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The occurrence of resonant states in regions of high potential, inferred from experiments over
two decades, is traced to a familiar aspect of the diagonalization of finite Hamiltonian matrices.
The diagonalization generates two sets of eigenstates localized in regions of high and low potential,
respectively. These sets are related by a conjugation transformation that determines the relative
numbers of set elements and the scale ratio of their eigenvalue spectra. The residual eigenstates are

not localized.

I. INTRODUCTION

The rapid expansion of the study of Rydberg spectra in
a magnetic field stems in part from their role as proto-
types for phenomena with nonseparable variables
throughout chemical physics. These spectra display the
transition from the spherical symmetry of an ionic field,
which prevails in lower Rydberg levels, to the cylindrical
symmetry imposed by a magnetic field which prevails
near and beyond the ionization threshold.! Analogous
symmetry changes accompany the evolution from the
united to the separate-atom limit of a chemical bond or
from a collision complex to its dissociated fragments.

Photoelectrons ejected in a magnetic field propagate
mainly along B, with subsidiary transverse (“Landau”)
excitations whose spectrum has been resolved only for de-
tachment from negative ions.” The Landau levels are
separated by the cyclotron frequency ., with orbital ra-
dii of hundreds of bohrs at fields ~5 T. [Stronger, astro-
physical ( ~10° T) fields confine electron motions even in
ground states allowing only minor manifestations of cen-
tral symmetry;3 weaker fields, much less than 1 T, confine
the symmetry evolution within an exceedingly narrow
spectral range astride the ionization threshold.]

Attention has centered on prominent series of ‘‘quasi-
Landau” metastable excitations whose spectral intervals
evolve from the Rydberg sequence toward w, and whose
amplitudes decay above the ionization threshold.* These
excitations are localized astride the symmetry plane or-
thogonal to B through the ionic core. Their metastabili-
ty, surprising for location on a “potential ridge” where
the diamagnetic potential

(e?/8mc?)B*r’sin*0
is largest, has been attributed to an ill-defined approxi-

mate constant of the motion of a Rydberg electron in the
magnetic field. Early efforts to identify its origin in the
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electron’s dynamics near the symmetry plane have met
with only limited success.’

The localization of quasi-Landau states has neverthe-
less been documented by numerical diagonalization of the
relevant Hamiltonian matrix in the very large (2 10%)
bases required to represent the electron over a large
volume.® Remarkably, the localization has also emerged
from calculations within modest bases consisting of a sin-
gle degenerate hydrogenic manifold with a given princi-
pal quantum number n.” Eigenstates of diamagnetic en-
ergy thus selected by a degenerate perturbation treatment
were shown more recently to remain approximate eigen-
states of the complete Hamiltonian even for large B
values, thus documenting the existence of a quasigood
quantum number K.® The metastability represented by K
breaks down eventually,’ as anticipated by high-
resolution spectroscopy very near the ionization thresh-
old.!® Tracing its dynamical origin constitutes the objec-
tive of the present paper. Similar goals have been pur-
sued by previous semianalytic degenerate perturbation
treatments leading only to limited results.!'

We thus confine our scope to the matrix diagonaliza-
tion of the diamagnetic energy proportional to r2sin’@
within degenerate hydrogenic manifolds with given n.
We shall also deal explicitly mainly with m=0 states,
which have axial symmetry about the field B; their
features are shared by states with O < m <<n, though not
by large-m states with n —m <<n. The latter would ex-
perience a strong centrifugal field which imposes a cylin-
drical symmetry even for B=0. The transition of m /n
from ~0 to ~1 will not be treated here.

As a preliminary, Fig. 1 plots eigenvalues of the di-
amagnetic energy matrix for different values of n. The
ordinates €, are scaled to remove the simple n* depen-
dence of (r?) in a Coulomb potential, whereby O<ey <3
for all n. The abscissas N could have been similarly
scaled in terms of 0 <2N /n <1, thus bringing all of the
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FIG. 1. Eigenvalues €y of the diamagnetic energy matrix (4)
for m=0, even parity and different values of n, in dimensionless
units. The index N varies in steps of unity but the eigenvalues
are displayed as continuous functions. Eigenvalue curves for
consecutive values of n >>1 cluster in pairs (e.g., for n=47 and
48, 49, and 50, etc.) (Ref. 7). Curves for each pair are not drawn
separately, for clarity; they would depart from each other slight-
ly only in the intermediate range of N.

curves into approximate coincidence. (The factor of 2
reflects the separate diagonalizations of even- and odd-/
eigenstates.)

We view the eigenvalue curve for each n as consisting
of two branches of opposite curvature, whose end points
correspond to states localized astride the ridge (ey~3,
quasi-Landau) and in the potential valley (ey ~0, Lan-
dau). The top branch could be brought to coincide ap-
proximately with the lower one by contracting its ordi-
nates by a factor of 4 and its abscissas by a factor of 2.
The two branches are hinged at the point of inflection
[ey=1%, N =n/(2X3)], where the slope ey—ey_, is
smallest, as previously known.'? (The eigenvalues near
the inflection point correspond to states which have com-
parable amplitudes in the valley and on the ridge.)

