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Time-dependent quantal calculations forL50 models of the electron-impact ionization
of hydrogen near threshold

F. Robicheaux, M. S. Pindzola, and D. R. Plante
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 22 October 1996!

The electron-impact ionization cross section for hydrogen near threshold is calculated using both time-
dependent wave-packet and time-dependent Green’s-function methods. The time-dependent Green’s-function
method also allows the calculation of the elastic cross section. The need for absorbing potentials was removed
by allowing our fast waves to leave our two-dimensional grid. Two different models are used for the Coulomb
interaction between the electrons: a cusp model withv(r 1 ,r 2)51/r. and a linear model with
v(r 1 ,r 2)51/(r 11r 2), both with all angular momenta set to zero. Between 0.2 and 2.0 eV the cusp model cross
section may exhibit an exponential suppression, while the linear model cross section follows a power-law
behavior with an exponent of 1.1 with no noticeable oscillations. The results of the numerical experiments are
compared with previous classical and quantal predictions extending back over 40 years to the pioneering work
of Wannier.@S1050-2947~97!04305-9#

PACS number~s!: 34.80.Dp, 34.10.1x
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I. INTRODUCTION

The electron-impact ionization of hydrogen near thresh
probes the correlated quantal dynamics of two slow electr
moving in the long-range Coulomb field of a third body. A
such it remains one of the most fundamental unsolved p
lems in nonrelativistic quantum mechanics. The earliest c
sical dynamics analysis@1# derived a power-law dependenc
for the threshold ionization cross section in which the ind
was found to be equal to 1.127. Later, quantum theoret
analysis gave the same power-law dependence@2,3#. The fact
that any analytic progress was made on this problem is s
ing because a complete quantal solution of the dynam
requires the solution of Schro¨dinger’s equation in six spac
variables. The conservation of total angular momentum
be used to reduce the equation to three dynamical degre
freedom which still constitutes a formidable theoretical pro
lem. A full analytical solution is currently unknown for thi
particular three-body Schro¨dinger equation and only recentl
have numerical solutions been found at energies within 5
of threshold for electron ionization of hydrogen@4–6# and
the related photodouble ionization of helium@7#.

The threshold region for the escape of two electrons ho
general interest because the form of the threshold law o
depends on the asymptotic behavior of the potential and
symmetry of the wave function. The method used to initi
the simultaneous escape of two electrons of a certain s
metry only affects the overall size of the cross section w
out changing the energy dependence in the threshold reg
These facts have allowed theoretical analysis of the thres
region with several quantum predictions for the dynami
unfortunately, there is not complete agreement on the thr
old law. The predictions are based on generic behavior of
potentials and wave functions and disagreement among
predictions casts serious doubt on our understanding of
fundamental process.

Before attacking the threshold laws for the full thre
dimensional system, it seems wise to first carry out calcu
551050-2947/97/55~5!/3573~7!/$10.00
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tions for simpler model systems that have the same gen
properties as the physical one. The model systems tha
investigated are more amenable to numerical calculati
than the full dynamics of two electrons near a heavy char
particle. The simplified models allow us to get converg
results closer to threshold and test the difficulties in num
cal threshold laws. As a bonus we are able to test the thr
old laws obtained for the model systems@8–12#. This is an
important intermediate step because the analytical meth
that have been used on the model systems have also
applied to obtain threshold laws of physical systems.

The model systems we will investigate are simply a
duction of the full six-dimensional dynamics onto system
with only two degrees of freedom. These models restrict
angular momentum of each electron to be zero. The Sc¨-
dinger equation reduces to a partial differential equation
the radial coordinates of each electron. In the cusp mode~or
the Temkin-Poet model! @13,14# the exact electron interac
tion, v(r 1 ,r 2)51/ur12r2u, is replaced byv(r 1 ,r 2)51/r. ,
wherer. is the larger ofr 1 andr 2. This potential is simply
the lowest term in the partial-wave expansion of the 1/r 12
interaction. Although this potential is more directly related
the real potential it has some unfortunate features becaus
the cusp atr 15r 2. In the linear model@15,16# the exact
interaction is replaced byv(r 1 ,r 2)51/(r 11r 2). This poten-
tial is motivated by the observation that the two electrons
on opposite sides of the nucleus for real two electron esc
near threshold ~i.e., r1.2r2 which gives ur12r2u
.r 11r 2).

