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Total ionization cross section for electron-hydrogen scattering
using a time-dependent close-coupling method
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A time-dependent close-coupling method is combined with a time-independent distorted-wave method to
calculate the electron ionization cross section for hydrogen. A second-order differencing of the time propagator
for the close-coupled equations is found to be very efficient. Low partial-wave close-coupling results are added
to high partial-wave distorted-wave results to yield total ionization cross sections in excellent agreement with
experiment between 30- and 50-eV incident electron energy. The distorted-wave method found most suitable
for the high partial waves is based on a mixture ™" and VN™! scattering potentials.
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I. INTRODUCTION P|L? (ry,ro,t)
WLS(ry,fp,t) = —
Electron scattering on hydrogenic targets remains a very R if2
useful testing ground for the development of new theoretical
approacheq1]. Recently a time-dependent close-coupling X E ClrﬁliqLoYllml(fl)lemz(Fz)’ 2)
method[2] was employed to calculate tHe=0 andL=1 my,my 172

partial-wave cross sections for the electron ionization of hy- . .

drogen. The partial cross sections obtained from this Wave\gvhere]I: a;]ndS are the total qrbltal ar;}d §p|r|1 arllngular momen-

packet approach were found to be in good agreement witﬂjmzlg t e systemYn(r) is a sp 1erical_harmonic, ar?d

those obtained from a time-independent converged closé=m,m, 1S @ Clebsch-Gordan coefficient. From projection

coupling method 3]. onto the time-dependent Schiinger equation, we obtain the
In this paper we extend the time-dependent calculations téollowing set of time-dependent close-coupled partial differ-

include allL=0 to L=4 partial-wave ionization cross sec- ential equations for eachS symmetry:

tions for electron scattering from hydrogen. A key factor in

obtaining all the lowL partial cross sections is the imple- (?P:_jz(rlervt) L

mentation of a second-order differencing metfidtifor the i T:Tlllz(flyfz)P|l?2(f1,fz,t)

time propagation of the close-coupled equations. This propa-

gation scheme is easily an order of magnitude faster than the

L LS
Taylor-series method employed in earlier calculations. The + E Vil 2) Py (rarz.t),
total ionization cross section for hydrogen can now be ob- l1l2
tained by combining th& =0 to L =4 time-dependent close- 3

coupling results withL=5 to L=30 time-independent

distorted-wave results. The combined ionization cross secwvhere

tion is found to be in excellent agreement with experiment 5 5

[5] for incident electron energies between 30 and 50 eV. The 197 19 Iy(l1+1)

wave-packet theory is reviewed in Sec. Il, the ionization T|1|2(f1,fz)=—§ﬂ—§?§+ 2r2
cross sections for hydrogen are presented in Sec. lll, and a
brief summary is found in Sec. IV. n |2(|2+1)_ E E (4)

2r2 ry ry’
Il. THEORY

The time-dependent close-coupling methatlis a wave- and the coupling operator is given by

packet solutior{6] to the same set of close-coupled partial |
differential equations used in time-independent eIectron-V|1|2,|i|é(r1'r2)
atom scattering theory7—9]. For electron scattering from a

one-electron target atom, the Hamiltoni@matomic unitg is =(- 1)L+'2+'é\/(2| 1+1)(211+1)(2l,+1)(215+1)
given by \
(S PR N PR PR N P N S P
He—syz_swe 2. 2. 1 0 > rk;l(o 0 0/lo 0 of|x 1y 1y
2 2 rg ry [f=ry 5
5

where ther; andr, are the coordinates of the two electrons
andZ is the atomic number. The total wave function may be We solve the time-dependent close-coupled equations us-
expanded in coupled spherical harmonics: ing lattice techniques to obtain a discrete representation of
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the radial wave functions and all operators on a two- The total wave function at a timee=T following the col-
dimensional grid. When finite difference methods are emdision is used to calculate the spin-averaged electron-impact
ployed, local operators become diagonal matrices and déenization cross section given by

rivative operators, such as the kinetic energy, have lattice

representations in terms of banded matrices. For simplicity, . LS
all calculations discussed here implement uniform mesh Uio”_mé 2L+ DS+ Doion, (12
spacing.

