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Formulas for the direct calculation of convolved photoabsorption cross sections are presented.
Atomic parameters used for the calculation of infinite resolution cross sections can be used in a very
accurate approximate formula for the convolved cross section. The direct calculation of convolved
cross sections is usually 20-100 times faster than the calculation of numerically convolved cross
sections. Numerically convolved cross sections are compared to the preconvolved cross section for a

recent atomic calculation.

PACS number(s): 31.15.+q, 32.80.Fb, 02.70.—c

I. INTRODUCTION

Multichannel quantum-defect theory (MQDT) uses in-
formation on the short-range properties of atoms and
ions to obtain cross sections [1]. This is accomplished by
utilizing functions that are solutions of the Schrodinger
equation outside of the complicated region near the nu-
cleus where the electrons can interact strongly. For
example, in the photoionization of atoms the relevant
information involves dipole matrix elements and the
phase shifts and couplings between channels relative to
a pure Coulomb potential; these parameters do not vary
strongly with energy because the electrons are affected
by very strong forces in the interaction region where the
difference from a pure 1/r potential is strongest (i.e.,
small energy changes do not affect the dynamics in the
interaction region). To calculate the cross section the
long-range behavior of the Coulomb functions are uti-
lized to obtain the cross section on a mesh much finer
than that needed to describe the energy dependence of
the short-range scattering parameters [1,2]. The cross
section needs to be calculated on a fine mesh because the
autoionizing Rydberg resonances can be quite narrow; as
the threshold is approached the widths and spacings of
the resonances decrease like 1/n3. To obtain a convolved
calculated cross section which can be compared to ex-
periment, the cross section needs to be calculated on a
mesh approx. 100 times finer (at least) than the mesh
for the experiment. A correct numerical convolution of a
calculated cross section near a resonance needs approx.
10 points over the full width of the resonance which can
be troublesome for sharp resonances; for example, in the
lighter atoms very sharp resonances can result when a
state is forbidden to decay in LS coupling but can decay
through the weak spin-orbit interaction. This is a very
wasteful procedure since all of the atomic dynamics is
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embodied in the short-range scattering parameters that
do not vary much with energy. Therefore, it should be
possible to obtain a convolved cross section directly from
these smooth parameters without a numerical convolu-
tion.

The main advance described in this paper is the de-
velopment of an approximate formula which uses MQDT
parameters obtained at real energies for a direct calcula-
tion of the convolved cross section. The same parameters
that appear in the calculation of an infinite-resolution
photoabsorption cross section at energy F can be used to
directly obtain the cross section at energy F that has been
convolved over a width I". The approximate formula for
the preconvolved cross section is accurate to the extent
that the short-range MQDT parameters do not vary over
the convolution width, I'. This is usually an excellent ap-
proximation; in test calculations using atomic parameters
from R-matrix calculations, the errors in the approximate
preconvolved cross section were smaller than the errors
in the numerically convolved cross section when the fine
energy mesh was 50-1000 times smaller than I'. The di-
rect calculation of a convolved cross section is ~ m;/2m,
times faster than the numerical calculation of convolved
cross sections where m. is the number of mesh points for
the convolved cross section and m; is the number of fine
energy mesh points of the infinite resolution cross sec-
tion; m;/m, is usually larger than 50 and can be as large
as 1000.

The developments discussed in this paper were spurred
by the complexity of recent atomic calculations [3,4] and
experiments. For these two systems (Sc [3] and Ba in a
static electric field [4]), the R-matrix calculations of the
MQDT parameters on a coarse energy mesh were very
fast compared to the final calculations of the cross sec-
tions on a fine energy mesh. For example, the calculation
[3] of the MQDT parameters for all relevant LS symme-
tries in Sc required ~ 20 CPU minutes on a DEC5200
workstation; the calculation of the cross section on an en-
ergy mesh fine enough for a numerical convolution would
have required over 100 CPU hours because of the large
number of jj-coupled channels. Consequently, the exper-
imental cross section was compared to the unconvolved
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theoretical cross section which was not completely sat-
isfactory because a large number of features were not
resolved in the experiment. In the future, atomic calcu-
lations will probably become even more complicated.

