Th
are infinitely many different ways of constructing the lin
early independent solutions, so we will choose the linea
independent solutions in a form that will most easily allo
the construction of the outgoing flux. These function
CEb

2 , are constructed so that asymptotically theyonly have
outgoing waves in channelb. These functions have the gen
eral orthogonality property

^CEb
2 uCE8b8

2 &5Obb8d~E2E8!, ~6!

where often the overlap matrixObb85dbb8 ~the overlap ma-
trix is not proportional tod functions for the outgoing wave
in parabolic coordinates, which forces us to use the m
general formalism!. In terms of these functions, the wav
packet may be constructed for times after the laser pulse
gone to zero as

c~rW,t !52
i

2(b E DEb
2 CEb

2 e2 iEtF~E2EI2v!dE, ~7!

where the dipole matrix elements for these functions h
the general form

DEb
2 5(

b8
~O21!bb8^CEb8

2 u ê•rWuc I&. ~8!

The two methods presented above give equivalent res
But there are advantages to using different methods in
ferent regions of space, as will be described below. An
portant point of contact between the different methods is
total photoionization cross section. The total cross sec
may be obtained as

s~E!}v(
b

uDEb
2 u2}v Im@^c I u ê•rWuLE

1&#. ~9!
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280 56F. ROBICHEAUX AND J. SHAW
This relationship may be exploited as a test of the implem
tation of the different methods.

It is important to note that nothing in this section depen
on the particular problem that is being examined. The o
requirement is thatH be time independent, and that the e
citation be perturbative. We note that several dynamical s
ations may be examined immediately using existing co
puter programs and Eqs.~4! and ~7!. In particular, wave
packets excited in constant electricand magnetic fields or
only in magnetic fields may be explored. These proble
may have deep interest, since it would be possible to ex
wave packets for parameter ranges that would lead to ch
in classical mechanics.

III. CALCULATING LE
1

One method for calculating the wave packet is to sup
impose the inhomogeneous functions that are solutions
Eq. ~3!. TheLE

1(rW) are the solutions with outgoing waves
everyopen channel. Enforcing this large distance bound
condition in an elegant and accurate manner is very diffic
However, a brute force approach borrowed from codes
volving the direct solution of the time-dependent Sch¨-
dinger equation will give an accurateL1 without the need
for an explicit solution of the boundary conditions.

The inhomogeneous equation was solved by expres
LE

1(rW) as a superposition of radial functions times spheri
harmonics. The radial functions were the solution of the
dial Rb Hamiltonian with a model potential near the origin
give the correct quantum defects for the atom. The ra
functions were orthonormal since they were all genera
from the same potential, and they were all forced to zero
r52800 a.u. We used 89 radial functions for eachl , and a
maximum l of 59. Convergence was tested by increas
the number of radial functions by ten, keeping everyth
else fixed, or by increasing the maximuml by ten and keep-
ing everything else fixed. Neither increase changed the
sults by more than 0.5%.

The inhomogeneous function was calculated by direct
lution for x in theAxW5bW linear problem, taking full advan
tage of the block-tridiagonal nature ofH. The algorithm was
based on the formal solution of a tridiagonal linear equati
except that the elements of the tridiagonal linear system w
themselves matrices. This allowed the calculation ofLE

1 to
be roughly 100–1000 times faster than when working w
the full Hamiltonian matrix of the same size. This speed w
crucial, becauseLE

1 needed to be calculated at several hu
dred energy points for each set of experimental paramet

The description to this point leaves out the important
scription of how to obtain the correct asymptotic bounda
conditions. Remember,LE

1(rW) musthave outgoing waves in
all of the open channels with incoming waves innoneof the
open channels. The correct boundary conditions are a
matically incorporated if we add toH an unphysical imagi-
nary potential. The imaginary potential decreases the n
of the wave function, where the imaginary potential is no
zero. The requirement on the absorbing potential is tha
absorbs the vast majority of the flux moving to larger and
does not absorb flux at anr that is too small, thus affecting
the autoionizing dynamics. Two possible problems with
-
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absorbing potential must be avoided. First, the absorbing
tential should not turn on so quickly inr that it reflects
electrons back into the region of smallr . Second, the absorb
ing potential should not be so weak that the electron
travel all of the way tor52800 a.u. and reflect back into th
small-r region. Both these restrictions can be satisfied for
wave packets, because we are working in a very narrow
ergy range.

The only drawback to using this method for constructi
wave packets is that it cannot be used to compare with
experimental results of Lankhuijzen and Noordam@13# with-
out first comparing to some other computational techniq
In these experiments, the time dependent flux of electr
ejected from alkali atoms in staticE fields was measured in
a time-dependent manner using an electron streak cam
Unfortunately, the electrons ejected from Rb may not exac
maintain their spatial relationship as they travel from t
atom to the detector. This dispersion may prevent a qua
tative comparison to their experiments using the superim
sition of LE

1(rW) that are constructed from a finite basis.
comparison of the flux obtained from this method with
computational technique that calculates the flux a mac
scopic distance from the atom would also allow us to ans
the question: How faithfully does the time-dependent fl
entering the detector reflect the dynamics near the atom

An interesting aspect of this method involves its flexib
ity. Any type of alkali-metal atom in a static field can b
described with this method. There does not appear to be
reason why we could not make wave packets on any of
heavily explored field atom combinations: magnetic fie
and parallelE andB fields, for example.