Our specific objective is to interpret these features
analytically to O(1/n); errors of this order will be
corrected in accordance with a recent paper.'> The rela-
tionship between the two branches and their eigenvectors
will also be described analytically. The diagonalization
process will indeed resolve into two ‘‘conjugate” —
separate but mathematically similar—procedures for
eyS+ (Sec. III C). This similarity forces a change of per-
ception away from considering the mechanisms underly-
ing the formation of Landau and quasi-Landau states as
independent.

The localization of eigenvectors of the diamagnetic en-
ergy will be represented by the superposition of degen-
erate hydrogen states f,;(r)P,,(0)e'™?, with given n and
m <<n,

V(r,0)= 3 a,f,(r)P,,(6) . (D
]

The origin of the variable 6 of the associated Legendre
functions lies along B. Besides the value of m, the parity
of I is also a constant of diagonalization. The coefficients
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a, are components of each eigenvector of the matrix. Lo-
calization of quasi-Landau eigenstates astride the plane
orthogonal to B will emerge from constructive interfer-
ence of low-/ components of (1) at 8 ~90°. The Landau
states will be similarly localized at 6~0° and 180° in
terms of the same low-/ components.

The diagonalization of the tridiagonal matrix of di-
amagnetic energy may be cast as a difference equation in
the eigenvectors a;.!! This equation may be embedded in
turn into standard differential equations which display
qualitative features of the problem and of its solution
more transparently. Section IV will describe the embed-
ding procedure in some detail in view of its possible fur-
ther applications.

The scope of this paper is confined to the treatment of
a degenerate hydrogenic manifold, as noted above. Sec-
tion V will, however, comment on its relevance to the
realistic diamagnetism of Rydberg atoms and to broader
questions of chemical physics.'*

II. PERTURBATION MATRIX

The diamagnetic component of the magnetic energy of
a Rydberg electron, quadratic in the field strength B, will
be represented by %rzsin29, omitting a factor
(e?/4mc*)B%. We consider here its matrix representa-
tion in the basis of polar coordinate quantum numbers
{n,I,m}, where the contributions of r* and sin? factor
out. Analytical features of the matrix are particularly ob-
vious in this representation. Only the submatrix diagonal
in n is relevant to our degenerate perturbation treatment.
The whole matrix is diagonal in m.

The nonzero matrix elements of sin’ are

m2~

II+1)—3

FSE

(Im | sin8 | Im)=+

1
2 +

, (2a)

(I—1,m |sin®0 |1 +1,m)
=—i1-QI+D?[1-U+5H7?]72

172 12
m? ]

m2

] ——

X 2

(2b)

(1417

These two expressions converge rapidly to their respec-
tive limits for /—»n —1>>1 (L and —1) provided
m <<n. A notable feature lies, for m=0, in the jump of
(2a) from its value %, at /=0, to its next value (of equal
parity) at /=2, namely, 1% S 1; this single sharp variation
of (2a) as a function of / depresses the ratio a,/a, in the
eigenvectors.

The corresponding nonzero matrix elements of r? are,
in a.u.,

2 4 1 3|, 1Ud+1) 3
(nl |re|nl)=n l+——2n2 + 5 1 e , (3a)
(n,] —1|r?|n,0 +1)
s 2] as02]”
4
=n £y 1—-;—2‘ {l—- ) . (3b)
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The expressions in large square brackets are cast so as to
stress the evolution from their value at /=0 to the limit
I —n —1>>1. In this limit the bracketed term of (3a) ap-
proaches unity while (3b) vanishes. In the opposite limit,
/=0, and for n >>1, both expressions (3) reduce to n*s/2.
Note that the difference n2—1% in (3) represents the
squared magnitude of the Lenz vector. The similarity in
J
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form of the radial matrix elements in (3) to the angular
ones in (2) stems from the O(2,1) symmetry of hydrogenic
radial functions.’® The algebraic structure of O(2,1)
closely parallels that of the O(3) for angular momentum.

Multiplication of (2) and (3) yields only two nonzero
matrix elements, functions of / which depend on parame-
ters n and m,

2 1
. 1 1 3 I(1+1) m-—g
V,=(nlml%rzsmze/n“]nlm)zz 1+;;—2—+5l1——~n—2—“ 1+1(l+1)—% l, |m | <l<n (4a)
W,=(n,l—1,m I—;-rzsinze/n4|n,l+1,m)
s 2 1/2 U417 12 , 1172
-2 1-= -~ pe—ren =g+ H2 -2
Tl s nz][<+>][<+2)] "
, |12
m
X |l = , |m l<n . (4b)
' <1+1)2} m | <l<

The limiting value of V; at [ =n —1, ;, coincides with
the ordinate of the inflection point in Fig. 1. The limiting
values of both ¥, and W, | for I5£0 but I <<n, namely,
and — X, will determine other features of Fig. 1.

In order to emphasize the major analytic elements of
Egs. (4), we separate their dominant terms from correc-
tions that vanish for large / and n, to be taken into ac-
count in numerical applications, by writing

2
1 3 [ +3
Vi~—il14+= |1— +0 | —
=4 2 l n?
+0((21 +1)7%), (4a")
2
5 I+5 1
Wi~—|1-— +0 |—
=16 n?
+0((21 +3)72) . (4b")

These approximate forms are very accurate, except for
small /. However, ¥, will only enter into a boundary
condition where it can be handled explicitly, while V,
and V, are too large by only ~4% and 1%, respectively.