Recently there have been a number of time-independ
methods@17–21# applied to electron-impact ionization in th
cusp model. We choose, however, to investigate the thre
old law using a time-dependent method@22–24#. One of the
principal advantages of the latter method is that the ti
evolution of a wave packet does not require knowledge
the asymptotic form of the wave function. The wave-pac
method is reviewed in Sec. II, a Green’s-function method
presented in Sec. III, the ionization cross-section results
3573 © 1997 The American Physical Society
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3574 55F. ROBICHEAUX, M. S. PINDZOLA, AND D. R. PLANTE
theL50 models are given in Sec. IV, and a brief summa
is found in Sec. V. Atomic units are used throughout t
paper except where otherwise noted.

II. TIME-DEPENDENT WAVE-PACKET METHOD

The time-dependent Schro¨dinger equation for these mod
els is given by

i
]C~r 1 ,r 2 ,t !

]t
5H~r 1 ,r 2!C~r 1 ,r 2 ,t !, ~1!

where the time-independent Hamiltonian is

H~r 1 ,r 2!52
1

2

]2

]r 1
22

1

2

]2

]r 2
22

Z

r 1
2

Z

r 2
1v~r 1 ,r 2! ~2!

andZ51. We solve this time-dependent equation using
tice techniques to obtain a discrete representation of the
dial wave functions and all operators on a two-dimensio
grid. The second derivatives with respect tor are approxi-
mated by a three-point second-order difference. No atte
is made to extract a bare ionization probability by decon
lution of the wave packet for fear of prejudice towards a
particular form of the threshold law.

The total wave function at timet50 is constructed as th
symmetric product of an incoming radial wave packet
one electron and the lowest-energy bound stationary sta
the other electron

C~ t50!5A1

2
@Gks~r 1!P1s~r 2!1P1s~r 1!Gks~r 2!#,

~3!

where k is the linear momentum,Gks(r ) is a radial wave
packet, andP1s(r ) is the ground-state radial orbital for hy
drogen. Overall antisymmetrization is achieved by multip
ing the radial wave function of Eq.~3! by a singlet spin
function. We time evolve the partial differential equation u
ing an explicit leap-frog propagator

C~ t1Dt !5C~ t2Dt !22iDtHC~ t !, ~4!

whereDt is a small time step. The explicit time propagat
can be more easily implemented on massively parallel c
puters than implicit methods. Further, relatively little info
mation needs to be passed between processors because
is only one multiply by the Hamiltonian matrix. The leap
frog method has also found application in the time evolut
of the Einstein equations describing black-hole collisio
@25#.

The total wave function at timet5T following the colli-
sion is used to calculate the electron-impact ionization cr
section given by

s5
p

4k2
~2S11!`, ~5!

where by unitarity the probability of ionization is given by
t-
a-
l
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-
y
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`5122(
n
E dr1U E dr2Pns~r 2!C~r 1 ,r 2 ,t5T!U2

1(
m

(
n

U E dr1E dr2Pms~r 1!Pns~r 2!C~r 1 ,r 2 ,t5T!U2.
~6!

This probability is calculated by finding the probability fo
finding neitherelectron in the negative-energy states of t
grid. This is an approximation because the negative-ene
states for largen are not physical states since they extend
a finite distance. Thus they have some continuum chara
However, the positive-energy states on the grid have so
bound-state character. By taking all of the unphysi
negative-energy states and none of the unphysical posi
energy states in the projection, this gives the same resul
projecting onto the physical negative-energy states to o
inverse of box size squared.