The zero-field Rb radial functions were generated usin
model potential of the form

Vl ~r !52
Zl ~r !

r
2

ad

2r 4
$12exp@2~r /r c!

3#%21
l ~ l 11!

2r 2
,

~10!

wheread59.076 is the dipole polarizability of Rb1 @34#,
r c51.0, andZl (r )51136exp(2al

(1)r )1a l
(2)rexp(2al

(3)r ),
with the a l given in Table I. This potential gives quantum
defects with errors less than 0.002 forl <3. The radial func-
tions were generated on a grid of radial points on a squ
root mesh in r ~i.e., equally spaced points ins where
r5s2). The derivatives in the one electron Hamiltonian we
approximated by a five-point or fourth-order finite diffe
ence. The orbitals were generated using a relaxation te
nique by repeated multiplication of a trialRnl by
@Enl 2H l #21. Usually, only two or three multiplies were
needed to achieve convergence to double precision roun
accuracy.

TABLE I. Parameters for the Rb model potential.

l a l
(1) a l

(2) a l
(3)

0 4.1240 9.0613 1.7143
1 4.2865 9.6776 1.7418
2 4.0049 9.1774 1.8157
31 4.0049 9.1774 1.8207
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56 281CALCULATED ELECTRON DYNAMICS IN AN ELECTRIC FIELD
IV. CALCULATING HOMOGENEOUS PARAMETERS

The dynamical system of an alkali-metal atom in a sta
electric field was theoretically described by Harmin@31#
based on a method suggested by Fano@32#. This method is
ideally suited to describe the detection of electron flux
from the atom, since the dipole matrix elements of Eq.~7!
and the asymptotic form of theC2 functions are generated
The cross section may be obtained from the dipole ma
elements, forming a point of contact with the method of S
III. We recast the derivation of Ref.@31# into a form more
amenable to a calculation of the asymptotic time-depend
flux.

The basic idea of this method is that the wave funct
near the core is well described by standard radial Coulo
function ~shifted in phase byp times the quantum defect!
times the appropriate spherical harmonic. Outside of the c
region the electron moves in a pure Coulomb potential p
static electric field. This type of Hamiltonian can be sep
rated into parabolic coordinates. The solutions in spher
coordinates are connected to the solutions in parabolic c
dinates at a distance larger than the core radius, but
distance small enough that the electric field has not disto
the electron motion; this requirement can always be satis
for the small experimental electric fields.

The parabolic coordinates are connected to spherical
ordinates through

j5r1z, h5r2z, f5arctan~y/x!, ~11!

where 0<j and 0<h. In terms of these coordinates, th
wave function may be written as a superimposition of se
rable functions

cEbm~j,h,f!5
1

A2pjh
JEbm~j! f Ebm~h!eimf,

xEbm~j,h,f!5
1

A2pjh
JEbm~j!gEbm~h!eimf, ~12!

where f andg are the regular and irregular solutions of

d2y~h!

dh2 1FE2 22S b21

2h
2
Fh

8
1
m221

8h2 D Gy~h!50,

~13!

andJ are solutions of solution of

d2J~j!

dj2
1FE2 22S 2

b

2j
1
Fj

8
1
m221

8j2 D GJ~j!50,

~14!

with m the azimuthal quantum number andb the separation
constant. The differential equations were written in this fo
in order to draw attention to generic properties of these fu
tions. The terms in the square brackets play the role o
squared wave number~or equivalently a squared momen
tum!, and the terms in parentheses play the role of a po
tial. As j goes to infinity the potential goes to positive infi
ity, which means there is only bounded motion in th
direction. There is an infinite number of bound states, and
the number of nodes in this direction increases~for a fixed
c
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E), b monotonically increases. Ash goes to infinity the
potential goes to minus infinity, which means that at eve
energy there is a continuum wave solution. However,
energiesE,22A(12b)F, the electron must tunnel throug
a potential barrier to go from regions near the core to la
distances.

Since the direction for escape is in theh direction, we
will think of motion in this direction as longitudinal motion
and motion in thej direction as transverse motion. As th
amount of energy in transverse motion increases~i.e., asnj

increases! there is less energy available to surmount the b
rier and escape. At a fixed energy22A(12b)F will be-
come larger asnj increases, and eventually the electron w
be forced to tunnel to escape. Whenb.1, the potential in
Eq. ~14! is purely repulsive, and an electron would need
tunnel enormous distances to reach the core region. Chan
with b.1 play no role in the dynamics discussed in th
paper.

Following Ref. @31#, the functions in Eqs.~13! and ~14!
are evaluated using WKB-type approximations. This is n
essary because of the large number of energies that
needed in the construction of the wave packet. As a techn
detail, all of the integrals were calculated numerically usi
Chebyshev quadrature with less than 40 quadrature poin

For the sake of numerical stability we normalized t
f Ebm(h) and gEbm(h) functions, so that for smallh they
oscillate 90° out of phase and are energy normalized.
key point of analysis is the connection between thecEbm and
xEbm functions of Eq.~12! to the functions in spherical co
ordinates near the core cEl m5 f El (r )Yl m and
xEl m5gEl (r )Yl m ~where f El andgEl are the energy nor-
malized radial Coulomb functions of Ref.@35#! and the con-
nection of the small-h behavior to the functions at asymp
totically largeh. Note that in this section the symbolsC,
c, andx mean different things depending on their subscrip
El m subscripts mean simple functions in spherical coor
nates, andEbm subscripts mean simple functions in par
bolic coordinates.