In this paper, the formulas for a direct calculation of
convolved cross sections are presented. A simple single
channel case is examined in detail to illustrate the nature
of the convolved cross section near thresholds. Compar-
ison with the photoabsorption cross section of Sc (in LS
coupling) is presented graphically to illustrate the accu-
racy of the method for a recent atomic calculation; this
comparison demonstrates the ability of the method to
handle energy dependences in the short-range parame-
ters.

II. WAVE FUNCTIONS AND DIPOLE MATRIX
ELEMENTS

Before deriving the formulas needed to directly cal-
culate the convolved cross section, it is useful to list
those needed to obtain the infinite resolution cross sec-
tion. Two of the standard forms for the wave function
when the outer electron is outside of the interaction re-
gion are

e =A> b;i(fi0ik — 9;K;i) (1)
J

and

v = 3AY $5((f5 + i) + (f5 —ig;) Sk, (2)
i

where A is the antisymmetrization operator (which has
no effect since the electron is outside of the interaction
region), ¢; is the channel function incorporating all of
the degrees of freedom except the radial motion of the
outer electron, and f; and g; are Coulomb functions at
energy E — E; (E; is the energy of the core electrons in
state ¢;) and orbital angular momentum ¢;. The form
of the wave function is much more complicated when all
of the electrons are in the interaction region. The only
other parameters, besides ST or K, needed to obtain the
cross section are the dipole matrix elements connecting
these wave functions to the ground state:

Dy, = (¥, |Dlthx), (3)
D) = (T, Dy, (4)

where the integrals are over the full volume. D(~) and
ST can be obtained from D and K giving

St=(1-iK)/(1 +iK), (5)
D) =" D1 +iK) (6)

(Note: The definition of ¢,(€—) differs from more usual
definitions [5]; the phase shift from the Coulomb field
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has not been incorporated because it does not have any
effect on the total cross section.)

The form of these functions apply even when some of
the channels are closed; i.e., E— E; < 0. However, in this
case these functions are not physical because they diverge
in the closed channels. To obtain the physical wave func-
tions, the unphysical functions are superposed to elimi-
nate the exponentially diverging part of the wave func-
tion in all of the closed channels. To choose the correct
superposition it is only necessary to know that at positive
real energies the f; and g; are normalized per unit energy
and at negative real energies they both diverge but their
ratio goes to a constant, f]-/gj — —tan7ny;, as r — oo

where v; = 1/,/2(E; — E). The correct superposition is
PSP =l — (8], - e¥ ) 1S (M)

which gives for the physical dipole matrix element
D{IPe = D) - DO(SE, — ™) st (8)

where the subscripts o and c refer to the open and closed
subspaces; for example, the matrix S, — exp(2imv) is a
matrix of dimension n. X n. (n. is the number of closed
channels) whose elements are S]Tk — 0, exp(2imy;) where
both channels j and k are closed.

The description of the atomic dynamics in terms of the
short-range parameters is advantageous because it nat-
urally incorporates the interaction of channels; for most
purposes it is not natural to incorporate the interaction
on a state-by-state basis. Because the D(~) and St do
not depend strongly on energy, the dynamics of Rydberg
and continuum states can be related to each other. If
there are open channels, ﬁzc is not a unitary matrix; the
positions and widths of resonances can be obtained from
S1. and the positions of the thresholds. The decay rates
of the resonances into the open channels can be obtained
from S!_and S7,. Because the short-range parameters do
not depend strongly on energy, interactions describable
by a frame transformation [6] can be easily incorporated.

There are two important properties of this treatment
that should be noted. The first is that the open and the
closed channels are treated differently. The second is that
the D((f)phy ® and the cross section oscillate extremely
fast just below threshold. As a threshold is crossed,
D((,_)phys changes discontinuously from n, open channels
to a smooth cross section with n, + m open channels (m
is the number of Rydberg series attached to the thresh-
old). This sort of behavior is not seen in experiments;
in the experiments, the widths of the states gets smaller
than the resolution as the threshold is approached after
which the heights of the resonances decrease like 1/73 un-
til they smoothly merge onto the above threshold cross
section. Convolved physical quantities just below thresh-
old were explored by Gailitis [7]. Because the widths of
the resonances decrease like 1/n3 (but the heights remain
constant) and the spacing of the resonances decrease like
1/n3, the experimental resolution near threshold will al-
ways be broader than the spacing; therefore, there will
always be a region just below threshold where the den-
sity of resonances is high enough that it appears to be a
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continuum in the experiment.