The dependence of (4) on / through quadratic terms
reflects, of course, the quadratic dependence of the mag-
netic energy on r and on 6. Different dependence of the
energy matrix on quantum numbers should, of course, be
expected in different problems but the occurrence of low
powers of quantum numbers is probably widespread.
Another illustration is provided by the more familiar
linear Stark effect in a degenerate n manifold which we
consider in Appendix A. Note that the perturbation gen-
erates a correlation of the radial and angular variables
(r,8). This correlation expresses itself through the
coefficients a; of (1), that is, through the probability am-
plitudes of alternative partitions

n=n,+1l+1 (5)

f

of the total quantum number 7 into the radial and orbital
quantum numbers that correspond to r and 6, respective-
1y.16

III. DIAGONALIZATION PROCESS

The eigenvalues €, and the eigenvectors a/"’ of the
matrix (4) are determined by the linear-algebraic system

W aa y+Via+W 0, ,=¢a, (6)

which amounts to a three-term recursion formula.
Separate sets of solutions of (6) occur, with alternative
parities of /, because (6) interconnects only components of
the eigenvectors {a;] with [/ values of equal parity. The
coefficients of (6) suffice to determine the spread of eigen-
values € in Fig. 1, through the equation'’

%e}w 12%, ]2-_- SI(VEr2WE ) — Iz/ v, J2 .
/ N

1
(7

The prime indicates summation over / values of the same
parity.

The finite range of / values, indicated in (4b), causes the
two relations (6) with lowest and highest values of / to
consist of only two nonzero terms, namely,

(Vlml—e)a\M\+Wim;+1a.mi+2=0, (8a)
W,_a,_3+(V,_—ea,_;=0. (8b)

[All indices of (8a) may be raised by unity and/or those of
(8b) reduced by unity, depending on the parity of / —m
and of n — 1/, respectively.] Equations (8) set the ratios of
the first two and of the last two elements of the recursion
(6), respectively. The three-term recursion (6) then deter-
mines the ratios of the successive elements a; to the first
and last elements of their sequence. Compatibility of
these separate sets of ratios would finally select the eigen-
values €, in a numerical solution.

To obtain a semianalytic solution of (6) we shall instead
recast (6) as a difference equation analogous to the one-
dimensional wave equation d2y/dx?+k?*x)y(x)=0, a
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procedure utilized previously in Ref. 11(c). The analog of
k2(x) will illustrate the features of Fig. 1 and of the cor-
responding a;.

A. Difference equation

We define the second difference of the eigenvector
components a; as

8(2)01=(al+2—201+01“2)/4 ) (9)

where the coefficient + stems from / varying in steps of 2.
The terms of (6) with W coefficients are thus expressed in
terms of 8%'a as

W, 1a; o+ Wi a =W, + W, )48, +2a))
+3 (W =W, _p)

X(a; ,—a; ;) . (10

Casting (6) in the form d?%y/dx*+4k*x)y(x)=0 re-
quires us to eliminate the first difference term in (10).
This is accomplished by splitting a suitable factor out of
a, (following, e.g., a procedure of Ref. 13),

ay=c 4, (1n
and setting
Wi ici =W €42 (12)

whence follows the recursion formula

t—1
Croa/cr=T1 Wi pas/Wiiaia) - (13)
5s=0

Initial values of (¢g,c;), or of (¢;,¢3), can be set to unity.
Equation (6) now takes the equivalent form

W[_1C’_2(48(2)A1+2A1)+V[C[AIZECIAI N (14)

8% 4,+K%1)4,=0, (15)
with
e—[V,+QW,_c;_5/¢;)
K21)= v | —1C1—2/¢))] ' (16)
—4W1_1C1’2/C1

The ratios c¢;/c;_, in (16) calculated from (13) depart
significantly from unity only for / ~n as shown in Fig. 2.
A positive sign of K*(I) implies, of course, an oscillatory
dependence of A4; on I, a negative sign implies an ex-
ponential dependence. Construction of an eigenvector of
(15) requires at least one of the coefficients of K2(/) to be
positive. Using (4a’) and (4b') to O (1/n), we reduce (16)
to the more transparent form

4 ¢—(1*/4n%) ¢ 1] @

KX¥)=— —— —1
5 1—(2/n?) ¢y 2 ¢ J
+0((2l +1)"2)+0(1/n), (17

which forms the basis for further discussion.
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FIG. 2. Ratios ¢; /¢, _,, Eqgs. (12) and (13).

B. Lower-energy spectrum

The first and main term of the squared wave number
(17) may be interpreted as

KXAD=2m*(D[e—V(D]+0((2 +1)"3)+0(1/n) , (18)

the product of an effective kinetic energy € —V([) and of
twice an effective mass m *(I). The effective potential is
defined as

‘\/(1)=V,+W1_1+W1+,

= +5172/4n*+0(21 +1)"H)4+0(1/n?), (19)
and the effective mass as
« 1 <
m*(l)= (20)

T AW W) e,

The energy eigenvalue € in (18) must be positive so that
K?(I) will not be negative throughout. The potential
YV(I) confines the eigenvector within an oscillator-type
well with exponential decay for /2> 4en?. The effective
mass m *(l) diverges at ! ~n thus accelerating the ex-
ponential decay for € < ;. The same divergence presents
a major problem for € > 1 which we will address in Sec.
IIIC.