There are several sources of error in the calculation. T
first source of error arises in the approximate evaluation
the second derivatives in Eq.~2! using a grid ofDr50.2 and
in the discrete time propagation of Eq.~4! with Dt50.01
These errors were negligible compared to other sources
test calculation at 1 eV withDr50.1 andDt50.0025 gave
the same answer as the coarser grid to within 0.2% as lon
^CuHuC& was kept fixed for the different grids.

The finite size of the grid caused the largest errors
several reasons. The lattice size determines the sprea
both coordinate and momentum space of the initial wa
packet. The initial radial wave packet is given by

Gks~r !5Ce2 ikrexpF2
~r2s!4

w4 G , ~7!

whereC is a normalization constant. This form of the initia
packet is chosen~as opposed to the usual Gaussian for!
because the Fourier transform of this packet is more stron
peaked aroundk. Although it is not a minimum uncertainty
packet, it achieves a tighter distribution in momentum sp
because the spatial extent of this packet is larger than for
Gaussian packet. If the maximum radius on the lattice
given byR, we choose the localization radiuss5R/2 and the
width parameterw5R/4. The full width at half maximum in
momentum space is proportional to 1/w. This is a main
source of error in the calculation because the initial wa
packet is made up of a distribution of energies. The fi
cross section is actually an infinite resolution cross sec
convolved over an energyDE5kDk. Sincek.1 in our cal-
culations,DE.Dk. For smallDE, the error in the cross
section will be proportional toDE2 times the second deriva
tive of the cross section with respect to energy.

In all of the calculations we made use of the fact that
one electron had a large group velocity the other elect
was tightly bound. This fact allows the partition of the wa
function into an inner region and an outer region as follow
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C~r 1 ,r 2 ,t !

5C~r 1 ,r 2 ,t !, 0,r 1,
R

2
, 0,r 2,

R

2
,

5(
n

Pns~r 1!xns~r 2 ,t !, 0,r 1,
R

2
,

R

2
,r 2,R,

5(
n

Pns~r 2!xns~r 1 ,t !,
R

2
,r 1,R, 0,r 2,

R

2
, ~8!

whereC(r 1 ,r 2 ,t) satisfies Eqs.~1! and ~2! in the inner re-
gion andxns(r ,t) satisfies

i
]xns~r ,t !

]t
5S 2

1

2

]2

]r 2
2

~Z21!

r
1enDxns~r ,t !, ~9!

in the outer region. The sum overn in Eq. ~8! includes the
ground and lowest eigenstates,Pns(r ), with corresponding
eigenenergiesen . The outer regionxns(r ,t) functions may
be calculated quickly and have minimum storage requ
ments. The calculations are always stopped before the s
electrons ~electrons attached to highly excited states
double-escape electrons! could reach the boundary betwee
these regions. This partitioning of the wave function allow
cheap doubling of the accuracy of the calculation.

The finite grid size will give reflected waves from th
r5R boundary. The reflected waves can travel back to sm
r and scatter from the nucleus again. The fastest waves
those which have elastically scattered and thus have g
velocity k. To prevent these waves from scattering from t
core electron twice, the final time in our calculation
T53R/2k. The elastic waves will have enough time to r
flect from r5R but not enough time to propagate back in
the core region. Halting the time propagation at finite tim
introduces errors because the wave function has not evo
to its final form. This error is most pronounced at the low
energies because the continuum waves are very slow
threshold. Obviously, increasing the lattice size reduces
error.

In Fig. 1 we present a contour plot for theuCu2 after the
collision for the cusp model and Fig. 2 is the same except
the linear model. For both of these figures the energy
;1 eV above the ionization threshold and the box extend
200 a.u. The time for both figures ist5R/k. It is clear from
these figures that the elastically scattered part of the w
travels much faster than any other part and is getting clos
the wall at 200 a.u. The ionization part of the wave h
hardly traveled at all, still being within;75 a.u. of the
nucleus. There is an interesting difference between the c
model and linear model for the double continuum part of
wave, r 1;r 2. In the cusp model electron probability ha
been pushed off of the liner 15r 2 to some extent wherea
the electron probability has a peak on the liner 15r 2 for the
linear model.