The method described below automatically reproduces
the effects of finite resolution on the cross section near
threshold. The behavior of the cross section near an ex-
tremely sharp, isolated resonance which is smeared by
finite resolution also emerges naturally. However, the
method is still based on the short-range parameters and
therfore retains the power of the usual MQDT formula-
tion.

III. COULOMB FUNCTIONS AT COMPLEX
ENERGIES

The method for preconvolving photoabsorption cross
sections, described in the next section, involves a MQDT-
like formulation for the inhomogeneous function at com-
plex energies. The strength of MQDT formulations is

J

fE,A—iE‘.- L=
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that the asymptotic form of the wave function is deter-
mined analytically in terms of parameters that can be
obtained at relatively short distances; these parameters
usually do not have a strong dependence on energy. In
Eqgs. (27) and (30) the inhomogeneous function is deter-
mined at energies with a positive imaginary component.
The asymptotic form of the Coulomb functions as defined
in this paper will only be given for the upper half of the
complex energy plane.

Once the form of the two linearly independent
Coulomb functions is defined near the origin (r ~ 0) the
asymptotic forms as » — oo can be obtained from stan-
dard works [1,2]; to simplify the references the formulas
presented here will be connected with those of Seaton [1].
The regular (f) and irregular (g) Coulomb functions are
chosen so they are identical on the real energy axis to the
f and g used for photoionization calculations [2]. These
functions are defined to be

B(E, +iE;, f)y(s, £ + 1, 2), (9)

9B, +iB ¢ = [Nk, £+ §,2) — idm[G(k, O)]y(k, £ + 1, 2)]/v/B(E. +iE;, ), (10)

where Im[2] is the imaginary part of z and E, and E; are real with E; > 0 and

ee®=E, +iE;, 0<¢<m, e>0, (11)
k= e " 4™/2/\ /3¢, (12)
z=2r /K. (13)
The functions y and 7 are related to the Whittaker functions by
y(k, A, 2) = n’\+1/2ei"'°[e_i"(’\’Ll/z)W,c,)‘(z)/I‘(/c + A+ D)+ W a(e2)/T(—k+ A + Dl (14)
n(k, A, 2) = cot[r(A + § — k)JA(E, +iE;, £)y(k, A\, z) — T(A + 1 — R)Wia(2)/(mr*1/2). (15)

Finally, the constants A, G, and B are defined by

A(E, +1iE;,8) = IE=[1 + 2p*(E, +iE;)],  (16)

A(E,- + ’I:Ei, ()

G(k,0) = Py

[W(k+£+1)
+¢(k —£) —2In(x)], (17)

B(E, +iE;,£) = A(E, +iE;, £) + Im[G(x, £)],  (18)

and ¥(z) = dInI(z)/dz. These definitions ensure that
as F; — 0+ the functions f and g go over to their real
energy values as defined in previous works. These defi-
nitions only hold when the imaginary part of the energy
is positive but it is relatively straightforward to find sim-
ilar functions when the imaginary part of the energy is
negative.

To find the asymptotic form of f and g it is necessary
to know the asymptotic form of the Whittaker function

z/2
)

Wea(z) = 2%e” z — oo. (19)

In MQDT the asymptotic form of the wave function (and

[

the inhomogeneous function for this paper) is used to an-
alytically construct the physical function (functions that
converge to zero in the closed channels instead of diverg-
ing and have the correct oscillatory property in the open
channels). The f and g functions diverge as r — oo at
all energies with a nonzero imaginary term. To find the
correct superposition of f and g that converges to zero
as 7 — oo it is only necessary to know the ratio f/g as
T — oo or equivalently the ratio (f + ig)/(f — ig). With
the definition of f and g given above this ratio is

(f+i9)/(f —ig) = ——ezi""(l +a)+a, 7— o0, (20)

where o = Im[G]/A. At large positive energies x —
i/v/2e and & — 1/[exp(—2imx)—1] which means the ratio
(f +1i9)/(f — tg) — 0 at large positive energies as r —
0o. Since the factor « is moderately difficult to evaluate
compared to the exponential factor, an approximate form
for the ratio is used. This approximate form is

(fi +195)/(f; —ig;) ~ —e**Ps, (21)
with
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;Bj: TKj, ET—E] < 0, (22)
B;=ico, E,—E; > 0. (23)