An atom that has quantum defectsm l has wave functions
near the nucleusCEl m5cEl m2xEl mtan(pm l ), when r is
greater than the size of the core,r c . The connection between
the functions in spherical coordinates to those in parab
coordinates is accomplished through the local frame trans
mations@31,32#

cEl m5(
b

~1/U0! l bcEbm , ~15!

xEl m5(
b

xEbmUbl
0 , ~16!

whereU0 is the transformation matrix@Eqs. ~17!, ~21!, and
~62! of Ref. @31~b!##. The transformation matrix is real an
depends onE,l , b, m, anddb/dn1, although we have only
indicated theb andl dependence. TheU0 matrix has a slow
energy dependence compared to theU matrix that was used
to calculate the cross section in Ref.@31#. We define a stand-
ing wave, coupled-channel solution of the Schro¨dinger equa-
tion near the core to be
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282 56F. ROBICHEAUX AND J. SHAW
CEbm[(
l

Ubl
0 CEl m5cEbm2(

b8
xEb8mKb8b , ~17!

where theK is the parabolicK matrix that couples the para
bolic channels. The coupling arises from the phase shifts
to the core

Kb8b5(
l

Ub8l
0 Ubl

0 tan~pm l !. ~18!

Therefore, it isonly them l Þ0 that cause the scattering b
tween parabolic channels.

The connection between the small-h and large-h forms of
theCEbm function is accomplished through a WKB-type a
proximation. The functions inh have the asymptotic form
given by Eqs.~44! in Ref. @31~b!#. The asymptotic form is
needed in order to obtain the flux into the detector.

To this point, we have exactly followed Ref.@31# for de-
scribing alkali-metal atoms in static fields. Now we need
slightly modify this approach in order to cast all paramet
in a form that will simplify the description of wave packe
at asymptotically large distances from the atom. To this e
we define new sets of parameters. If we use the definitio

R̄b5RbexpF i S p

4
1dbD G ,

S̄b5SbexpF i S p

4
1db2gbD G , ~19!

the wave function that only has outgoing waves in ea
channelb is obtained by

CEbm
2 5(

b8
CEb8m@~ R̄2 S̄K !21#b8b

5
1

2i(b8
~cEb8m

1 db8b2cEb8m
2 Sb8b

†
! ~20!

where R̄ and S̄ are diagonal matrices with the elemen
given by Eq.~19!. Thedb @Eq. ~49! of Ref. @31~a!##, gb @Eq.
~A9! of Ref. @31~b!##, Rb and Sb @Appendix A of Ref.
@31~b!## have convenient definitions in terms of WKB inte
grals.Rb and Sb are large when the electron must tunn
through the barrier except when the WKB integral
*k(h)dh between the smallest two turning points equals
integer timesp for Sb or an integer plus12 times p for
Rb . The matrixS is the nonunitaryS matrix coupling the
parabolic channels that is defined by the matrix equation

S†5~ R̄*2 S̄*K !~ R̄2 S̄K !21, ~21!

and the asymptotic traveling wave solutions are given by

cEbm
6 →

exp~ imf!

pAjhk~h!
JEbm~j!expF6 i Eh

k~h8!dh8G .
~22!

Using Eqs.~17! and ~20!, we can find an expression for th
dipole matrix element in terms of parameters that can
obtained using WKB expressions
ue

s

d
s

h

l

n

e

^CEbm
2 u ê•rWuC I&5(

b8l
@~ R̄*2K S̄* !21#bb8Ub8l

0 D l m ,

~23!

whereD l m5^CEl mu ê•rWuC I& is the dipole matrix elemen
coupling initial and final states when there is zero field. F
the systems studied in this paper, the initial state is ans state,
so we may takeD l m5d l 1, with the only inaccuracy being
the overall size of the cross section or the amount of w
function excited. None of the time or energy dependences
affected by this choice.

The overlap matrix in Eq.~6! may be obtained from the
form of C2 in Eq. ~20! to be

Obb85
1

2S dbb81(
b9
Sbb9
† Sb9b8D . ~24!

Simple substitution of Eq.~21! into Eq.~24! gives a form for
the inverse of this matrix that is numerically unstable wh
there are several strongly closed channels becauseRb and
Sb are very large which gives a nearly singular matrix. If w
perform several matrix manipulations and use the iden
RbSbsingb51, we obtain the stable form

~O21D2!b5 i expF i S db1
p

4 D G (
b8b9

~11 iR21KWT!bb8

3$@~11WKR22KWT!21#W%b8b9Ub91
0 ,

~25!

whereW5R21(12KR22cotg)21, andWT is the transpose
of W.