In Fig. 3 we plot the probability for both electrons to be
the continuum as a function of time for the 200 a.u. box a
eV above the ionization threshold. This plot is for the line
model. At small times, the electron has not yet scatte
from the core so the probability is small. During the col
sion, the probability fluctuates because of the stro
-
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electron-electron interaction. At larger times, the probabi
approaches its asymptotic value.

III. TIME-DEPENDENT GREEN’S-FUNCTION METHOD

In order to test the sources of error and perhaps provid
more accurate computational technique, we implemente
time-dependent Green’s-function method. The derivation
this method in a formal and mathematically correct man
is fairly long and tedious. To circumvent this problem w
give a heuristic derivation; the final results are the same
the journey is less tortured.

Any solution of the time-dependent Schro¨dinger equation

FIG. 1. Contour plot of the absolute value squared of the w
function 1 eV above the ionization threshold using the cusp mo
potential.

FIG. 2. Same as Fig. 1 but for the linear model potential.
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can be written as the superposition of two time-depend
functions,

C~r 1 ,r 2 ,t !5L~r 1 ,r 2 ,t !1C0~r 1 ,r 2 ,t !, ~10!

where

L~r 1 ,r 2 ,t !5E dr18dr28dt8G~r 12r 18 ,r 22r 28 ,t2t8!

3U~r 18 ,r 28 ,t8!C0~r 18 ,r 28 ,t8!, ~11!

with G being the exact Green’s function for the full Ham
tonian. Alternatively, if the functionC0(r 1 ,r 2 ,t) is speci-
fied, then the functionL is the solution of an inhomogeneou
equation

F i ]

]t
2H~r 1 ,r 2!GL~r 1 ,r 2 ,t !5U~r 1 ,r 2 ,t !C0~r 1 ,r 2 ,t !,

~12!

where the functionU(r 1 ,r 2 ,t) can be formally written as

U~r 1 ,r 2 ,t !C0~r 1 ,r 2 ,t !5FH~r 1 ,r 2!2 i
]

]t GC0~r 1 ,r 2 ,t !.

~13!

These equations may be simply obtained by substituting
form forC into Eq.~1!. The inhomogeneous equation can
solved using the explicit leap-frog time propagator as is d
for the wave-packet solution of the homogeneous equati

Equation~12! is exact and has the same difficulties as E
~1!; the interest in this split wave-function method is that
can serve as the basis of an approximate technique th
large times converges to an exact result.~We note that the
full H acts onL; if we useH2U to operate onL we
recover first-order perturbation theory. By using the fullH,
we are not assuming any properties aboutU, for example,
thatU is small.! TheC0(r 1 ,r 2 ,t) function is chosen to be a
energy eigenstate of a simple Hamiltonian which has
electron in the ground state and one electron in a continu
state

C0~r 1 ,r 2 ,t !5A2/k@sin~kr1!P1s~r 2!1P1s~r 1!sin~kr2!#

3exp~2 iEt !, ~14!

FIG. 3. Probability for both electrons to be in the continuum
a function of time for the 280 a.u. box at an energy 1 eV above
ionization threshold. The calculation is for the cusp model poten
nt

e

e
.
.

at

e
m

whereE5e1s1@12cos(kDr)#/Dr2; this form for the energy
is necessary when working near threshold because we m
use the kinetic energy using the three-point difference. T
choice forC0 gives an explicit form forU as

U~r 1 ,r 2 ,t !C0~r 1 ,r 2 ,t !5A2/k Fsin~kr1!P1s~r 2!

3H 2
1

r 1
1v~r 1 ,r 2!J ~15!

1sin~kr2!P1s~r 1!

3H 2
1

r 2
1v~r 1 ,r 2!J Ge2 iEt, ~16!

which is nonlocal but easily calculable on the grid. TheC0
function is chosen so that there is one atomic unit of inco
ing flux ~and one atomic unit of outgoing flux! in the con-
tinuum. Equation~12! is useless for calculations since th
functionU is always nonzero. However, we can use it for t
base of our heuristic derivation.