The error in this approximate ratio is proportional to E;
and goes very rapidly to zero for E, — E; > 0. Note that
the discontinuity in B; has no practical effect since the
size of the discontinuity in the ratio (f; +1ig;)/(f; —ig;) is
equal to exp(—m//E;); for E; = 0.01 a.u. ~ 1/4 eV the
discontinuity in the ratio is ~ 107!* and for E; = 1073
a.u. the discontinuity in the ratio is ~ 10743, Typically
E; is much less than 1073 a.u. in photoabsorption exper-
iments. For all practical purposes, the ratio Eq. (21) can
be considered a continuous function of energy.

IV. CONVOLVED CROSS SECTIONS

The procedure that is presented here is based on apply-
ing ideas for the calculation of the frequency-dependent
polarizability of an atom [8,9]. The cross section in the
length gauge is
|

o(w) = Cw > (W | DI PI) (G Ph7|D|W,),  (24)
7

(—)phys .
E +w,j 1s

the jth independent (physical) wave function at energy
E4 + w which has outgoing waves only in channel j, w is
the frequency of the light, and C is a constant that de-
pends on whether the calculation is being performed in
LS coupling, jj coupling, etc. The cross section can be
convolved with a weight function that mimics an experi-
mental resolution I' (full width at half maximum). This
convolved cross section is

7@ wo) = 5 [ dwo()T/[(w—wo)* + (/2] (25)

where ¥, is the ground state wave function, %

with the superscript (2) denoting a Lorentzian convolu-
tion. By substituting the expression for the cross section,
Eq. (24), into Eq. (25) and setting w = F — E,, the con-
volved cross section can be expressed as

. . _1
o3 (wo) = —%ImKwo + g-) Z/dE(\pg|D|¢g.’PhYS>(¢§E;)P*‘ys|D)xI»g> (E_,, + wo + % - E) } (26)
J

where Im|[z] is the imaginary part of z. The important point is that the summation and integration can be formally
carried out so that the convolved cross section can be written in the form

o (wo) = —glm
™

where

(wo + iF/2)<\Ilg|D]A(Eg + wo + %) >J , (27)

(E — H)A(E) = DY, (28)

with E = E, + wo + i/2 = E, + /2.

Actually, a Lorentzian convolution is a poor approximation to an experimental spectrum with resolution I'" because
of the long tail. A better form to use for the convolved cross section is

o O(wg) = 2 [ dwr@) /21 — o) + (r/2)% (29)

It can be shown that this convolved cross section is equal to

<
V2

@ (wo) = —

7rIm l:%{(wo + Vil /2)(W,4|D|A(E, + wo + T'/2V2 + iT/2V/2))

—(wg — Vil /2)(¥,|D|A(Ey + wo — T'/2V2 +iT/2V/2)*} |, (30)

where v/i = (1 +i)/v/2. The form of the convolution
function was chosen because the simple form of Eq. (30)
results.

Equation (28) could be solved at slightly complex en-
ergies using the method of Refs. [8,9]. Although this is
fairly easy to do and only involves slight modification of
existing computer programs, the discussion in the next
section shows that the dipole matrix elements needed for
0(2)(w0) and 0(4)(w0) can be obtained without actually
solving Eq. (28). This development allows the calcula-
tion of preconvolved cross sections from the same param-
eters used for the calculation of infinite resolution cross
sections.

V. APPROXIMATE DIPOLE MATRIX
ELEMENTS

In this section, an approximate form for the dipole
matrix elements in the convolved cross sections, o(?) (wp)
and o® (wo), are given in terms of atomic parameters
obtained at real energies; it is not necessary to solve Eq.
(28) in this approximation. This is the most important
advance presented in this paper since it allows the di-
rect calculation of convolved cross sections from param-
eters that are already available; with this approximation
the infinite resolution cross section and the preconvolved
cross section can be obtained from the same parameters.
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The approximation discussed in this section depends on
the slow variation of the MQDT parameters (i.e., as long
as the MQDT parameters do not vary over the convolu-
tion width, I', the results are accurate). This is a very
good approximation for most systems.