The total wave function at time=0 is constructed as the where
antisymmetrized product of an incoming radial wave packet

for one electron and the lowest energy bound stationary state | 5 1— 2 Ls
of the other electron. Fdr=0, then Pion™ 47 4 Fnim
POS(r 1.7 2,t=0)=V3[gks(r1)P1s(r - > -
OO( 12 ) \/Z[ng( 1) 18( 2) _;m ,Z , |<q,LS(rlvr2aT)|¢n’|’m’(r1)¢nlm(r2)>|2-
+(—1)%P1s(r)gs(r2)], (6) i
(13
and forL+#0 andl =L,
In the above equationg,. is the probability for ionization
Plo(ry.rp,t=0)= \/ggkl(rl)Pls(rZ)1 andpb> is the probability of finding only one electron in a

bound statep,,,(r) and the other electron in the continuum.
P5(ry,r,,t=0)= \/g(_ 1)SP1<(r1)gki(r2), (7)  The third term on the right-hand side of H@3) is the prob-
ability of finding both electrons in bound states. The bound-
wherek is the linear momentumg,,(r) is a radial wave state probabilities are given by
packet, andP((r) is the bound radial orbital.
For a givenL S symmetry, the time evolution of a single-

LS _ g LS ¢y ¢ g 2
channel partial differential equation may be given by Sgnlm_J dry (W31, 12, 1) dnim(12)]

LS _ i L LS
Plllz(t+At)_qu IAtHlllZ]PIlIZ(t)’ (8) - E |<\PLS(F1J?2yT)|¢n’I’m’(F1)¢nlm(F2)>|2
/|/ ’
where e
HL, :T|1|2+V|L| " (9) +j dip(WS(Fe, 2, T dnim(F) P
1'2 1'20'1°2
and the spatial coordinates have been suppressed. Another _ WLS(F. P T = o (Fa2
formulation uses the symmetric relatipd] n,lzm, K22 D doim(F2) i (P2
PiT(t+AD =P (t—At) (14)
:(eXF[_iAtHlLllz]_eXFiJriAtHlLllz])P:_li(t)- (10) Ill. CROSS-SECTION RESULTS

_ . ) . The time-dependent close-coupled partial differential
For a given time stef\t, many more terms in the expansion gqations of Eqs(3)—(5) were solved for electron scattering
of the exponential are needeq for thg asymmetric relation ofom a hydrogen atom with incident energies in the range
Eq. (8) than for the symmetric relation of EGL0) to pre-  from 3050 eV. For these energies the repulsive interaction
serve the norm of the wave function. For our purposes Weenyeen the electrons has a sufficiently short-range nature so
employ the simple “staggered leapfrog” approximation hat moderate lattice sizes may be employed. For near
[10]: threshold ionization, however, a large numerical lattice
Ls LS L L alS would be needed. After several test calculations, we settled
P (tHAD =Py (t= Aty = —2IAtH, P (1), on a 200<200 lattice with each radial direction from 0 to 40
11 spanned by a uniform mesh with spaciig=0.2. As previ-

involving only one Hamiltonian matrix multiplication per ously reported2], the ground state of hydrogen on this lat-

time step. Norm conservation is exact if we adjust the time
step to be less than 1 divided by the eigenvalue with largest
absolute value of the discrete Hamiltonian operator. The time Angular

evolution equations for the single-channel case can be easi|y;mentumL
generalized to handle arbitrary numbers of coupled equa-
tions. In practice, we find that the “staggered leapfrog” 0 3 s?+ p?+d?

TABLE |. Partial-wave channel quantum numbers.

Channels Angular momentd,(1,)

method is easily an order of magnitude faster than a direct 1 6 sp+ps+pd+dp+df+fd
Taylor series expansion of E¢8), mainly due to the vast 2 6 sd+ds+p?+pf+ fp+d?
decrease in the number of matrix-vector multiplications. We 3 8 sf+fs+pd+dp+pg+gp+df+fd
also note that all of these explicit time propagators can be 4 8 sg+gs+pf+fp+ph+hp+d?+f2

easily implemented on massively parallel computers.
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TABLE II. Partial ionization cross sectiond0™*8 cn?). TABLE IV. Total ionization cross sectiond0™ 8 cn?).
Incident energy Incident energy
Angular
momentumL Method 30 eV 40 eV 50 eV Method 30 eV 40 eV 50 eV
0 TDCC 3.09 2.85 2.52 DW2(0—30) 85.4 87.6 83.8
DW1 6.49 5.19 4.02 TDCC(0)+DW2(1—30) 83.9 86.7 83.3
DW?2 4.57 3.74 2.99 TDCC(0—1)+DW2(2—30) 81.5 85.4 82.6
1 TDCC 6.36 6.02 541 TDCC(0—2)+DW2(3—30) 75.6 81.8 80.6
DW1 10.4 8.70 7.11 TDCC(0—3)+DW2(4—30) 67.9 76.7 77.3
DW2 8.76 7.38 6.09 TDCC(0—4)+DW2(5—30) 61.1 71.3 73.6
2 TDCC 11.9 10.8 9.34
DW1 18.1 16.0 13.0

electron ionization of the iron atofii3].

