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Time-dependent quantal calculations forL =0 models of the electron-impact ionization
of hydrogen near threshold
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The electron-impact ionization cross section for hydrogen near threshold is calculated using both time-
dependent wave-packet and time-dependent Green’s-function methods. The time-dependent Green’s-function
method also allows the calculation of the elastic cross section. The need for absorbing potentials was removed
by allowing our fast waves to leave our two-dimensional grid. Two different models are used for the Coulomb
interaction between the electrons: a cusp model witfr,,r,)=1f- and a linear model with
v(rq,ry)=1/(r,+r,), both with all angular momenta set to zero. Between 0.2 and 2.0 eV the cusp model cross
section may exhibit an exponential suppression, while the linear model cross section follows a power-law
behavior with an exponent of 1.1 with no noticeable oscillations. The results of the numerical experiments are
compared with previous classical and quantal predictions extending back over 40 years to the pioneering work
of Wannier.[S1050-294@7)04305-9

PACS numbd(s): 34.80.Dp, 34.10:x

[. INTRODUCTION tions for simpler model systems that have the same generic
properties as the physical one. The model systems that we
The electron-impact ionization of hydrogen near thresholdnvestigated are more amenable to numerical calculations
probes the correlated quantal dynamics of two slow electronthan the full dynamics of two electrons near a heavy charged
moving in the long-range Coulomb field of a third body. As particle. The simplified models allow us to get converged
such it remains one of the most fundamental unsolved prokresults closer to threshold and test the difficulties in numeri-
lems in nonrelativistic quantum mechanics. The earliest claseal threshold laws. As a bonus we are able to test the thresh-
sical dynamics analysi4] derived a power-law dependence old laws obtained for the model systefi@-12. This is an
for the threshold ionization cross section in which the indeximportant intermediate step because the analytical methods
was found to be equal to 1.127. Later, quantum theoreticahat have been used on the model systems have also been
analysis gave the same power-law depend¢®@. The fact  applied to obtain threshold laws of physical systems.
that any analytic progress was made on this problem is strik- The model systems we will investigate are simply a re-
ing because a complete quantal solution of the dynamicduction of the full six-dimensional dynamics onto systems
requires the solution of Schidlinger’'s equation in six space with only two degrees of freedom. These models restrict the
variables. The conservation of total angular momentum caangular momentum of each electron to be zero. The ‘Schro
be used to reduce the equation to three dynamical degrees dihger equation reduces to a partial differential equation in
freedom which still constitutes a formidable theoretical prob-the radial coordinates of each electron. In the cusp mauel
lem. A full analytical solution is currently unknown for this the Temkin-Poet modg[13,14] the exact electron interac-
particular three-body Schdinger equation and only recently tion, v(ry,r;)=1/r;—r,|, is replaced by (r,,r,)=1/r~,
have numerical solutions been found at energies within 5 eWherer-. is the larger ofr; andr,. This potential is simply
of threshold for electron ionization of hydrog¢a—6] and  the lowest term in the partial-wave expansion of the;4l/
the related photodouble ionization of heliyi. interaction. Although this potential is more directly related to
The threshold region for the escape of two electrons holdghe real potential it has some unfortunate features because of
general interest because the form of the threshold law onlhe cusp atr;=r,. In the linear model[15,1¢ the exact
depends on the asymptotic behavior of the potential and thiateraction is replaced by(r,r,)=1/(r;+r,). This poten-
symmetry of the wave function. The method used to initiatetial is motivated by the observation that the two electrons are
the simultaneous escape of two electrons of a certain synmen opposite sides of the nucleus for real two electron escape
metry only affects the overall size of the cross section with-near threshold (i.e., r;=—r, which gives |r{—r,|
out changing the energy dependence in the threshold regior:r,+r,).
These facts have allowed theoretical analysis of the threshold Recently there have been a number of time-independent
region with several quantum predictions for the dynamicsmethodqd17-21] applied to electron-impact ionization in the
unfortunately, there is not complete agreement on the thresteusp model. We choose, however, to investigate the thresh-
old law. The predictions are based on generic behavior of theld law using a time-dependent methi@?—24. One of the
potentials and wave functions and disagreement among th@incipal advantages of the latter method is that the time
predictions casts serious doubt on our understanding of thigvolution of a wave packet does not require knowledge of
fundamental process. the asymptotic form of the wave function. The wave-packet
Before attacking the threshold laws for the full three- method is reviewed in Sec. Il, a Green's-function method is
dimensional system, it seems wise to first carry out calculapresented in Sec. I, the ionization cross-section results for
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the L=0 models are given in Sec. IV, and a brief summary 2
is found in Sec. V. Atomic units are used throughout this&’zl—ZEn: j dry