The lowest-energy states have wave functions concen-
trated in the region of lowest diamagnetic potential, that
is, along the z axis, =0° or 180°. Extreme concentra-
tion, represented by a superposition of two 8 functions
8(1*cosf), would cause the coefficients a; of the wave
function (1), ¥(r,8), to be proportional to [(2] +1)/n]'"?
for I —m even, O otherwise. The concentration does not
actually reach such an extreme but spreads around 6=0°
or 180° in the form of a Gaussian in 6. This translates,
through a Fourier transform, into a Gaussian function of
I, namely,

a;=(EN4 QI+ 1) /n]2expl =11 +1)/2V5n] . (1)

Note that the effective range of / is proportional to V'n,
as in random walk problems.

On the basis of (17) the lowest few eigenvalues are
represented by
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Vs
=—=(N+1), 22
En 2n( +3) (22)
with spacings

Evia—exn=V5/n . (229

The corresponding eigenvectors are in essence Hermite-
type functions. This approach is valid as long as m *(/)
can be replaced by m *(0). The actual increase in m *(/)
increases the magnitude of K*(I) thus decreasing the
spacings of successive eigenvalues in accordance with
Fig. 1. Further analysis of this behavior is deferred to
Sec. IV, where it will be conducted by embedding the
difference equation into a differential problem.

A single further application will be carried out here to
estimate the number N, of eigenvalues of (15) within
our immediate scope, that is, with ey <+. This is done
by evaluating the “phase sum” 3, K (/) at e=1 and set-
ting it equal to N, 7. We disregard, however, the terms
of lower order as well as the ratio ¢, /c; _,, at least initial-
ly. In accordance with the definition (9), the “phase
sum” extends over all values of / and yields

S K| eoya=n/V5=N ot . (23)
1
The result,
N, =0.285n/2, (24)

will turn out low by 15%,'® which would be compensat-
ed, at least in part, by including in K (/) the contribution
Of(C[/C[w2)1/2> 1.

C. Upper energy spectrum: Conjugation

The first term of (17), which is large and negative for
€ <+ and I ~n, becomes large and positive for € > ¢ and
I ~n. The implications of such large values of K(/) for
the eigenvectors A, are not readily assessed by inspection
of (15). This equation must then be recast once again into
a more transparent form by an orthogonal transforma-
tion, which leaves its spectrum invariant.

An appropriate transformation consists simply of sign
reversal of alternate elements of the sets {a;} and { 4,},
represented by the substitutions

a,=(—DU"2p, 4,=(-DIB, | (25)

where [/ /2] equals / /2 when ! is even and (/ —1)/2 when
it is odd. The transformation (25) is analogous to those
that interchange electron eigenstates near the top of a
band with those near its bottom, or interchange occupied
and vacant states in a partially filled atomic subshell.'®
This transformation will be seen to interchange the sets
of solutions of (15) with £ <+ and with > 4. It will also
be seen to interchange some of the major characteristics
of the two subsets and will be referred to as a conjuga-
tion. It will not, however, conserve the number of eigen-
values nor their range of values. Note that the point
e=1+ acts as a “‘separatrix” between the conjugate subsets
of eigenstates; it corresponds to A=0, where
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A=4A%—54? in terms of the Lenz vector A, is a pa-
rameter introduced in earlier semianalytic treatments.'!®’

The transformation (25) applies on both sides of the
matrix operator in (4) and (6), thus reversing the sign of
each of its off-diagonal elements W,., while leaving the
diagonal V; unchanged. [Note, incidentally, that the sign
reversal of the W affects neither of the spectral parame-
ters (7), as expected.] The linear Stark effect considered
in the Appendix, where the diagonal V; vanish identical-
ly, affords an example where the transformation analo-
gous to (25), together with e— —¢, leaves (6) unchanged;
pairs of eigenvalues *e differ only in having an alterna-
tion in sign of the / components in their eigenvectors.

To discuss the effect of this transformation, we extend
the definition of K %(/) in (16) to read

e—[V,=Q2W,_1c;_,/¢))]
Ki(h= , 26
=D Fa4W, (¢, _y/¢;) 20

with the understanding that the upper sign applies to the
states with € < 1 and the lower sign applies to those with
€> 1. The analog of (17) is

4 s—e=(P/n%) ¢ 1| < )
5 1—(%/n?) ¢y 2 |e¢,

1 } . 27)
n

K2 (=

+0(2I+1)" )40

This expression may be interpreted in analogy to Sec.
III B by extending Egs. (19) and (20) to

V. D=V, W, W, , (28)
1 ¢
*(D=— , 29
md (W, + W, 4y) 01*2} 29
whereby
2
V_(h=5— |1 +5 | /m* 4021+ 1740 |5 |,
n
(30)

which corresponds to an inverted oscillator.

The energy eigenvalue € in (27) must be less than 3 so
that K2 (/) will not be negative throughout. Also & can-
not be less than J since K? (n) would become large and
positive. The allowed range of ¢ is thus four times larger
than in Sec. III B, as expected from Fig. 1. The same fac-
tor of 4 represents the ratio of the coefficients in the
numerators of (18) and (27) and thus determines the ratio
of the ranges of V _ and V _ in Fig. 3.