V. CLOSED-ORBIT THEORY
AND CLASSICAL TRAJECTORY CALCULATIONS

A. Classical recurrences

The wave-packet description in the previous sections
be related to the classical dynamics of the electron by c
structing the semiclassical approximation to the overlap
tegral in Eq.~9!. Let us review this briefly. If a laser excite
outgoing wavesLE

1 near the zero field threshold, then tho
waves go out far from the alkali core, 100–1000-bohr ra
Those portions of the outgoing wave that are turned aro
in the combined Coulomb and electric field to return to t
atomic core follow the paths of the closed classical orbits
the system. These waves return to the source and ove
with it, contributing to the matrix element̂e •̂rWc I uLE

1& in
Eq. ~9!. The matrix element in Eq.~9! becomes a coheren
sum of overlap integrals due to waves associated with
tinct classical orbits labeled by (n,k), i.e., thenth return of
thekth orbit. Each orbit gives a sinusoidal modulation in t
oscillator strength with an energy wavelengthlk

n5h/Tk
n ,

whereTk
n is the return time of the closed orbit. Closed-orb

theory give formulas for the amplitudes and phases of th
modulations@36–38#. The sum of these modulations add u
in principle, to the peaks seen in the photoabsorption sp
trum. It is worth emphasizing here that the closed orbits
an alkali-metal atom and hydrogen are the same, since
dynamics outside the core is controlled by the external fi
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56 283CALCULATED ELECTRON DYNAMICS IN AN ELECTRIC FIELD
and a 1/r attractive potential. The only differences are in t
handling of the outgoing and returning waves near the c
@37#.

To determine the amplitude of the modulations in t
spectrum from an orbit, you need to know the shape of
outgoing waveY(u i) created by the laser@Eq. ~5.12! in Ref.
@37##. This is simple if the initial state is ans state since the
dipole operator of the laser can only populatep states. The
laser polarization selects whether an outgoingm50 p wave
or an outgoingumu51 p wave is excited. For the rubidium
calculations in Sec. VI, the outgoing wave at t50 is l 51,
umu51, so a closed orbit going out at an initial angleu i

k,n is
weighted by sin(u i

k,n). Orbits going out near the electric-fiel
axis u i50 are suppressed, while those going out n
u i590o are emphasized.

This gives the initial amplitude of the outgoing wave ne
the initial angle of the outgoing classical closed orbit. Sta
ing on an initial surface 10<r o<100 bohr, we use a sem
classical approximation to the Green’s functio
Gsc(rW,rW0)5A(rW,rWo)e

iD(rW,rWo), to propagate the waves alon
the classical paths connectingrWo5(r o ,u i

k,n,0) and

rW5(r ,u,f) @39#. The phaseD of this wave function depend
on the classical action along the pathSk

n , and the Maslov
index mk

n , which counts the number of caustics and fo
encountered on the orbit@39,40#. The semiclassical ampli
tudeA(rW,rWo) depends on the divergence rate of the neighb
ing trajectories. For closed orbits the amplitudeA(rW,rWo) is
related to the stability properties of the closed orbit@41#.

For closed orbits, we connect the semiclassical return
wave to the partial wave expansion,Cu f

pw(r ,u), for a zero-

energy wave coming in from infinity at a particular fin
angleu f

k,n @Eq. ~7.5! in Ref. @37##. The ratio of the semiclas
sical returning wave to the incoming part of an incomi
zero-energy scattering wave defines a complex match
constantNk

n , which multipliesCu f
pw(r ,u) for each closed or-

bit. Nk
n contains the amplitude and phase of the return

wave for thenth return of thekth closed orbit. An expression
for this matching constant whenu i

k,nÞ0 is given as Eq.
~7.10! in Ref. @37#. The phase of the returning wave is set
the action and Maslov indices calculated from the origin
the origin on an orbit. The amplitude reduces to terms
volving the derivative ofu f

k,n with respect tou i
k evaluated on

a boundaryr o and is proportional toY(u ik,n).
Therefore the returning part of the waveLE

1 in the semi-
classical approximation is

LE,k
ret,n~rW !5Nk

nCu
f
k,n
pw

~r ,u!. ~26!

This lets us define the recurrence integral for thenth return
of the kth orbit as

Rk
n[^e•rWc I uLE,k

ret,n&5
4p

A2
Ỹ~u f

k,n!Nk
n ~27!

since the overlap of̂e•rWc I u with Cu f
pw(r ,u) @see Eq.~7.7! in

Ref. @37##, is just 23/2pỸ(u f) ~the Ỹ here is the ‘‘unex-
pected’’ conjugate@37# of Y evaluated at the final angle o
the incoming wave!.
re

e
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Rk
n gives the amplitude and phase of the terms in

oscillator strength due to each closed hydrogenic orbit.
will show in Sec. V B that writing the recurrences in terms
the recurrence integral allows us to simplify the scatter
calculations. Figure 5 shows the closed classical orbits
evant to the study of Rb. We will use Eq.~27! in Sec. VI
when looking at classical recurrence time versus the time
flux ejection from the region of the core.

B. Semiclassical core scattering

The formulas abovepartially account for the non-
Coulombic field within the core. For example the angu
functionsY(u) contain the phase shiftspm l which are re-
lated to the quantum defects. However, returning waves
the kth closed orbit create core-scattered outgoing waves
all the closed orbits, including the original orbit, and this
not accounted for in Eq.~27!. Core scattering in effect con
stitutes a new source: the core-scattered outgoing waves
be turned around by the external fields, and return to
atom and produce a whole new set of recurrences. In
electric field, the core-scattered outgoing waves can also
out in directions that lead to ionizing trajectories@for ex-
ample, see Fig. 5~c!# @33#. This is the semiclassical analog t
the channel coupling that leads to ionization in the quant
calculations. To obtain the quantitative description of t
scattering, it helps to define new notation.