pw2 17.8 14.3 11.4 As reported previoushf2], the second distorted-wave
3 Tbec 115 117 10.8 method is in better agreement with the more exact TDCC
bw1 131 14.4 133 method forL =0 andL =1 scattering. The situation reverses,
bwz2 19.1 16.8 14.1 however, for the higher partial-wave cross sections.LFe8
4 TbcC 7.95 9.60 985  and L=4 scattering, the first distorted-wave method is in
bwl 7.99 10.7 111 better agreement with the more exact TDCC method. For
Dw2 14.7 15.0 13.6 high angular momentum scattering the first distorted-wave

method is physically more appealing. Due to the high-
angular-momentum barrier, a direct scattering mechanism
tice is good to 1.0%. The initial wave packets of E@.and  should begin to dominate. In other words, the incoming elec-
(7) were propagated from=0 to t=T=20-25. The ioniza- tron cannot easily penetrate into the core region. The scatter-
tion probability of Eq.(13) was monitored as a function of ing electron always experiences a fully screeM&dpoten-
time and was well converged for all partial wavestsyT.  tial. The ejected electron is never screened by a high-
The time step for a norm-conserving time propagationangular-momentum incoming electron; thus, it experiences a
ranged fromAt=0.010-0.001. The number of coupled chan-potential that is only screened by the remaining core elec-
nels needed to converge a particular partial ionization crosgons giving avN~! potential.
section varied according to total angular momentum. In The superiority of the DW1 method over the DW2
Table | we list the channel quantum numbelrg,(,) used in  method for high angular momenta is further illustrated in
the largest close-coupling calculation for each angular moTables Il and 1V. Starting with pure distorted-wave results
mentum (). for the total ionization cross section at three incident ener-
Electron-impact partial ionization cross sections forgies, we successively substitute the more exact TDCC results
L=0-4 scattering from hydrogen are presented in Table lIfor the low partial-wave cross sections. By=4 the TDCC
The time-dependent close-coupliifDCC) results are com- plus DW1 results have converged the total ionization cross
pared with two different time-independent distorted-wavesection. On the other hand, hy=4 the TDCC plus DW2
calculations. Both distorted-wave methods are based on msults have still not converged, and most likely will only
triple partial-wave expansion of the first-order perturbation-converge when the TDCC results have completely replaced
theory scattering amplitude, including both direct and ex-the DW2 results.
change terms. The first distorted-wave meti@¥W1l) re-

quires the incident and scattered electrons to be calculated in ) 100
a VN potential, while the bound and ejected electrons are £E
calculated in avN~! potential[11]. The second distorted- O e |
wave methodDW2) requires that all electrons be calculated ©
in aVN"! potential[12]. A more thorough exposition on the T el
two distorted-wave methods is found in a recent paper on the S
=]
Lo . _ Q 40 |
TABLE IlI. Total ionization cross section€l0™ 18 cn). (‘B
Incident energy § 20 -
Method 30eV  40eV  50eV o I R A
DW1(0—30) 65.5 74.1 74.3 0 1 30 4 60 75
TDCC(0)+DW1(1—30) 62.1 71.8 72.8 Energy (eV)
TDCC(0—1)+DW1(2—30) 58.1 69.1 71.1
TDCC(0—2)+DW1(3—30) 51.9 63.9 67.5 FIG. 1. Total electron-impact ionization cross section for hydro-
TDCC(0—3)+DW1(4—30) 50.3 61.2 65.0 gen. Large crossed boxes, hybrid TDCC plus DW1 method; solid
TDCC(0—4)+DW1(5—30) 50.2 60.1 63.8 curve, DW1 method; dashed curve, DW2 method; solid circles,

experimental measuremerits].
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The total ionization cross section for hydrogen calculatedrerge the total ionization cross section at three different en-
using the hybrid TDCC plus DW1 method is compared withergies and to give results in excellent agreement with
experiment{5] in Fig. 1. The excellent agreement betweenexperiment.
the hybrid theory and experiment rivals that obtained be- In the future we hope to apply the time-dependent close-
tween the recently reported time-independent convergedoupling method, through the use of core potentials and a
close-coupling theorj3] and the same experiment. The puresingle active electron approximation, to the calculation of
DW1 and DW?2 results for the total ionization cross sectionlow L partial ionization cross sections for a variety of atomic

are also included in Fig. 1. configurations. Combining the wave-packet approach for low
L with the perturbative distorted-wave approach for high
IV. SUMMARY promises to yield a hybrid method capable of generating ac-

] _curate total ionization cross sections for many complex at-
The recently formulated time-dependent close-couplingyms.

method[2] is used to calculate =0 to L =4 partial ioniza-

tion cross sections for electron scattering from hydrogen.
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