The inhomogeneous function, A(FE), is completely de-
termined by Eq. (28) and the fact that it must converge
to zero as r (the electronic distance from the nucleus)
goes to infinity at complex energies. However, because
A(E) is the physical solution, it incorporates the bound-
ary conditions as 7 — oo which can give it a very rapid
dependence on energy. It is crucial that the fast energy
dependence be expressed in closed form so that it is not
necessary to recalculate the atomic dynamics on a fine
energy mesh. With this in mind we use the smooth in-
homogeneous function of Ref. [9] and the solutions, Eq.
(2), of Schrédinger’s equation to re-express the physical
inhomogeneous function as

A(B) = AJ(B) + 3 o5 A:(B), (31)

where A,(FE) is a solution of the inhomogeneous equation
(28) with the asymptotic form

=A Z $;(f; +19;)A;(E) (32)

for all channels, j, whether open or closed. Because the
asymptotic form of A, does not depend on whether a
particular channel is open or closed, it should not depend
strongly on energy. In Eq. (31) neither A, nor ¢§_)
depend strongly on energy; the fast energy dependences
are contained in the coefficients, A;, of the smooth wave
functions, ¢§_). The A;(E) can be directly obtained from
Eqgs. (28) and (32) by using the solutions, Eq. (1), of the
Schrédinger’s equation and integration by parts:

/ dVe;(E — H)A,(E) = / dVy; DV, = D;.  (33)
The D; are real at real energies. The left hand side can
be rewritten as

/ dV{[(E — Hy;]A(E)

419 (B) _ 9Y, '
+557 [% - —B‘TA"(E)] } (34)
J
(Tg|DIA(E))= (4| D|A.(E)) +

= (¥g|D|A,(E

where we have used the expressions in Egs. (31) and
(38). Note that all of the factors in Eq. (40) are obtained
from atomic calculation except for the dipole matrix el-
ement between the ground state and the smooth inho-

> (¥,
k
)) —2mi y_ DL(S
k,j
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However, (E— H)Yg; = 0 and the Wronskian in brackets
can be evaluated from the asymptotic form of A, and %;
which gives

/dV%(E — H)A,(E) = M(E)(idk; + Kij) /.
k

(35)

Combining Eq. (33) with (35) gives a matrix equation
for Ax(E) which can be inverted to yield
X(B) =73 Di(i+ K)i} *(E),
k

= —inD\~ (36)

where Eq. (6) was used for the last step. This shows
that the asymptotic form of A,(E) can be found without
solving the inhomogeneous Eq. (28). The DJ(-_) do not
vary strongly with energy and therefore (as expected)
the A; do not depend strongly on energy; it is a good

approximation to use the value D§—) (E) for D;f)(ETw +

1E;) as long as D§_)(E) does not vary much over an
energy range comparable to E;.
The values of A;(E) can be quickly determined be-

cause the asymptotic form of A;(F) and ¢(E;) are known.
Asymptotically A(F) must go to zero as r — co at com-
plex energies in every channel, k. This condition deter-
mines the A;(E) completely from the equation
—262iﬁ" /\k —+ 2(
J

Sltj — GZiﬁ”(Skj)Aj = 0. (37)

This equation is obtained by setting the coefficients of
the exponentially diverging terms in Eq. (31) to zero.
Substituting the value for Ax and inverting this matrix
equation yields the form of Ay:

=—2miy (ST -

J

Ak(E) 21[3) -1 21ﬁ,D( )*

(38)

St is unitary but the matrix exp(2¢3) is not unitary at
complex energies; therefore, Ay can never truly diverge
but has a very fast energy dependence when det[St —
exp(2:03)] ~ 0. Note: A =0if E. — E; > 0 for all j [see
Eq. (23)].

From these equations and physical reasoning we can
give a closed form for the matrix element of Eqs. (27)

and (30). This form is
DY) Aw(E) (39)
_ eZiﬁ),;—jleZiﬂjD§—)*, (40)

[
mogeneous function. To completely obtain the matrix
element (¥,|DJ|A,) it is necessary to solve the inhomo-
geneous equation (28) with the boundary conditions of
Eq. (32). However, the imaginary part of this term can
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be obtained from physical reasoning. If all channels are
open (E, — E; > 0 for all j), then exp(2i3;) = 0 for all
of the channels which gives