The core-scattered wave can be extracted from the par
wave expansionCu f

pw(r ,u), Eqs.~7.14a! and ~7.14b! in Ref.

@37#, so the core-scattered wave created by then1 return of
thek1 hydrogenic orbit isNk1

n1 times the core-scattered part o

Cu f
pw(r ,u). If we semiclassically propagate that part of th

core-scattered wave that goes out in the direction of thek2
closed orbit, and take the overlap aftern2 cycles on the new
closed orbit, then we obtain a ‘‘combination-recurrence’’ i
tegral given by

Rk2k1

n2n15Rk2

n2
Tk2k1
n1

Y~u i
k2!Ỹ~u f

k1 ,n1!
Rk1

n1 , ~28!

where theY’s in the denominator ofRk2k1

n2n1 cancel corre-

sponding factors in theR’s for each orbit. The angular de
pendence ofTk2k1

n1 is proportional to the usualT matrix; we

use the definition

Tk2k1
n1 5

i

4p (
l >umu

~e2ipm l 21!Yl m~u i
k2,0!Yl m* ~u f

k1 ,n1,0!,

~29!

wherem is the azimuthal quantum number appropriate to
laser polarization. The combination-recurrence integral
proportional to the recurrence integrals for both the first a
second orbits, andTk2k1

n1 constitutes an effectiveT matrix

representing the scattering by the core from one orbit to
other. By splitting the scattering expression into the rec
rence integrals for each closed orbit, and a coupling te
which depends only on the incoming and outgoing ang
we can simplify the multiple-scattering expansions deriv
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284 56F. ROBICHEAUX AND J. SHAW
in Ref. @42#, and generalize to include outgoing angles th
lead to ionizing trajectories in the electric field.

Equation~29! was derived by taking the outgoing angle
the scattered wave,u, to be the initial angleu i

k2 of a new
closed orbit. Dropping this restriction gives an expression
the scattered wave which is proportional to the recurre
integral of the original closed orbit times a scattering amp
tude for scattering from a closed orbit (n1 ,k1) into the di-
rectionu i . As we will see in this experiment with rubidium
if the recurrences described by Eq.~27! are not resolved and
interfere destructively, then this predicts that the flux of el
trons ejected from the atom will be small. This connects
classical recurrences to the delayed flux ejection.

VI. SPECIFIC CASES IN Rb

In this section, we describe the knowledge gained fr
the calculated dynamics of a Rb electron wave packet
field of ;2 kV/cm. We have chosen this case because
can compare our calculated time-dependent flux to the m
surements of Lankhuijzen and Noordam@13#. We are only
examining cases for which the electron can classically esc
to the detector, i.e.,E.22AF. Before presenting the spe
cific cases, we will first discuss some of the generic prop
ties of a highly excited alkali-metal atom in a strong elect
field.

A. Generic properties

The electric field that we will use in this is small com
pared to the atomic unit of field strength; we will be utilizin
F;431027 a.u. But the states that we examine will b
highly excited, andFz will not be a perturbative interaction
Certainly, since we will be interested in energi
0>E>22AF, the electron dynamics will be strongly influ
enced by the electric field. This is the energy range tha
classical electron can escape the atom and travel to the
tector if the field is on but not if the field is off. A measure
the nonperturbative nature of this interaction is the size
the zero-field basis used in the calculation of theLE

1(rW);
;90 radial functions perl and;60l channels. This is very
large considering we are excitingn;20 states which pertur
batively can only mix inl up to;20.

If the atom in the electric field is hydrogen, all of th
quantum defects in Eq.~18! are zero, and thus the coupling
between the parabolic channels is zero. A wave packe
hydrogen in anE field will consist of several independen
waves oscillating in the different parabolic channels. For
ergiesE,22AF, the electron can only escape by tunnelin
If E.22AF, there will be several channels~small nj) in
which the electron can escape the atom by going over the
of the barrier, and there will be several channels~largenj) in
which the electron can only escape the atom by tunnel
Qualitatively, the more energy in thej coordinate~this en-
ergy increases with the number of nodes,nj) the less energy
is available in theh direction to escape over the barrier. A
nj increases, the tunneling rate decreases and the life
increases. The behavior of a wave packet on H in the ra
0>E>22AF can be described as follows:~1! The part of
the wave packet withnj small enough so the electron do
not need to tunnel to escape the atom will have waves s
t
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ing near the nucleus that travel over the barrier directly to
detector with nearly unit probability.~2! The part of the
packet withnj too large will have waves starting near th
nucleus that travel to the barrier. Because they do not h
enough energy to go over the barrier, most of the wave
reflected back to smallh, while a small fraction of the wave
tunnels through the barrier and then travels to the detec
The part of the wave reflected from the barrier travels ba
to smallh, where it is completely reflected back to largeh in
the same parabolic channel. Thus the flux of electrons fr
the atom will have a peak that comes from electrons t
directly escape the atom, and several later pulses that a
from electrons getting close to the barrier and tunnel
through. The electron flux gives a measure of finding
electron near enough to the barrier to tunnel through.