paper except where otherwise noted.

J erPnS(rZ)\P(rlarZJZT)

2

II. TIME-DEPENDENT WAVE-PACKET METHOD +%“ 2 U draf droPmdry)Padro)W(ry,ro t=T)
The time-dependent Schtimger equation for these mod- (6)
els is given by

OP(rq,r,,1) This probability is calculated by finding the probability for

I—— = HrLr)W(ryra.b), (1) finding neither electron in the negative-energy states of the
grid. This is an approximation because the negative-energy

where the time-independent Hamiltonian is states for large are not physical states since they extend to
a finite distance. Thus they have some continuum character.
12 182 7 2 However, the positive-energy states on the grid have some

H(rq,ro)=— 272 222 1.1 +ou(rq,ro) (2 bound-state character. By taking all of the unphysical
1 2 1 72 negative-energy states and none of the unphysical positive-

o ) _ energy states in the projection, this gives the same results as
andZ=1. We solve this time-dependent equation using lat-

X hni biai i : ‘th rojecting onto the physical negative-energy states to order
tice techniques to obtain a discrete representation of the r%verse of box size squared.
dial wave functions and all operators on a two-dimensiona

fid. The second derivatives with respecirtare aporoxi There are several sources of error in the calculation. The
grid. P PP first source of error arises in the approximate evaluation of

mated by a three-point second-order difference. No attem o ) . : -
is made to extract a bare ionization probability by deconvo& e second derivatives in E) using a grid ofAr=0.2 and

lution of the wave packet for fear of prejudice towards anyIn the discrete time pro_pggatlon of E¢h) with At=0.01
particular form of the threshold law These errors were negligible compared to other sources. A
The total wave function at time=0 is constructed as the (€St calculation at 1 eV wittAr=0.1 andAt=0.0025 gave
symmetric product of an incoming radial wave packet forthe same answer as .the coarser gr|d to WIthI.I’I 0.2% as long as
one electron and the lowest-energy bound stationary state 6 |H[¥) was kept fixed for the different grids.
the other electron The finite size of the grid caused the largest errors for
several reasons. The lattice size determines the spread in

1 both coordinate and momentum space of the initial wave
T (t=0)= \[5 [Gya(r1)P1s(r2) +Pis(r1)Gys(ro) ], packet. The initial radial wave packet is given by
()
_o\4
wherek is the Iine_ar momentumG(r) is. a radial wave Gks(r)=Ce”“exp{— (r ;S) , )
packet, andP4(r) is the ground-state radial orbital for hy- w

drogen. Overall antisymmetrization is achieved by multiply-
ing the radial wave function of Eq3) by a singlet spin
function. We time evolve the partial differential equation us-whereC is a normalization constant. This form of the initial

ing an explicit leap-frog propagator packet is chosetias opposed to the usual Gaussian form
because the Fourier transform of this packet is more strongly
V(t+At) =V (t—At) —2iAtHWV (1), (4) peaked around. Although it is not a minimum uncertainty

packet, it achieves a tighter distribution in momentum space
whereAt is a small time step. The explicit time propagator because the spatial extent of this packet is larger than for the
can be more easily implemented on massively parallel comGaussian packet. If the maximum radius on the lattice is
puters than implicit methods. Further, relatively little infor- given byR, we choose the localization radias- R/2 and the
mation needs to be passed between processors because thgigth parametew=R/4. The full width at half maximum in
is only one multiply by the Hamiltonian matrix. The leap- momentum space is proportional towl/ This is a main
frog method has also found application in the time evolutionsource of error in the calculation because the initial wave
of the Einstein equations describing black-hole collisionspacket is made up of a distribution of energies. The final
[25]. cross section is actually an infinite resolution cross section