The Green’s-function method in this form does not wo
as well as the wave-packet method because the interacti
turned on instantaneously. The ‘‘ringing’’ this causes inL
only very slowly decays with time. Suppose that the inter
tion potentialU could be turned on slowly from zero to it
correct asymptotic form given in Eq.~13!. Then the inhomo-
geneous Schro¨dinger’s equation would have the form

F i ]

]t
2H~r 1 ,r 2!GL~r 1 ,r 2 ,t !5F~ t !U~r 1 ,r 2!C0~r 1 ,r 2 ,t !,

~17!

whereF(t) is the turn on function. In our calculations w
chose F(t)51/(11exp@10$125t/t f%#) with t f the final
time; this provides a smooth turn on for the inhomogene
term. Because the interaction is turned on smoothly a
slowly, the ringing inL is greatly reduced and the Green’
function method becomes more accurate than the wa
packet method.

BecauseC0 has unit incoming flux of electrons, therate
that electrons go into any channel in theL function equals
the probability that an electron would have gone into th

FIG. 4. Rate for both electrons to enter the continuum a
function of time for the 560 a.u. box at an energy 1 eV abo
threshold. The calculation is for the cusp model.
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channel for an extremely wide wave packet; therate that
electrons go into a channel divided by therate that electrons
scatter from the core equals the probability for scattering i
that channel. This method allows much longer time propa
tion and, hence, better energy resolution. For example, in
calculations the spread of energies inL is reduced by a
factor of;4 over that of the wave packets used in Eqs.~3!
and ~7! which reduces one of the main sources of error.

We monitored the rate that electrons entered the dou
continuum fromt50 to the final time. The rate that electron
entered the double continuum was obtained by calcula
the amount of wave function in the double continuum a
function of time and numerically taking the time derivativ
The amount ofL in the double continuum is

A~ t !5^L~ t !uL~ t !&

22(
n
E dr1U E dr2Pns~r 2!L~r 1 ,r 2 ,t !U2

1(
mn

u^PnsPmsuL~ t !&u2. ~18!

Typically, we found that at short times the rate that electro
entered the double continuum was dominated by the rate
the inhomogeneous term was turned on withF(t). The rate

TABLE I. Electron-impact ionization cross sections~Mb! for
hydrogen in theL50 cusp model.

P ~a.u.!, E ~eV! R5280 R5400 R5560 R5800 R51000

1.000, 0.088 0.0104 0.0055 0.0036 0.0019 0.001
1.004, 0.196 0.0149 0.0092 0.0067 0.0047 0.003
1.008, 0.305 0.0208 0.0145 0.0122 0.0095
1.012, 0.414 0.0282 0.0216 0.0195 0.0165
1.016, 0.524 0.0374 0.0307 0.0289 0.0256
1.020, 0.634 0.0481 0.0417 0.0400 0.0367
1.024, 0.744 0.0607 0.0547 0.0535 0.0497
1.033, 0.995 0.0951 0.0899 0.0894
1.041, 1.219 0.1319 0.1274 0.1278
1.050, 1.473 0.1793 0.1754 0.1766
1.066, 1.930 0.2752 0.2732 0.2761
o
a-
ur

le

g
a

s
at

for entering the double continuum then slowly evolved to
asymptotic value. The speed that the asymptotic value
reached depends on the speed of the electrons in the do
continuum; the asymptotic value was reached more quic
as the energy was increased. For some of the lower ener
the asymptotic value was not reached which was, of cou
a major source of error.

In Fig. 4 we plot the rate to enter the double continuu
for the cusp model atE;1 eV above the ionization thresh
old using a 560 a.u. box. This plot shows how the rate
proaches its asymptotic value and how the rate at short ti
is determined by the turn-on function,F(t).