If the atom in the electric field is Li, Na, K, Rb, or Cs
some of the quantum defects in Eq.~18! are nonzero, and
thus there is a coupling between the parabolic channels.
member that this arises because the core electrons brea
parabolic symmetry for the valence electron. All of the d
cussion for H in the previous paragraph remains true exc
for the coupling between the parabolic channels. This sm
differencequalitatively changes the wave packet dynami
by giving athird mechanism for ejecting flux from the atom
~3! After scattering from the nucleus, some of the wa
packet will be in channels with small enoughnj to directly
escape over the barrier; this occurs in the alkali-metal ato
because the core breaks the parabolic symmetry scatte
some of the electron wave from channelb to channelb8.
Thus the flux of electrons from the atom will have a dire
peak that comes from electrons that directly escape the a
and later pulses that arise from electrons getting close to
barrier and tunneling through,and later pulses that arise
from electrons scattering from the core into channels
which the electron can directly escape the atom. Except
large-m states ~large m being defined to be such tha
m l !1 for l >m) the main mode of ejection of electron
from later pulses arises from mechanism~3! ~i.e., the elec-
tron is more likely to scatter from the core into classica
open channels than to tunnel through the barrier in the clo
channels!. For later pulses, the electron flux gives a meas
of finding the electron near the core in an angular momen
state small enough to scatter into open channels.

B. Results

A comparison between the experimental and calcula
electron fluxes was presented in Ref.@33# for a case of linear
polarization. For this case we were able to obtain excell
agreement. Several interesting effects were noted in this
per. We were also able to relate the time-dependent flux
single orbit because only one of the orbits had a large a
plitude for excitation by a laser polarized in the static fie
direction. The difference between the classical period and
measured period could be explained by trimming the
toionizing states.

In this section, we will present additional results comp
ing calculated and experimental time-dependent fluxes fo
case where the laser is polarized perpendicular to the s
field. This case has several interesting features, which
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56 285CALCULATED ELECTRON DYNAMICS IN AN ELECTRIC FIELD
will present. The experimental results were previously p
sented in Fig. 3 of Ref.@13#.

All of the results in this paper are for the pulsed-las
excitation of Rb atoms in a static electric field
3.9031027 a.u.52005 V/cm. The Rb atoms are initially in
the 5s ground state which is unperturbed by the weak sta
field. The laser excites two wave packets: one with azimu
quantum numberm51 and one withm521. These two
packets do not interfere with each other, since the dete
averages overf and contribute equivalent amounts to t
measured flux in the detector. The flux into the detecto
simply twice the flux from them51 packet. Therefore, al
calculations are performed only form51 packets. This has
the added advantage that the resultingucu2 has an azimutha
symmetry, making it easier to display. Since the dipole c
pling in Eq. ~23! is only to l 51, the specific value of this
matrix element only provides an overall size but does
affect the dynamics. The only dynamical information that
necessary is the quantum defects. We have used the v
m053.14,m152.64,m251.348,m350.016, andm l >450.
From these values it is clear that the main scattering betw
the parabolic channels occurs forl <2. The main frequency
of the laser pulse is such that the atom is excited to
autoionizing threshold in a 2.005-kV/cm field and the ze
field ionization threshold.

In Fig. 1, we present the infinite resolution photoioniz
tion cross section versus binding energy. The solid and s
dashed line is the cross section calculated using the hom
neous function and using the inhomogeneous functions
given in Eq.~9!. It is evident from this figure that the two
methods are in very good agreement with each other.
long dashed curve is proportional to the amplitude for fin
ing a photon at a frequency to excite the atom to the ener
shown on the graph. This function was chosen to be prop
tional to exp@2(E2E0)

4/G4#, whereE0521.07531023 a.u.
andG51.231025 a.u.

There are basically only four states that are excited by
laser pulse. These states can be classified in terms of p
bolic quantum numbers using the semiclassical wave fu

FIG. 1. Solid line, proportional to the infinite resolution phot
ionization cross section as a function of the electron’s ene
Fstat52005 V/cm andm51 from the homogeneous function. Do
ted line, same except using the inhomogeneous function. Da
line, proportional toF(E), the amplitude for finding a photon a
each energy.
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tions. Before giving the classifications, we must stress t
some of these states are strongly mixed and only the do
nant contribution is given.

The classification of all of the states in Fig. 1 is given
Table II. Remember thatnj counts the number of nodes i
the j direction, andnh counts the number of nodes in th
h direction andn5nj1nh1umu11. Whennj.n, the elec-
tron is localized on the up-field side of the atom. Wh
nj.nh , the electron’s motion is more nearly perpendicu
to the field direction; i.e., the electron is localized toz.0.
Note that these states belong to differentn manifolds. The
main two states that are excited are the 12,7 and 17,1 st
We should expect that the main periodicity in the tim
dependent flux should be;2p/DE, whereDE is the energy
difference of these two states. ThisDE is much smaller than
theDE that arises from states of the samen. Therefore, we
should see peaks in the flux with a larger spacing in ti
than would be expected from simple arguments based
energy splittings within ann manifold. Inspection of Fig. 1
leads us to expect that a laser pulse as sketched in Fig. 1
produce a wave packet that has a periodicity in time given
2p/DE55.23105 a.u. 512.7 ps. We expect the time
dependent flux to consist of relatively few pulses because
autoionizing states are very broad, and hence decay quic