. Th_e total wave function at time="T following the C,Olli' convolved over an energ¥E=kAk. Sincek=1 in our cal-
sion is used to calculate the electron-impact ionization CrOSS |ations. AE~Ak. For small AE. the error in the cross

section given by section will be proportional ta E? times the second deriva-

tive of the cross section with respect to energy.
o . .
o= _kZ(ZS+ 1)p, (5) In all of the calculations we made use of the fact that if
4 one electron had a large group velocity the other electron
was tightly bound. This fact allows the partition of the wave
where by unitarity the probability of ionization is given by function into an inner region and an outer region as follows:



55 TIME-DEPENDENT QUANTAL CALCULATIONS FORL=0 ... 3575

W(ry,ry,t) 200.0

R
:\I,(rler!t)! O<r1<

E, 0<r2<

7
R R 150.0 §
:; Pns(rl)XnS(rZIt)i O<r1<§1 §<|’2<R,

R R 3 |
:E PHS(rZ)XnS(rlrt)! _<rl<R1 0<r2<_1 (8) 3100.0 ;
n 2 2 o

%

_—/J =2

whereW¥ (r,,r,,t) satisfies Eqs(1) and(2) in the inner re-

f—) )

;@

gion andy,4(r,t) satisfies 50.0 J _
0 J :\
Oxns(To1) 12 (2-1) | ]
= Ty e ), (9) N
in the outer region. The sum ovaerin Eq. (8) includes the 0.0 50.0 100.0 150.0 200.0
ground and lowest eigenstate®,(r), with corresponding r, (a.u.)

eigenenergieg,. The outer regiony,¢(r,t) functions may
be calculated quickly and have minimum storage require-
ments. The calculations are always stopped before the slomn
electrons (electrons attached to highly excited states or
double-escape electronsould reach the boundary between
these regions. This partitioning of the wave fun(_:tlon allows %lectron-electron interaction. At larger times, the probability
cheap doubling of the accuracy of the calculation. : :
- o o approaches its asymptotic value.

The finite grid size will give reflected waves from the
r =R boundary. The reflected waves can travel back to small
r and scatter from the nucleus again. The fastest waves aré!l. TIME-DEPENDENT GREEN'S-FUNCTION METHOD
those which have elastically scattered and thus have group
velocity k. To prevent these waves from scattering from the
core electron twice, the final time in our calculation is
T=3R/2k. The elastic waves will have enough time to re-
flect fromr =R but not enough time to propagate back into
the core region. Halting the time propagation at finite time
introduces errors because the wave function has not evolv
to its final form. This error is most pronounced at the lowest
energies because the continuum waves are very slow near
threshold. Obviously, increasing the lattice size reduces this
error. 200.0

In Fig. 1 we present a contour plot for thé|? after the
collision for the cusp model and Fig. 2 is the same except for
the linear model. For both of these figures the energy is
~1 eV above the ionization threshold and the box extends to
200 a.u. The time for both figures tis- R/k. It is clear from
these figures that the elastically scattered part of the wave
travels much faster than any other part and is getting close tQ-
the wall at 200 a.u. The ionization part of the wave has =

hardly traveled at all, still being within-75 a.u. of the S 1000

nucleus. There is an interesting difference between the cusd:
model and linear model for the double continuum part of the
wave, r;~r,. In the cusp model electron probability has
been pushed off of the line;=r, to some extent whereas
the electron probability has a peak on the line-r, for the
linear model.

In Fig. 3 we plot the probability for both electrons to be in
the continuum as a function of time for the 200 a.u. box at 1
eV above the ionization threshold. This plot is for the linear
model. At small times, the electron has not yet scattered r; (au)
from the core so the probability is small. During the colli-
sion, the probability fluctuates because of the strong FIG. 2. Same as Fig. 1 but for the linear model potential.