IV. CROSS-SECTION RESULTS

We performed a series of calculations for theL50 model
ionization cross sections, beginning with a 4.93105 point
lattice forR5280 and ending with a 6.253106 point lattice
for R51000. The main bulk of the points cover the regio
r 1 ,r 2<R/2 which is only 1/4 of the region covered by th
wave function. We have solved Eq.~4! using several types o
computers. For the smaller grids (R<560), we utilized Sun
work stations. For theR5800 runs, we used CRAY C90
supercomputers and Intel Paragon parallel computers.
R51000 runs were carried out on the Paragons. To make
of massively parallel machines we divided the inner reg
wave function as follows:

C j~r 1 ,r 2 ,t !Þ0 for r 1,
R

2
,

~ j21!R

2N
,r 2,

jR

2N
, ~19!

with eachj strip on a separate processor andN total proces-
sors. For the wave-function partitions found in both Eqs.~8!
and~19!, the kinetic-energy operator requires message p
ing across the boundaries atr5R/2 andr5 jR/2N, respec-
tively. The discussion in this paragraph also applies to
inhomogeneous function,L.

The results of our calculations are presented in Table
and II for the cusp model and Tables III and IV for the line
model. We would like to draw attention to several aspects
these tables:~1! the wave-packet method seems to ha
trouble converging the cusp model cross section with
creasing box size, while the Green’s-function method c
verges fairly rapidly. This is because the wave packet ha
TABLE II. Electron-impact ionization cross sections~Mb! for hydrogen in theL50 cusp model with
Green’s function.

P ~a.u.!, E ~eV! R5280 R5400 R5560 R5800 R51000

1.000, 0.088 0.000 20 0.000 12 0.000 11 0.000 09 0.000 11
1.004, 0.196 0.000 53 0.000 81 0.001 99 0.002 38 0.002 49
1.008, 0.305 0.002 89 0.005 32 0.007 60 0.006 70
1.012, 0.414 0.0102 0.0135 0.0142 0.0133
1.016, 0.524 0.0225 0.0213 0.0232 0.0223
1.020, 0.634 0.0325 0.0330 0.0345 0.0334
1.024, 0.744 0.0448 0.0449 0.0478 0.0464
1.033, 0.995 0.0813 0.0819 0.0845 0.0823
1.041, 1.219 0.1165 0.1191 0.1226
1.050, 1.473 0.1635 0.1683 0.1719
1.066, 1.930 0.2627 0.2660 0.2714
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larger distribution of energies; as mentioned above, a dis
bution of energies gives a final cross section convolved o
the energy distribution.~2! both the wave-packet an
Green’s-function method converge at roughly the same
for the linear model. This is because the cross section for
case is roughly linear.~3! the lowest-energy point isnot con-
verged with either method for both models. However,
estimated errors are different for the different methods.
cannot estimate the ionization cross section for the c
model atE50.088 eV from the wave-packet method but w
estimate that the ionization cross section from the Gree
function method is in the range (1.122.2)31024 Mb ~from
Table II it appears this cross section is converged, but
ionization rate was still increasing with time at the fin
time!. Both the wave-packet and Green’s-function meth
gives the cross section for the linear model to within 50%
the lowest energy.~4! the Green’s-function method seems
give converged results~within 10%! down to 0.2 eV.~5! The
prescription for achieving convergence, increased box s
seems to work.

In Fig. 5 we present the ionization cross section for
cusp model on a log-log graph. This graph is meant to hi
light the strengths and/or weaknesses of the calculation
well as of two analytic methods. The dashed line is

TABLE IV. Electron-impact ionization cross sections~Mb! for
hydrogen in theL50 linear model using Green’s function.