(Ug|DIA(E)) = (¥g|D|AL(E)). (41)
The cross section will then be

C
o (wo) = ——Tm|(wo +i[/2)(¥,| D|AL(E))], ~ (42)
where Im[z] is the imaginary part of 2. When I' = 0+
0@ (wo)= Cwo ¥ DY (E,)D{ " (E,)
k

- ~§-w01m{<\119|D|A3(E7-)>]- (43)

Since the A, does not depend strongly on energy, the
approximation

(¥|D|Ay(E, +iE;)) ~ —in Yy D{7)(E,)DY* (E,)
k

(44)
gives the imaginary part very well; using D,(C_)(ET) for
D,(c-)(E,. + iE;) is a very good approximation because
the D(-) typically vary on energy scales of 0.1 a.u. which
should be compared to typical values of E; (107% a.u.<
E; < 1072 a.u.). The real part of (¥,|D|A,) can be of
the same size as the imaginary part. However, the real
part does not contribute much to the cross section since
it is multiplied by T in Eq. (27) and in Eq. (30) it only
contributes proportional to

((Zg|D[As(E +T/2V2)) — (¥4|D|Ay(E —T/2v2)))wo,

(45)
which is very small since (¥4|D|A,) does not vary rapidly
with energy.

The final form for the physical matrix element connect-
ing the ground state and the inhomogeneous function is

(Ug|DIA(E, +iE;)) ~ —in Y D7) D"+ 237 (81— e2P) e Di )" | (46)
8 A

. where the D,(c_) and S,z ; are evaluated at energy E. and
B = 7r/\/2(Ej — E, —tE;) when E. — E; < 0 and
B; = ioo when E, — E; > 0. The energy of the core
is Ej and the branch of the square root is chosen so the
imaginary part of 3; is positive. The importance of this
formula derives from the fact that every term is obtained
from atomic calculations so there is no need to solve Eq.
(28) for the inhomogeneous function. If the exact asymp-
totic forms of f and g are used, the exp(2i3;) in Eq. (46)
should be replaced by exp(2imk;)(1 + ;) — a; [see Egs.
(20) and (23) and the discussion of that paragraph]. The
approximations needed to obtain Eq. (46) no longer ap-
ply when St and D) vary substantially over an energy
range comparable to F;. Equation (46) can be written
in a more symmetrical form.

The dipole matrix element, Eq. (46), that goes into
the cross section clearly displays a point of physics that
is not obvious from the formula for the infinite resolution
cross section, Eqs. (7) and (24). For the infinite resolu-
tion cross section, one must keep track of the open and
closed channels because they are treated differently. As a
threshold is approached, the cross section oscillates faster
and faster until just below the threshold it is oscillating
infinitely fast; just above threshold the channel is treated
as open and the cross section is smooth. In Eq. (46),
there is no distinction between the open and the closed
channels. The exp(2i3;) “closes” the channel or “opens”
it automatically. Far below threshold (compared to E;)
the magnitude of exp(2:3;) is nearly one and it oscillates

7

r

as in the usual MQDT formulas. However, as the thresh-
old is approached, the magnitude of this factor rapidly
decreases until just above threshold where the magnitude
is zero and remains zero at higher energies. This gives
the correct behavior to the cross section; the Rydberg se-
ries decrease in height like 1/n® once the natural widths
of the lines become smaller than the convolution width I"
until they become completely washed out; the convolved
cross section goes smoothly through the threshold.

The partial cross sections cannot be averaged in the
same way as the total cross section since the prescription
in this paper is for averaging photoabsorption cross sec-
tions; the partial cross section involves the dynamics of
the atom after the photon has been absorbed. A more
detailed understanding of the roles of the coefficients of
the incoming and outgoing wave terms in the inhomoge-
neous function is necessary before preconvolved partial
cross sections can be obtained.

VI. RESULTS
A. Single channel cross section

It is instructive to investigate the behavior of the
preconvolved photoabsorption cross section for a one-
channel problem. For this case the cross section can be
obtained in closed form:

0@ (wo) = C|D)|2Re{(wo + iT/2)[1 + 2e2P (e~ 2™+ — %)}, (47)
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where exp(—2imu) = ST and Re[z] is the real part of z. At
an energy far below threshold compared to I' [i.e., where
the Rydberg spacing is (n — p)~2 >> T'], the magnitude
of exp(2:i03) is nearly equal to one. Expanding 8 near a
resonance energy E,, = —1/2(n — p)? (the core energy is
defined to be zero) gives

Bemn—p+ (n—p)P(wo+i0/2 —wa)l,  (48)

where w, = E, — E, is the frequency of the resonance
above the ground state. Substituting this expression into
Eq. (47) gives the approximate expression

0(2) (wg) ~ C|D(_)|2wnm%7)§[(wo —_ wn)2
+(T/277, (49)

which clearly shows the photoabsorption cross section to
consist of Lorentzian peaks whose heights decrease like
(n — p)~3; the peaks are Lorentzian because the convo-
lution function was taken to be Lorentzian, Eq. (25).