FIG. 1. Contour plot of the absolute value squared of the wave
ction 1 eV above the ionization threshold using the cusp model
potential.

In order to test the sources of error and perhaps provide a
more accurate computational technique, we implemented a
time-dependent Green’s-function method. The derivation of
this method in a formal and mathematically correct manner
is fairly long and tedious. To circumvent this problem we
jve a heuristic derivation; the final results are the same but
e journey is less tortured.
Any solution of the time-dependent Schinger equation

150.0

SRS

=

—

0.0 50.0 100.0 150.0 200.0
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FIG. 3. Probability for both electrons to be in the continuum as
a function of time for the 280 a.u. box at an energy 1 eV above the X
ionization threshold. The calculation is for the cusp model potential.

can be written as the superposition of two time-depende
functions,

\P(rl,rz,t):A(rl,rz,t)“l‘"‘llo(rl,rz,t), (10)

where

A(rler:t):f dridrydt’'G(ry—ry,rp—rp,t—t’)
XU(ry,rp,t)Wo(ry,ra,t’), (11

with G being the exact Green'’s function for the full Hamil-
tonian. Alternatively, if the function¥y(r,,r,,t) is speci-
fied, then the functior is the solution of an inhomogeneous
equation

0
iE—H(rl,rz)}A(rl,l’z,t):U(I’lyl’z,t)‘lfo(rl,rzyt),
(12

where the functiord(r,r,,t) can be formally written as

Jd
U(rlvrzi)‘l'o(rl,l’z,t):[H(flyrz)_i E}‘I’o(rlyrz,t)-
(13

These equations may be simply obtained by substituting th
form for ¥ into Eq.(1). The inhomogeneous equation can be

whereE = e;+[1— coskAr)/Ar?; this form for the energy

is necessary when working near threshold because we must
use the kinetic energy using the three-point difference. This
choice forW¥, gives an explicit form folJ as

U(ry,fa,)Wo(ry,ra,t)= 127k | sin(kry)Pyg(r>)

X

1

_r_"'v(rlyl’z)} (15
1

+sin(kry)Pyg(rq)

e*iEt' (16)

1
——Fv(ry,ry)
)

which is nonlocal but easily calculable on the grid. THg

Munction is chosen so that there is one atomic unit of incom-

ing flux (and one atomic unit of outgoing fliin the con-
tinuum. Equation(12) is useless for calculations since the
functionU is always nonzero. However, we can use it for the
base of our heuristic derivation.

The Green’s-function method in this form does not work
as well as the wave-packet method because the interaction is
turned on instantaneously. The “ringing” this causesAn
only very slowly decays with time. Suppose that the interac-
tion potentialU could be turned on slowly from zero to its
correct asymptotic form given in EQL3). Then the inhomo-
geneous Schringer’s equation would have the form

A(ry,r, ) =F()U(ry,r)We(rq,ry,t),
(17)

where F(t) is the turn on function. In our calculations we
chose F(t)=1/(1+exd10{1—5t/t;}]) with t; the final
time; this provides a smooth turn on for the inhomogeneous
term. Because the interaction is turned on smoothly and
slowly, the ringing inA is greatly reduced and the Green'’s-
function method becomes more accurate than the wave-
packet method.

Becausel  has unit incoming flux of electrons, thiate
that electrons go into any channel in thefunction equals
fhe probability that an electron would have gone into that

)
|5_H(r1'r2)

solved using the explicit leap-frog time propagator as is done

for the wave-packet solution of the homogeneous equation. 0.005 T T T T
Equation(12) is exact and has the same difficulties as Eq.
(1); the interest in this split wave-function method is that it 0.004 |-
can serve as the basis of an approximate technique that at
. 0.003 |
large times converges to an exact res(il¥e note that the g
full H acts onA; if we useH—U to operate onA we = 002 b
recover first-order perturbation theory. By using the Hll ’
we are not assuming any properties aboytfor example, 0.001 F
thatU is small) TheW(r,r,,t) function is chosen to be an
energy eigenstate of a simple Hamiltonian which has one 0.000 ' L ! !
electron in the ground state and one electron in a continuum 0 250 500 750 1000 1250 1500

state

Wo(ry,ra,t)= V2K[SIN(kry)Pyo(r) + Pyg(ry)sin(kry)]
X exp(—iEt), (14

t(a.u.)