The solutions of Eq. (15) with K2 given by (27) is thus
represented by Hermite-type functions analogous to the
solutions for K2 except for a factor of 2 in the scale of
their effective frequencies. Indeed, the slopes of the plots
of ey in Fig. 1 are twice as large at €y ~2 than at gy ~0.
The number of eigenvalues in the range + <€ <2 is also
boosted by a factor of 2 since the N, evaluated by (24)
is proportional to [K _(I)]._ 4 rather than to its square.
Combining the numbers of eigenvalues thus estimated by
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(24) for € < 1 with the twice-larger corresponding number
estimated here for € > , we obtain the total of 0.85 (n/2),
15% short of the value N/2 which corresponds to the size
of the matrix.'® The conjugation transformation (25) has
thus separated the solution of (6) into two equivalent
problems with eigenvalues €S1=lim,_,, V}, respectively.

We discuss next the striking correspondence of the an-
gular distributions represented by the eigenfunctions (1)
for the lower and upper ranges of eigenvalues, specifically
for the strongly localized states of each group with the
lowest or highest eigenvalues. The eigenvector com-
ponents { 4;} and {B,] of these states decrease exponen-
tially with increasing / for / > 1,=0(V'n ). The spherical
harmonics P, (8), with | <, have positive values over a
range 0 <0< 1/(I — | m | ) and thus contribute additively
to

V=3 a,f,(r)P/cosf)
]

throughout this range insofar as the eigencomponents

1.25

(a)

0.754

I+E
—
~

0.5+

0.25+

0 025 05 075 1

1.25
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0.75+

v \
0.5-

0.25

0 : T . . .
0 30 60 90
uldeg)

FIG. 3. Effective potentials V,, defined in text. (a) From Egs.
(21a) and (21b). (b) From differential Eq. (33) divided by 4n?/5;
dotted portion of curves extends beyond the range of / <n —1.

a,=c; A; remain positive, as they do for the lowest-
energy eigenstate. The highest-energy eigenstate is in-
stead represented by

V(r,0)= 3 a;f(r)P,,(6)
!
=3 ¢;Bfu(r(=1I2p, (6) . 31
!

The functions (—1)!!/2)P, () alternate in sign at 6~0°
according to the parity of [/ /2] generating a destructive
interference. On the other hand, they have equal sign at
and near 6=90°, thus contributing additively in this
range. The conjugation transformation (25) is thus seen
to shift the localization of W(r,0) from the proximity of
6~0° to that of 8~90°.

Indeed, paralleling the earlier discussion leading to (21)
for the low eigenvalues, the high eigenvalues reach high
energy by being concentrated in directions orthogonal to
the magnetic field, where the diamagnetic potential is a
maximum. Extreme concentration into this direction,
now represented by O&(cosf), would give in (1),
a;=[(2] +1)/n]1/2P,(O). Once again, however, the con-
centration has a spread in 6 around 6=90° and is corre-
spondingly reflected in a Gaussian dependence on ! /n

b, =2m/V'5n) /4 — DU2IP(0)(21 +1)1/2
xexp[—1(I+1)/V'5n] . 32

Figure 4 shows that the above expression gives a good
description of the eigenvectors obtained by numerical di-
agonalization. Note that the exponent of (32) differs by a

0.8t (b)

FIG. 4. Eigenvectors of the matrix (4), with n=10 and 50,
m=0, and even parity /. (a) b/"/%; (b) a/%; , numerical
solution of Eq. (6); X, Egs. (21) and (32) for n=10, which ap-
proximate the results of Sec. IV closely; O, Refs. 11(d) and
11(e).
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factor of 2 from its value for the lowest eigenvectors.
This difference reflects the scaling ratio of lowest and
highest eigenvectors that was discussed earlier. The re-
sult in (32) means that ¥ in (31) has a Gaussian distribu-
tion around 6=90° with a width proportional to n ~!/2,
The rapid exponential falloff in the contribution of high-/
values (I > Iy« n'/?) to the lowest and highest eigenval-
ues expresses, therefore, the tight concentration of W(r,0)
in directions parallel and transverse to the field.

Finally, the connection of the conjugation operator (25)
in our problem to the interchange of longitudinal and
transverse excitations with respect to the magnetic field is
clearly related to the structure of the diamagnetic poten-
tial, specifically to its sin?0 dependence. The transforma-
tion 8—90°—0 takes sin’0—»cos’0=1—sin?0. The off-
diagonal W, acquire, therefore, a change in sign. For the
diagonal V;, as observed after (2a), the angular matrix
element is ~ ; for all / except for /=0. That is, sin%6 and
cos’@ both contribute the same value, namely 1, and ¥,
remains unchanged.

IV. EMBEDDING IN DIFFERENTIAL EQUATIONS

The basic diagonalization equations (6) and (15) ap-
proach integral and differential equations, respectively, in
the limit of large n, where I/n or n,/n=1—(I+1)/n
may be treated as continuous variables. This opportunity
proves helpful since many equations of mathematical
physics have familiar analytic solutions which display the
influence of characteristic features of their coefficients,
such as the simple dependence of (18) on /2/n%. Exploi-
tation of this opportunity is made increasingly attractive
by the recent realization that moderate nonsingular
departures of equation coefficients from a standard form
can be taken into account by numerical adjustment of a
coordinate.'?

In converting a difference to a differential equation, the
error in the eigenvalues due to the conversion is of the or-
der (N,;/n)?, where N; is the number of nodes of the
eigenvector i,'® which agrees with the level of approxima-
tion of (4a’) and (4b’) and accounts for the 15% error not-
ed in Sec. IIIC. Indeed, the conjugation transformation
of Sec. III C is vital to the accuracy of the higher eigen-
values by limiting the range of N,.