However, there is some information that cannot be
duced. The most striking example is the relative heights
the electron pulses entering the detector. Will the elect
pulse heights decrease monotonically with time, or will
more complex time dependence emerge? In Ref.@13#, the
recurrence spectrum for this system was measured. The
currence spectrum measuresz^c(0)uc(t)& z, and may be ob-
tained from the Fourier transform of the frequenc
dependent photoionization cross section. Because
electrons can only scatter down-field and travel to the de
tor if they return to the nucleus, the plausible expectation
that detecting the time-dependent electron flux with an e
tron streak camera will simply reproduce the recurren
spectrum which can be obtained quite simply from Fig.
Lankhuijzen and Noordam@13# showed this expectation i
wrong, and that interesting information is obtained with t
streak camera that cannot be obtained in the energy dom

In Fig. 2, we present the time-dependent flux as measu
in Ref. @13# ~solid line! and calculated using the homog
neous function from Eq.~7!. This figure shows some of th
expected features that can be obtained in the energy dom
The number and spacing of the peaks is as expected. Fi
2 also shows an interesting and unexpected feature.
heights of the peaks are very irregular with the second p

y:

ed

TABLE II. Classification of autoionizing states in Fig. 1.

nj nh n E (1023 a.u.!

16 2 20 21.098
6 15 23 21.091
12 7 21 21.084
9 11 22 21.078
17 1 20 21.072
7 14 23 21.066
13 6 21 21.058
10 10 22 21.050
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286 56F. ROBICHEAUX AND J. SHAW
being much higher than the first; in the recurrence spectr
the first peak is the largest. The first peak results from
electrons that are excited directly down-field. The seco
peak results from electrons that are initially excited into
region of phase space that gives bounded motion. But a
;12 ps, the electron returns to the nucleus where it can
scattered into a different parabolic channel and travel to
detector. The third peak arises from electrons that were
scattered down-field during the first scattering with the co

We have not included the calculation in Fig. 2 using t
inhomogeneous function from Eq.~4!. The two calculated
fluxes are very close to each other; the slight differen
could be explained as arising from slight inaccuracies in
different numerical methods. This means the electron wa
disperse very little in traveling from;2000 a.u. from the
core into the detector which is a macroscopic distance fr
the atom. The time dependence of the electron flux ente
the detector is an extremely accurate measure of the
dependence of the electrons being ejected from the a
This fact is vitally important for the interpretation of th
measurements. The reason for this lack of dispersion is
the electron is quickly accelerated in the electric field;
spread in the wave packet goes likeDz5utDE/vu, which
goes to a constant at larget since uvu is increasing linearly
with t in the electric field.

The comparison of our calculations with experiment p
vides us with some information about the dynamics. W
have gained information about the quality of WKB appro
mations, about the dispersion of the electron wave, and a
the lack of importance of the spin-orbit interaction~we do
not include the spin-orbit interaction in our calculation!.
There is further information that may be obtained beca
we can calculate the full wave function.

One aspect of our understanding may be tested using
WKB wave functions. This involves the expectation that t
electron only escapes after it scatters from the core electr
Equations~17! and ~20! together give the transformatio
from the CEl m functions to theCEbm

2 functions. We can
reverse the transformation to calculate the relative proba
ity for finding the electron in a particularl wave within a

FIG. 2. The relative time-dependent flux using the pulse a
field from Fig. 1. Solid line, experiment; dashed line, calculati
using the homogeneous function. The time axes for all curves h
been shifted so the first peak is att50.
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relatively small distance~e.g., 50 a.u.! from the nucleus. In
Fig. 3, we plot thep-wave ~solid line! andd-wave ~dashed
line! relative probabilities, written asuAl (t)u2, as a function
of time. Thep andd waves are the onlym51 waves that
have quantum defects substantially different from 0. For
electron to scatter down-field, it must return to the core a
p- or d-wave. At t50, there is a largep-wave component
reflecting the initial excitation. Att.6 ps and.20 ps, the
p- andd-wave probabilities have become very small, and
t.13 ps and.26 ps thep- and d-wave probabilities be-
come large. It is an interesting feature that the first ret
.13 ps is dominated byd waves, and the second retur
.25 ps is dominated byp waves. This matches Fig. 2 i
every respect.

However, there is not complete agreement between
two figures because neart.41 ps and.54 ps, there are
large recurrences ofp- and d-wave characters. Actually
these recurrences extend to very long times~67 ps, 80 ps, 92
ps, etc.!. This behavior must come from the beating of t
9,11 and 7,14 states; these are very sharp, and thus ha
long lifetime. This does not invalidate our argument abo
the mechanism for electrons leaving the atom. Electr
must return to the core in low-l waves in order to scatte
from one parabolic channel to another. In particular, the e
trons must return to the core in order to scatter in to cla
cally open channels and travel to the detector. But just
cause the electron wave returns to the core does not me
will scatterdown field. In Fig. 3, the relative proportion o
p andd waves returning to the core is similar at 41 and
ps. Thep andd waves do individually scatter from the cor
down-field. But thep and d waves are coherent, and th
superposition of thep wave scattered down-field and thed
wave scattered down-field destructively interfere giving on
little flux into the detector. If we could change the phase
the p or d wave between 41 and 54 ps, we would obtain
large flux of electrons into the detector.