FIG. 4. Rate for both electrons to enter the continuum as a
function of time for the 560 a.u. box at an energy 1 eV above
threshold. The calculation is for the cusp model.
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TABLE |. Electron-impact ionization cross sectiof®lb) for  for entering the double continuum then slowly evolved to an
hydrogen in the. =0 cusp model. asymptotic value. The speed that the asymptotic value is
reached depends on the speed of the electrons in the double
P (au), E(eV) R=280 R=400 R=560 R=800 R=1000 continuum; the asymptotic value was reached more quickly
1.000, 0.088 00104 0.0055 00036 00019 0.0011 asthe energy was increased. For some of_ the lower energies,
1.004, 0.196 00149 00092 0.0067 0.0047 0.0035 the asymptotic value was not reached which was, of course,
1.008,0.305  0.0208 0.0145 0.0122 0.0095 a “I“alg.f S‘l”rce °|f e"r?r' he doubl .

1012, 0.414 0.0282 00216 00195 0.0165 n Fig. 4 we plot the rate to enter the double continuum
1016 0524 0.0374 00307 00289 0.0256 for the_ cusp model aE~1 eV above the ionization thresh-

’ old using a 560 a.u. box. This plot shows how the rate ap-
1.020, 0.634 00481 0.0417 0.0400 0.0367 proaches its asymptotic value and how the rate at short times
1.024, 0.744 0.0607 0.0547 0.0535 0.0497

is determined by the turn-on functioR(t).
1.033, 0.995 0.0951 0.0899 0.0894

1.041, 1.219 0.1319 0.1274 0.1278
1.050, 1.473 0.1793 0.1754 0.1766
1.066, 1.930 0.2752 0.2732 0.2761 We performed a series of calculations for the 0 model
ionization cross sections, beginning with a %.80° point
lattice for R=280 and ending with a 6.2510° point lattice
channel for an extremely wide wave packet; tiaée that  for R=1000. The main bulk of the points cover the region
electrons go into a channel divided by ttae that electrons  r, r,<R/2 which is only 1/4 of the region covered by the
scatter from the core equals the probability for scattering intavave function. We have solved E@) using several types of
that channel. This method allows much longer time propagacomputers. For the smaller gridR€560), we utilized Sun

tion and, hence, better energy resolution. For example, in ougork stations. For theR=800 runs, we used CRAY C90
calculations the spread of energies Anis reduced by a supercomputers and Intel Paragon parallel computers. The
factor of ~4 over that of the wave packets used in E@®. R=1000 runs were carried out on the Paragons. To make use

and (7) which reduces one of the main sources of error.  of massively parallel machines we divided the inner region
We monitored the rate that electrons entered the doublgave function as follows:

continuum fromt=0 to the final time. The rate that electrons _ .
entered the double continuum was obtained by calculatingy R (J-DR IR

IV. CROSS-SECTION RESULTS

the amount of wave function in the double continuum as a i(rrz,)=0  for r1<§, 2N <r2<ﬁ' (19)
function of time and numerically taking the time derivative.
The amount ofA in the double continuum is with eachj strip on a separate processor ahdotal proces-
sors. For the wave-function partitions found in both E&S.
A()=(A(t)|A(t)) and(19), the kinetic-energy operator requires message pass-
) ing across the boundaries et R/2 andr =jR/2N, respec-
_ tively. The discussion in this paragraph also applies to the
2; fdrl ferP”S(rz)A(rl'rz’t) inhomogeneous function .

The results of our calculations are presented in Tables |

+2 [(PrsPmd A(1)]2. (18) and Il for the cusp model and Tableg [l and IV for the linear

mn model. We would like to draw attention to several aspects of

these tables(l) the wave-packet method seems to have

Typically, we found that at short times the rate that electrongrouble converging the cusp model cross section with in-
entered the double continuum was dominated by the rate thateasing box size, while the Green’s-function method con-
the inhomogeneous term was turned on wAttt). The rate  verges fairly rapidly. This is because the wave packet has a

TABLE II. Electron-impact ionization cross sectiofiglb) for hydrogen in theL =0 cusp model with
Green’s function.