For the sake of flexibility we map our discrete variable
! (or n,) on a continuous u by an initially unspecified
functional relationship /(u). Dealing with an eigenvalue
problem requires the mapping of eigenvector components
a; on a continuous variable a (1) to preserve normaliza-
tion. We thus set

Sa= [ duaiw), (33)
! “o

which implies
al(u)z(dl/du)_l/za(u) . (34)

The difference operator 8 is converted to a differential
operator by standard methods,

-1

—-1/2

dl d | dl d | dl
), _ | 8t a |al 4a |af
%a= du du |du du |du a(u)
ar | 7" "
= 71;] [a (u)-—ZTa (u)
2
T ER VY BEVY
4 | I' 2! )
(35)

The remaining terms of the differential equation are
adapted from (10) rather than (14) because the renormal-
ization (11) is not convenient in the present context. On
the other hand, the conjugation operator is essential and
one shall obtain conjugate pairs of differential equations
for the functions a(u) and b(u). The approximate ma-
trix elements (4a’) and (4b’) suggest two forms of /(u),
namely, /(u)=nu — and [ (u)=n sinu — L.

The linear form simplifies (35) since all but the first
derivatives of /(u) vanish. The resulting equation con-
tains a first derivative and has the form 21.6.2 of Ref. 20
for the angular prolate spheroidal function. However,
the boundary conditions at u=0 for a(u) and b(u) are
not the same as for the ordinary spheroidal functions,
thus causing a(u) and b(u) and their eigenvalues to
depart from the standard form (Eq. 21.7.5 of Ref. 20).
Accordingly, we do not pursue this approach except for a
limited application which is insensitive to boundary con-
ditions.

The application concerns the difference of successive
eigenvalues Aey for eigenfunctions with many nodes,
specifically for ey ~+. The eigenvalue Ay in 21.6.2 of
Ref. 20 is related to ey by ey =5Ay /4n% The approxi-
mate formula for AAy, N=n/6 gives
Ag, ,=0.85V'5/2n, which is approximately +Ag, and
+Ae, ,, in accordance with Fig. 1, a feature not previous-
ly identified.

The construction of the differential equation for
I(u)=n sinu —§ is more complicated than for the linear
form but generates no first derivative term whereby the
differential equation has the same structure as (15), name-
ly,

a”(u)+im—2- €—tsin*y + —— L a(u)=0, (36a)
5 4 16n?% cos’u
4n? . 1
b"(u)+— S —e—sin®u + —— b(u)=0,
+ 5 |* 16n? cos’u
(36b)

still to O(1/n?)4+0((2] +1)72) as in Sec. III. Note the
following aspects of these equations.

(a) The coefficient £ and the main terms in the brackets
coincide with the numerator of K2 (/) in (26).

(b) The denominator [1—(/2/n?)] of (26), representing
the divergence of m?*, has been absorbed into the
differential elements, a step which has also eliminated the
first derivative term. The replacement of the range of /,
0 <! <n, by that of sinu has also introduced the factor n >
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in front of the brackets.

(c) The replacement of //n by sinu rounds off the po-
tential in Fig. 3(b) as u approaches 90°. It also introduces
the singularity 1/cos?u which, however, only contributes
to O (1/n) and need not be considered explicitly here.?!

(d) Equations (36) are periodic in # and depart from the
Mathieu equation (20.1.1 of Ref. 20) only through the oc-
currence of the “centrifugal” term 1/cos’u.

Inspection of Eqgs. (36) bears out the approximate re-
sults obtained in Sec. III. More detailed, quantitative re-
sults could be derived from information available on the
Mathieu functions. However, this information is not as
extensive as it is for other functions of mathematical
physics. Therefore we proceed by the method of Ref. 13
fitting the solutions of (36) to parabolic cylinder functions
(Ref. 20, Chap. 19) which include oscillator eigenfunc-
tions as special cases. We restrict this calculation to the
quantum number m=0.

According to Ref. 13, we set

—172
alu)= if—iﬁul)— [C?A%a;x (u))+C°A%a;x (u))],
(37)
where 4 ©° are the even and odd solutions of
2
4 la—(x2/4)]4 =0, (38)
dx

and the constant a is still to be fixed. Upon substituting
(37) into (36), and using (38) to eliminate d?A4 /dx?, we
find x (u) to be defined by the integral equation

[ Ta—(x/4)12dx' = [ “k (u')du’ (39)
0 0

to order (x"'/x')?, where k (u) is the effective wave num-
ber of (36) complemented by terms O((2/ +1) ') neglect-
ed in (36). We note that taking into account the small,
cumbersome corrections to (39) would be fruitless since
(35) is itself an approximation. Equation (39) yields,
when the integration limits x and u coincide with the
zeros of the respective integrands, namely O and u,

a=(2/7r)f0urk(u’)du’ . (40)

Equations (36) and (40) establish a relationship between
the eigenvalue € and the parameter a which holds regard-
less of boundary conditions, namely,

e Y5, |25 |1 2a ) 5
T 2n 32n? |{n ' V5 4n?
115—v5 V3 1
—_ _r2 - 41
p G 2noz +0 nJ]’ (41a)
for e <1/4, and
L5 _V5 25 |1 2| 5
T4 n 322 |2n V5 4n?
V5 V5
c L35, 3 oL, @
nl4 n 6 n
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for € > 1. The term before the square brackets in (41) re-
sults from the approximation sin’u =u?, the terms in
square brackets from the nonparabolic terms in (36). The
last significant term represents a fit to the numerical con-
tribution to k (u) of O((2/ +1)72).