P ~a.u.!, E ~eV! R5280 R5400 R5560 R5800 R51000

1.000, 0.088 0.0020 0.0026 0.0058 0.0085 0.011

1.004, 0.196 0.0109 0.0241 0.0346 0.0369 0.038

1.008, 0.305 0.0445 0.0564 0.0649 0.0643

1.012, 0.414 0.0756 0.0801 0.0920 0.0915

1.016, 0.524 0.1003 0.1110 0.1195 0.1172

1.020, 0.634 0.1288 0.1375 0.1467 0.1439

1.024, 0.744 0.1607 0.1650 0.1732 0.1705

1.033, 0.995 0.2129 0.2231 0.2318 0.2284

1.041, 1.219 0.2699 0.2722 0.2795 0.2779

1.050, 1.473 0.3227 0.3257 0.3329 0.3313

1.066, 1.930 0.4080 0.4131 0.4208 0.4194

TABLE III. Electron-impact ionization cross sections~Mb! for
hydrogen in theL50 linear model.

P ~a.u.!, E ~eV! R5280 R5400 R5560 R5800 R51000

1.000, 0.088 0.0366 0.0317 0.0242 0.0185 0.015

1.004, 0.196 0.0495 0.0414 0.0405 0.0360 0.034

1.008, 0.305 0.0649 0.0630 0.0613 0.0592

1.012, 0.414 0.0825 0.0798 0.0855 0.0855

1.016, 0.524 0.1025 0.1057 0.1118 0.1128

1.020, 0.634 0.1240 0.1283 0.1388 0.1400

1.024, 0.744 0.1473 0.1553 0.1658 0.1668

1.033, 0.995 0.2025 0.2136 0.2248

1.041, 1.219 0.2525 0.2642 0.2752

1.050, 1.473 0.3074 0.3187 0.3294

1.066, 1.930 0.3981 0.4087 0.4186
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power laws}E1.5 proposed in Ref.@8# and the solid line is
the exponential forms}exp(26.87E21/614.00E1/6) pro-
posed in Ref.@12#. The dotted line is the power laws}E2

which has no physical justification that we know of b
seems to fit the energy dependence the best. It is clear
our results do not give the power-law dependence of Ref.@8#.
It is possible that our results differ from power-law behav
nearE50 similar to the manner predicted in Ref.@12#. How-
ever, considering the problems with converging the lowe
energy point, we cannot unequivocably say whether or
we have good agreement.

In Fig. 6 we present the ionization cross section for t
linear model on a log-log graph. The solid line is the pow
law cross sections}E1.13 and the dashed and dotted line
correspond tos}E1.03 ands}E1.23. It is clear that our re-
sults give the expectedE1.13 power-law dependence very ac
curately, to better than 0.1 in the exponent since the 1
exponent does not rise fast enough while the 1.23 expon
rises too quickly. We have not done a least-squares fit to
data because we do not want to prejudice our results
choosing a particular form for the cross section, and beca
the low-energy points, where the threshold law will ho
most accurately, are the least well known in our calculati
This graph is also informative in that we do not see t
oscillations in the cross section predicted in Ref.@9# for
E.0.2 eV. ~Since our paper was submitted, Ref.@26# pre-

FIG. 6. Electron-impact ionization cross section for hydrogen
theL50 linear model. The dashed, dotted, and solid lines are fr
different analytic treatments discussed in the text.

FIG. 5. Electron-impact ionization cross section for hydrogen
theL50 cusp model. The dashed, dotted, and solid lines are f
different analytic treatments discussed in the text.
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sented some results for the linear model in the thresh
region.!

V. SUMMARY

We have shown that it is possible to obtain converg
results into the threshold region (E,2 eV! for two con-
tinuum electrons in model problems. For these models
appears that results are converged down to;0.2 eV. The
only parameter that was varied to give convergence is
size of the box containing the wave function. Estimates
convergence from these model calculations suggest th
full three-dimensional calculation could be made to conve
down to;1 eV and perhaps even lower. The finite diffe
ence method~or the finite element method! appears to be
more amenable to attacking the threshold laws numeric
than using basis function techniques. This is because
number of points goes like the size of the box squared
basis function techniques, the number of basis functions
goes like the size of the box squared, but it is necessar
have the Hamiltonian between all of the basis functio
which meansH goes like box size to the fourth power.