P (a.u), E (eV) R=280 R=400 R=560 R=800 R=1000
1.000, 0.088 0.000 20 0.000 12 0.000 11 0.000 09 0.000 11
1.004, 0.196 0.000 53 0.000 81 0.001 99 0.002 38 0.002 49
1.008, 0.305 0.002 89 0.005 32 0.007 60 0.006 70

1.012, 0.414 0.0102 0.0135 0.0142 0.0133

1.016, 0.524 0.0225 0.0213 0.0232 0.0223

1.020, 0.634 0.0325 0.0330 0.0345 0.0334

1.024, 0.744 0.0448 0.0449 0.0478 0.0464

1.033, 0.995 0.0813 0.0819 0.0845 0.0823

1.041, 1.219 0.1165 0.1191 0.1226

1.050, 1.473 0.1635 0.1683 0.1719

1.066, 1.930 0.2627 0.2660 0.2714
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TABLE lll. Electron-impact ionization cross sectiofislb) for 100
hydrogen in thd.=0 linear model.

P (a.u), E (eV) R=280 R=400 R=560 R=800 R=1000

3102
=3

)

1.000, 0.088 0.0366 0.0317 0.0242 0.0185 0.0150
1.004, 0.196 0.0495 0.0414 0.0405 0.0360 0.0347
1.008, 0.305 0.0649 0.0630 0.0613 0.0592

1.012, 0.414 0.0825 0.0798 0.0855 0.0855 107

1.016, 0.524 0.1025 0.1057 0.1118 0.1128

1.020, 0.634 0.1240 0.1283 0.1388 0.1400 ot1 E (eV) 1

1.024, 0.744 0.1473 0.1553 0.1658 0.1668

1.033, 0.995 0.2025 0.2136 0.2248 FIG. 5. Electron-impact ionization cross section for hydrogen in
1.041, 1.219 0.2525 0.2642 0.2752 the L=0 cusp model. The dashed, dotted, and solid lines are from
1.050, 1.473 0.3074 0.3187 0.3294 different analytic treatments discussed in the text.

1.066, 1.930 0.3981 0.4087 0.4186

power lawoxE*® proposed in Ref[8] and the solid line is

larger distribution of energies; as mentioned above, a distrithe exponential formo<exp(-6.87~/*+4.0(E"%) pro-
bution of energies gives a final cross section convolved oveposed in Ref[12]. The dotted line is the power lawoE?
the energy distribution.(2) both the wave-packet and Which has no physical justification that we know of but
Green's-function method converge at roughly the same rateeems to fit the energy dependence the best. It is clear that
for the linear model. This is because the cross section for thieur results do not give the power-law dependence of [8éf.
case is roughly lineak3) the lowest-energy point isotcon- It is possible that our results differ from power-law behavior
verged with either method for both models. However, thenearE=0 similar to the manner predicted in REt2]. How-
estimated errors are different for the different methods. Weever, considering the problems with converging the lowest-
cannot estimate the ionization cross section for the cuspnergy point, we cannot unequivocably say whether or not
model atE=0.088 eV from the wave-packet method but we we have good agreement.
estimate that the ionization cross section from the Green’s- |n Fig. 6 we present the ionization cross section for the
function method is in the range (1=2.2)x10 * Mb (from  linear model on a log-log graph. The solid line is the power-
Table Il it appears this cross section is converged, but th&aw cross sectiorr=EL13 and the dashed and dotted lines
ionization rate was still increasing with time at the final correspond tar«E'% and o=EY?3 It is clear that our re-
time). Both the wave-packet and Green’s-function methodsults give the expectel*'2 power-law dependence very ac-
gives the cross section for the linear model to within 50% aturately, to better than 0.1 in the exponent since the 1.03
the lowest energy(4) the Green’s-function method seems to exponent does not rise fast enough while the 1.23 exponent
give converged resultgvithin 10%) down to 0.2 eV(5) The  rises too quickly. We have not done a least-squares fit to our
prescription for achieving convergence, increased box sizejata because we do not want to prejudice our results by
seems to work. choosing a particular form for the cross section, and because
In Fig. 5 we present the ionization cross section for thethe low-energy points, where the threshold law will hold
cusp model on a log-log graph. This graph is meant to highmost accurately, are the least well known in our calculation.
light the strengths and/or weaknesses of the calculation aphis graph is also informative in that we do not see the
well as of two analytic methods. The dashed line is thepscillations in the cross section predicted in R] for