A second relation between € and a is established by the
boundary conditions (8). The specific condition (8b), at
u =90°, has little effect except in the vicinity of e=1,
where the eigenfunction penetrates substantially into the
region of imaginary wave number near u =90°. In the
use of (40) we have assumed a negligible value of the
eigenfunction at u =90° by using parabolic cylinder func-
tions of Whittaker type (Ref. 20, Egs. 19.3). According
to equation 19.3 of Ref. 20, this condition restricts the
coefficients of (37) by

c°  ~TG+(ar2)

= 2-——;—-——tan a———i
c T({+(a/2)) 2 4
=a'? |1+ —— |tan al—7 | 42)

The remaining boundary condition (8a) at u=0 will pro-
vide a second condition on C°/C¥, thus relating a direct-
ly to the eigenvalue ¢.

The boundary condition at #=0 is handled by rewrit-
ing (8a) in terms of the eigenfunctions a (u) and b (u),

—-1/2 —1/2

4 alu) / gL (u)
du u(2) u u(0)
=1+ (e—W,— Vo) /W, ,
(43a)
dl 12 —1.
al () / LU o
du u(2) du 4(0)
14 (Vo—W,—e) /W, .
(43b)

Substituting (37) and its analog for b (u) into these equa-
tions and using (36), (37), (38), and the definition of para-
bolic cylinder functions (Ref. 20, Egs. (19.2), we find

172
[
Cg: 3¢t fa—y ) (44a)
C
for e < %, and
172
C° Sa
= ~/(4—y~ 44b
T yup Yy /(4—y7) (44b)
for € > 1, where
6 |5FV5
1‘=+________ —
VEEYS 6 y

The eigenvalues in Table I were found using (41), (42),
and (44) with a hand-held calculator. Also shown are the
eigenvalues found by numerical diagonalization of (6) and
values of the parameter a.
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TABLE 1. Comparison of eigenvalues from Egs. (41) and (6)
for n=49.

a

£ a
Eq. (41) Eq. (6) Eq. (40)
0.0221 0.0226 1.396
0.0641 0.0657 3.305
0.1045 0.1061 5.224
0.1430 0.1436 7.144
0.1790 0.1780 9.068
0.214 0.209 10.99
0.65 0.69 14.08
0.73 0.75 12.09
0.81 0.82 10.11
0.890 0.896 8.133
0.974 0.973 6.169
1.055 1.054 4.219
1.144 1.139 2.325
1.223 1.228 0.621

2These values may be compared to oscillator eigenvalues for odd
parity states (3,2, ...) for € < | and for even parity (§,3,...)
fore> .

The eigenvectors constructed from (37) and (39) are
shown in Fig. 4, along with those from the exact numeri-
cal diagonalization, for the lowest and highest eigenval-
ues, in which cases they fit closely the analytical expres-
sion (21) and (32). Earlier studies had not fully appreciat-
ed the crucial implication of (21) and (32) that only a lim-
ited range of values (I < n'”?) contributes to the eigenvec-
tors near either limit, =0 and e~ 3. Analytical expres-
sions proposed in Refs. 11(d) and 11(e) and based on stud-
ies of diamagnetism through O, symmetry do not de-
scribe the eigenvectors well. Figure 4 compares the
coefficients given by Refs. 11(d) and 11(e) for the lowest
eigenvector with our (21) and with the results of numeri-
cal diagonalization. Corresponding results for the lowest
eigenvalue are 0.131 from Refs. 11(d) and 11(e) whereas
(21) leads to 0.1067; the exact numerical value is 0.1064
for n=10.

V. DISCUSSION

The analysis of the diagonalization of the matrix (4)
conducted in this paper aimed at identifying the dynami-
cal origin of the localization of eigenstates in regions of
high potential energy, a phenomenon that appears
widespread in chemical physics. Remarkable features of
the numerically produced plots in Fig. 1 have been traced
in Sec. III to the value of parameters of the matrix (4).
Eigenvectors localized in the region of highest and lowest
potential energy, with highest and lowest eigenvalues, are
represented as superpositions of the same small set of
low-1 orbitals, mutually orthogonalized by the conjugation
transformation (25). This orthogonalization combines
with the general mutual repulsion of eigenvalues of a ma-
trix to provide a quantum-dynamical basis for localiza-
tion in high-potential regions. Analogies of states local-
ized in high and low potentials had been apparent but
their intimate conjugation relation seems to have been
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overlooked thus far.

A close analog of our results is seen in the long-known
quantum mechanics of the asymmetric rotor, whose spec-
trum includes two groups of eigenstates localized about
the axes of lowest and highest inertia, respectively.?? The
rotor’s Hamiltonian matrix is tridiagonal in the base of
symmetric-rotor eigenfunctions, the asymmetry being
manifested by off-diagonal elements. The ratios of the in-
termediate to the highest and lowést moments of inertia
determine the structure of the eigenvalue spectrum much
as the values of YV, do in (4a). The rotor’s eigenfunctions,
Lamé elliptic functions of the orientation of a lab axis in
the body frame, are changed into their complex conju-
gates by the analog of (25).