We showed that the time-dependent Green’s-funct
technique was able to give convergence at least as fast a
more intuitive wave-packet method. This technique co
also be utilized to calculate photodouble ionization cross s
ev
ld

d

it

e
f
a
e

ly
he
n
so
to
,

n
the
d
c-

tions near threshold. Both of the methods that we used t
advantage of a staggered-leap-frog time propagation tha
ideally suited for implementation on massively parallel m
chines. We found that by dividing the wave function in
strips we were able to get linear speed up until the point t
there were;10 rows of points on each processor.

We were able to obtain results in the threshold region
the two models. This allowed us to distinguish between s
eral proposals for the form of the threshold law. The on
case that is still uncertain is for the exponential cutoff su
gested for the cusp model. Of course, the conclusions in
paragraph are invalid if the threshold behavior is only in t
region of energy less than 0.2 eV;1/100 a.u.

ACKNOWLEDGMENTS

M.S.P. was supported in part by an NSF Grant~No. NSF-
PHY-9122199! with Auburn University, F.R. was supporte
in part by an NSF Young Investigator Grant~No. NSF-PHY-
9457903! with Auburn University, and D.R.P. was supporte
by a DOE EPSCoR grant. Computational work was carr
out at the National Energy Research Supercomputer Ce
in Livermore, California, the Center for Computational Sc
ences in Oak Ridge, Tennessee, and the Alabama Super
puter Center in Huntsville, Alabama.
ev.

d J.
@1# G. Wannier, Phys. Rev.90, 817 ~1953!.
@2# R. Peterkop, J. Phys. B4, 513 ~1971!.
@3# A.R.P. Rau, Phys. Rev. A4, 207 ~1971!.
@4# I. Bray and A. T. Stelbovics, Phys. Rev. Lett.70, 746 ~1993!.
@5# D. Kato and S. Watanabe, Phys. Rev. Lett.74, 2443~1995!.
@6# K. Bartschat and I. Bray, J. Phys. B29, L577 ~1996!.
@7# M. Pont and R. Shakeshaft, J. Phys. B28, L571 ~1995!.
@8# A. Temkin, Phys. Rev. Lett.16, 836 ~1966!.
@9# A. Temkin, Phys. Rev. Lett.49, 365 ~1982!.

@10# G. Handke, M. Draeger, W. Ihra, and H. Friedrich, Phys. R
A 48, 3699~1993!.

@11# J. M. Rost, Phys. Rev. Lett.72, 1998~1994!.
@12# J. H. Macek and W. Ihra, Phys. Rev. A55, 2024~1997!.
@13# A. Temkin, Phys. Rev.126, 130 ~1962!.
@14# R. Poet, J. Phys. B11, 3081~1978!.
@15# R. Peterkop and L. Rabik, J. Phys. B5, 1823~1972!.
.

@16# A. Temkin and Y. Hahn, Phys. Rev. A9, 708 ~1974!.
@17# J. Callaway and D. H. Oza, Phys. Rev. A29, 2416~1984!.
@18# I. Bray and A. T. Stelbovics, Phys. Rev. Lett.69, 53 ~1992!.
@19# S. Watanabe, Y. Hosoda, and D. Kato, J. Phys. B26, L495

~1993!.
@20# K. W. Meyer, C. H. Greene, and I. Bray, Phys. Rev. A52,

1334 ~1995!.
@21# K. Bartschat and I. Bray, Phys. Rev. A54, R1002~1996!.
@22# C. Bottcher, J. Phys. B14, L349 ~1981!.
@23# W. Ihra, M. Draeger, G. Handke, and H. Friedrich, Phys. R

A 52, 3752~1995!.
@24# M. S. Pindzola and D. R. Schultz, Phys. Rev. A53, 1525

~1996!.
@25# P. Anninos, K. Camarda, J. Masso, E. Seidel, W. Suen, an

Towns, Phys. Rev. D52, 2059~1995!.
@26# D. Kato and S. Watanabe, J. Phys. B29, L779 ~1996!.