E>0.2 eV. (Since our paper was submitted, REZ6] pre-
TABLE V. Electron-impact ionization cross sectiofigb) for

hydrogen in thd. =0 linear model using Green'’s function.

0 T
P (a.u), E (eV) R=280 R=400 R=560 R=800 R=1000 o
1.000, 0.088 0.0020 0.0026 0.0058 0.0085 0.0112 1o
1.004, 0.196 0.0109 0.0241 0.0346 0.0369 0.0383 =z
1.008, 0.305 0.0445 0.0564 0.0649 0.0643 %
1.012, 0.414 0.0756 0.0801 0.0920 0.0915 10-2 ;
1.016, 0.524 0.1003 0.1110 0.1195 0.1172
1.020, 0.634 0.1288 0.1375 0.1467 0.1439
1.024, 0.744 0.1607 0.1650 0.1732 0.1705 10-3L ,
1.033, 0.995 0.2129 0.2231 0.2318 0.2284 0.1 E (eV) !
1.041, 1.219 0.2699 0.2722 0.2795 0.2779
1.050, 1.473 0.3227 0.3257 0.3329 0.3313 FIG. 6. Electron-impact ionization cross section for hydrogen in
1.066, 1.930 0.4080 0.4131 0.4208 0.4194 the L=0 linear model. The dashed, dotted, and solid lines are from

different analytic treatments discussed in the text.
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sented some results for the linear model in the thresholtions near threshold. Both of the methods that we used took
region) advantage of a staggered-leap-frog time propagation that is
ideally suited for implementation on massively parallel ma-
V. SUMMARY chines. We found that by dividing the wave function into
o ) ) strips we were able to get linear speed up until the point that
We have shown that it is possible to obtain convergednere were~ 10 rows of points on each processor.
results into the threshold regiorE{2 eV) for two con-  \ve were able to obtain results in the threshold region for
tinuum electrons in model problems. For these models, ithe two models. This allowed us to distinguish between sev-
appears that results are converged down-0.2 eV. The  era| proposals for the form of the threshold law. The only
only parameter that was varied to give convergence is thease that is still uncertain is for the exponential cutoff sug-
size of the box containing the wave function. Estimates ofyested for the cusp model. Of course, the conclusions in this

convergence from these model calculations suggest that garagraph are invalid if the threshold behavior is only in the
full three-dimensional calculation could be made to converggegion of energy less than 0.2 e¥1/100 a.u.

down to~1 eV and perhaps even lower. The finite differ-
ence methodor the finite element methodappears to be
more amenable to attacking the threshold laws numerically
than using basis function techniques. This is because the
number of points goes like the size of the box squared. In M.S.P. was supported in part by an NSF Gréd. NSF-
basis function techniques, the number of basis functions alsBHY-9122199 with Auburn University, F.R. was supported
goes like the size of the box squared, but it is necessary tm part by an NSF Young Investigator Graihto. NSF-PHY-
have the Hamiltonian between all of the basis functions9457903 with Auburn University, and D.R.P. was supported
which meandH goes like box size to the fourth power. by a DOE EPSCoR grant. Computational work was carried
We showed that the time-dependent Green’s-functiorout at the National Energy Research Supercomputer Center
technique was able to give convergence at least as fast as theLivermore, California, the Center for Computational Sci-
more intuitive wave-packet method. This technigue couldences in Oak Ridge, Tennessee, and the Alabama Supercom-
also be utilized to calculate photodouble ionization cross segauter Center in Huntsville, Alabama.
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