As the threshold is approached the Im[3] increases un-
til just above threshold exp(2i8) = 0. Within a few T’
of threshold and above threshold, the preconvolved cross
section can be approximated by

o) (wo)~ C|D) Pwp(1 + 2Re[e(m+A)]) (50)
— C|D(_)|2wo[1 + 228 cos(2mu +263,)], (51)

where 3, = Re[8] and B; = Im|[B]. This formula is
very satisfying because it shows how the convolved pho-
toabsorption cross section evolves smoothly from below
threshold to the continuum value above threshold. This
smooth evolution also holds for autoionizing resonances
as shown in the figures of the next section.

B. Graphical comparison with numerically convolved
cross section

In Figs. 1 and 3 the unconvolved cross section for
(4s3d) 'D5s 2D — 2F° photoabsorption by Sc is shown.
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FIG. 1. The photoabsorption cross section from an excited
state of Sc calculated on a fine energy mesh of 107 a.u.
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FIG. 2. The numerically convolved and preconvolved cross
sections with I' = 5 x 107°. Differences between the two
curves can hardly be seen; any differences are due to errors in
the numerically convolved cross section.

This cross section was obtained from an R-matrix calcu-
lation [10] and therefore all of the short-range param-
eters, St and D(7), have realistic energy dependences.
These figures have the typical signature of unconvolved
cross sections (especially note the blackened area just be-
low the various thresholds where the cross section oscil-
lates faster than the thickness of a line). In Figs. 2
and 4, the cross section is shown convolved numerically
and from Egs. (30) and (46) with I’ = 5 x 107% a.u.;
the differences between the two curves cannot be seen on
these figures. The fine energy spacing of the unconvolved
cross section was 107° a.u. Plotting the difference in the
two convolved cross sections only shows the errors in the
numerically convolved cross section; i.e., although the en-
ergy spacing of the unconvolved cross section was I'/50,
the numerically convolved cross section was less accurate
than the approximate preconvolved cross section. The
effect of the convolution is easier to see in Figs. 1 and 2
because the spectrum is simpler in that region; especially
notice the smooth tapering of the convolved Rydberg se-
ries to its continuum value just above threshold. Figures
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FIG. 3. Same as Fig. 1.



48 PRECONVOLVING THEORETICAL PHOTOABSORPTION CROSS . .. 4169

3 and 4 show a more complicated region of the spectrum
and illustrate how the method described in this paper can
preconvolve spectra involving many interacting Rydberg
series. The calculation of the preconvolved spectrum was
more than 20 times faster than the calculation of the nu-
merically convolved spectrum.

VII. CONCLUSIONS

The formulas for the direct calculation of convolved
photoabsorption cross section have been derived in terms
of the parameters used for (infinite resolution) theoretical
cross section. In this formulation it-is not necessary to
waste effort calculating the cross section on an extremely
fine mesh before numerically convolving and therefore
allows direct calculation of cross sections which can be
compared to experiment. The direct calculation of con-
volved cross sections is more than an order of magnitude
faster than the numerical convolution. These formulas
do not distinguish between open and closed channels and
can explain the smooth evolution of experimental or con-
volved theoretical cross sections through thresholds in a
natural way. This formulation provides a nice practical
and conceptual tool for the theoretical study of spectra.

An approximate formula for the matrix elements was
obtained in terms of atomic parameters calculated at real
energies; this approximate formula works well as long as
the MQDT parameters do not vary over energy ranges
comparable to the convolution width. This is usually an
excellent approximation. The formulas derived in this
paper only apply for photoabsorption by neutral species.
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FIG. 4. Same as Fig. 2.

The application of the ideas in this paper to photoab-
sorption by atoms in external fields or by ions should be
straightforward.
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