In Figs. 4, we present the contour plot ofruc(r,z,t)u2 for
several different times. The amount of wave function on
atom decreases with time so the peaks are rescaled at
t. There are a number of striking features of this figure. F
example, we can clearly see the times when there is a la
amount of flux of electrons leaving the atom. These figu

d

ve

FIG. 3. The relative probability for finding the electron near t
nucleus in ap wave ~solid line! or ad wave ~dashed line!.
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56 287CALCULATED ELECTRON DYNAMICS IN AN ELECTRIC FIELD
show quite a complicated spatial dependence of the w
packet. As an aid in the interpretation of this packet,
performed calculations of classical trajectories at this ene
and field strength that start at the nucleus. In Fig. 5,
present five closed-orbit trajectories and the sequence of
jectories that directly escape the atom. A comparison of
general features between Figs. 4 and 5 sheds some ligh
the quantum processes.

As in Ref. @33#, the flux going down-field does not cove
all of the classically allowed region but is curiously confine
This confinement arises from the fact that the electrons t
eling down-field must have originated from a scatteri
event near the nucleus. The quantum flux only covers
region of space which a classical electron could access
started near the core. This effect is clear in Fig. 5~c!, where
the vast majority of the classical trajectories reach a ma
mum inr of 1000 a.u. nearz52750 a.u., and then decreas
in r as z decreases. Compare this with Fig. 4~c! to see the
similarity.

Some of the other features of the wave packet may
related to features of the closed-orbit trajectories. Att56 ps,
there is a large amount of wave function down-field that
not traveling to the detector. The nodal structure indica
the main momentum component is in ther direction. In Fig.
5, we present some of the closed orbits at this energy. No
that the simplest closed orbit@the bold line in Fig. 5~c!#
spends most of its time at negativez, and goes through the
antinodal structure of the wave functions.

FIG. 4. Contour plot ofruc(r,z,t)u2 at times~a! 0 ps,~b! 6 ps,
and ~c! 13 ps.
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The connection between classical orbits and the quan
wave packets is somewhat more tenuous than the case
cussed in Ref.@33#. There it was clear that only one orbit wa
important. Here all of the orbits that seem important ha
return times roughly a factor of 2 smaller than the quant
period. An interpretation of this system might invoke inte
ference. We use Eq.~27! to calculate the semiclassical inte
ference between returning orbits. Specifically, the two orb
in Fig. 5~a! have roughly the same return time,.6 ps, but
return to the core out of phase with each other by 0.8p
giving destructive interference. The two orbits in Fig. 5~b!
have roughly the same return time,.6 ps, but return to the
core out of phase with each other by 0.84p. Upon their sec-
ond return to the core the orbits are now out of phase
.2p, giving constructive interference. In the classical c
culation, there are no closed orbits until the clustering of fi
orbits near 6 ps that are shown in Fig. 5; then there are
closed orbits until a clustering of nine orbits near 12 p
These nine orbits are the second return of the five orbits
Fig. 5 and four new orbits returning for the first time.

This suggests that the period for this system is really n
6 ps, but an interference effect suppresses the wave pa
near the core at the first return, and thus suppresses the
tering. An examination of the quantum energy levels
Table II supports this conjecture. If we use energy diffe

FIG. 5. ~a! Two closed-orbit, classical trajectories that return
the nucleus after.6 ps.~b! Two closed-orbit, classical trajectorie
that return to the nucleus after.6 ps. ~c! Bold line is a classical
trajectory that returns to the nucleus after.6 ps. The thin line
trajectories are those that leave the nucleus and travel down-
into the detector.
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ences of autoionizing states of the samen, we find a period
of roughly 6 ps. If we make one packet only out ofn520
states and a second packet only out ofn521 states, we
would find that each of the packets would return to t
nucleus after roughly 6 ps. However, because then521
states are nearly halfway between then520 states, we would
find that there has accumulated roughly ap shift in phase
between the packets, so that they destructively interfere
the nucleus. On their second return the relative phase w
be roughly 2p, giving constructive interference.

VII. CONCLUSIONS

We have presented a theoretical exploration of the wa
packet dynamics for an electron excited from the grou
state of Rb in a static electric field. We have compared
results of our calculations to the measured time-depen
flux of electrons into a detector a macroscopic distance fr
the atom. The good agreement indicates that the calculat
have converged and are accurate, which indicates we
trust the dynamics that emerges from our calculated w
packets. The measurement of the ejected flux provides a
window for the observation of wave-packet phenomena.
have shown by direct calculation that the time-depend
flux measured at the detector accurately reproduces the
that is leaving a sphere of 2000 a.u. centered at the nuc
n

.

,

tt
A

ev

de
m

an

. H

. H
ar
ld

e-
d
e
nt
m
ns
an
e
ew
e
nt
ux
us.

This validates the promise of this type of measurement a
tool for investigating wave packets.

This system is interesting because it involves the wa
packet dynamics with two coupled spatial degrees of fr
dom. We have shown that it is possible to gain a detai
understanding of such systems by performing parallel qu
tum and classical calculations to uncover the mechani
that guide the dynamics. There are several interesting
tures that emerge from the calculations for the particular c
explored in Ref.@13#. The flux of electrons that leave th
atom does not cover the full classically allowed region
space; the electrons only cover that region of space th
classical electron could reach if it started at the nucleus.
have also found that the period observed was twice as l
as the classical closed-orbit period due to destructive in
ference, which reduces the probability for finding an electr
near the nucleus at odd multiples of the period.
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