The results reported here are viewed as a stepping
stone toward a semianalytic treatment of Rydberg and
photoionization spectra in a magnetic field, involving the
following tasks: (a) mapping of the perturbed eigenfunc-
tions (1) and (31) so as to display their respective correla-
tions of r and 6; a preliminary step has been taken in this
direction;?* (b) showing how and why the localized eigen-
functions of the degenerate perturbation treatment
remain significant far beyond the validity of that treat-
ment, as implied by Ref. 8; (c) describing the eventual de-
cay of the quasi-Landau excitations, transverse to B and
localized at 8 ~90°, into excitations (or ionizations) along
B, i.e., localized at 8 ~0°. This program should probably
clarify the interrelations between the fixed-n perturbation
treatment, which correlates r and 6, the earlier adiabatic
approach which excludes such correlations,* and a
modified adiabatic approach that introduces correlations
through adjustment of curvilinear coordinates.?

The present study is also intended as a stepping stone
to the major class of problems of chemical physics that
display hyperspherical symmetry in a Coulomb field
about the center of mass and alternative symmetries near
and beyond fragmentations, as well as resonances local-
ized in high regions at intermediate ranges.'*® The
departures from central symmetry at increasing distances
from the center of mass introduce multivariable correla-
tions akin to the correlations of r and 6 considered here.
Unraveling their multivariable aspect presents a new
challenge.
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APPENDIX: LINEAR STARK EFFECT
IN A DEGENERATE MANIFOLD

The linear Stark effect in a degenerate hydrogenic man-
ifold shares interesting similarities and differences with
our problem of diamagnetism. This Stark problem is ex-
actly solvable in accordance with the well-known separa-
bility in parabolic coordinates of the Hamiltonian for a
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Coulomb plus electric field (F along the z direction),

H=—(1/r)+Fz . (A1)

We use atomic units, a unit of F being 5.14 X 10° V/cm.
In the absence of parity as a good quantum number for
(A1), all / values in the n manifold are mixed by this
Hamiltonian. The mixing coefficients are Clebsch-
Gordan coefficients that connect spherical to parabolic
eigenvectors according to the prescription given by the
O, symmetry of the hydrogen Hamiltonian.?® With L
the orbital angular momentum and A the Lenz vector
J

(Ln —1),Hn —1),L,0| Hn —1),Xn —1),£Ln —1)

r2

For n >>1 and n >>1, these coefficients equal®’

P(ED[(2 +1)/n]%exp[ —1(1 +1)/2n] . (A2)

Examining this problem along the lines of the di-
amagnetism analysis in the text, the only nonvanishing
matrix element of Fz is

W,=(n,,0|rcos|n,I+1,0)

2

—3n2 |1 |13 Ll (a3
n [(20 +1)21 +3)]

The angular factor _ in this matrix element,

(I|cos@|l+1),is 1/V'3 for =0 and [ ~1/2 for all oth-
er /, a behavior similar to (2). Therefore W, is well ap-

proximated for /50 by
2
1 {141
W ~3in? Y J , (A4)

an expression analogous to (4b’).

The n X n matrix of Fz has nonzero entries only along
the two subdiagonals on either side of the main diagonal.
The three-term recurrence relation in place of (6) is

W,_a_+Wa . =Ea . (A5)
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(dimension of angular momentum), the combinations
j1,,=+(L* A) behave like independent angular momen-
ta. The parabolic states are described by |j;j2ji,/2, -
The magnitudes of the two pseudoangular momenta are
Jj1=Jj;=1%(n —1). Passage to spherical eigenvectors is
accomplished by the addition L=j,;+ j,. The eigenvalues
of (A1) are equally spaced with spacing 3Fn. The ex-
treme eigenvectors (with energy i%Fnz), with respective
concentration of the wave function in the up- and down-
field direction (along the positive-z and negative-z axis),
are given for m =0 by the Clebsch-Gordan coefficient

s n—=1)) .

[

The conjugation analogous to (24), a;=(—1)'b,, switches
the sign of the W;’s so that it takes the eigenvalue E into
—E. Note that the absence of the diagonal elements now
makes the transformation symmetric unlike in Sec. ITI C.
Analogous to (36) in Sec. IV, the difference equation
(AS) with W, as in (A4) can be mapped onto the
differential equation in the variable u =(/ +1)/n,

[1—(u?/2)]a"(u)—ua'(u)

+[(4E/3)+2n’—n*u?la(u)=0, (A6)

together with its conjugate wherein E is replaced by —FE
and a(u) by b(u). These equations again describe pro-
late spheroidal functions. Their eigenvalues ascend and
descend from the extreme values E =+3n2/2, in equal
steps of 3n, with oscillator-type eigenfunctions. The ex-
treme eigenvectors are as in (A2). As in Sec. III, the
Gaussian falloff in /2 /n reflects the concentration of these
wave functions at 6=0° and 180° with a Gaussian width
~n'/227 Although these features and the association of
the linear Stark effect with parabolic coordinates are well
known, the above mapping of the problem onto prolate
spheroidal functions, analogous to the diamagnetic prob-
lem, has not been recognized, nor has the role of the con-
jugation transformation.
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